MODERN CRITICISM OF THE THEORY OF EVOLUTION

Throughout the whole of the nineteenth century a steady fire of criticism was directed against the theory of evolution; the names of Cuvier and of Louis Agassiz stand out preëminent in this connection, yet the theory has claimed an ever increasing number of adherents, until at the present time it is rare to find a biologist who does not accept in one form or another the general principle involved in the theory. The storm of criticism aroused by the publication of Darwin’s “Origin of Species,” was directed more against the doctrine of evolution than against Darwin’s argument for natural selection. The ground has been gone over so often that there would be little interest in going over it again. It will be more profitable to turn our attention to the latest attack on the theory from the ranks of the zoologists themselves.

Fleischmann, in his recent book, “Die Descendenztheorie,” has made a new assault on the theory of evolution from the three standpoints of paleontology, comparative anatomy, and embryology. His general method is to try to show that the recognized leaders in these different branches of biology have been led to express essentially different views on the same questions, or rather have compromised the doctrine by the examples they have given to illustrate it. Fleischmann is fond of bringing together the antiquated and generally exaggerated views of writers like Haeckel, and contrasting them with more recent views on the same subject, without making sufficient allowances for the advances in knowledge that have taken place. He selects from each field a few specific examples, by means of which he illustrates the weakness, and even, as he believes, the falsity of the deductions drawn for the particular case. For example, the plan of structure of the vertebrates is dealt with in the following way: In this group the limbs, consisting typically of a pair of fore-legs and a pair of hind-legs, appear under the form of cylindrical outgrowths of the body. In the salamander, in the turtle, in the dog, the cylindrical legs, supporting the body and serving to support it above the ground, are used also for progression. The general purpose to which the limbs are put as organs of locomotion has not interfered with an astonishing number of varieties of structure, adapted to different conditions of existence, such as the short legs used for creeping in salamanders, lizards, turtles, crocodiles; the long and thin legs of good runners, as the hoofed animals; the mobile legs of the apes used for climbing; and the parachute legs of some squirrels used for soaring. Even more striking is the great variety of hands and feet, as seen in the flat, hairy foot of the bear; the fore-foot of the armadillos, carrying long, sickle-shaped claws; the digging foot of the mole; the plump foot of the elephant, ending in a broad, flat pad with nails around the border, and without division into fingers; the hand of man and of the apes ending with fine and delicate fingers for grasping. To have discovered a general plan of structure running through such a great variety of forms was proclaimed a triumph of anatomical study.[[3]]

[3]. This paragraph is a free translation of Fleischmann’s text.

A study of the bony structure of the limb shows that typically it consists of a single proximal bone (the humerus in the upper arm, the femur in the thigh), followed by two bones running parallel to each other (the radius and ulna in the arm and the tibia and fibula in the shank); these are succeeded in the arm by the two series of carpal bones, and in the leg by the two series of tarsal bones, and these are followed in each by five longer bones (the metacarpals and metatarsals), and these again by the series of long bones that lie in the fingers and toes. Despite the manifold variety of forms, Fleischmann admits that both the hind- and the fore-limbs are constructed on the same plan throughout the vertebrates. Even forms like the camel, in which there are fewer terminal bones, may be brought into the same category by supposing a reduction of the bones to have taken place, so that three of the digits have been lost. In the leg of the pig and of the reindeer, even a greater reduction may be supposed to have taken place. Fleischmann points out that these facts were supposed to be in full harmony with the theory of descent.

The analysis of the origin of the foot of the horse gave even better evidence, it was claimed, in favor of the theory. The foot consists of a single series of bones corresponding to the middle finger and toe. When, as sometimes happens, individual horses are found in which in addition to the single middle finger two smaller lateral fingers with small hoofs appear, the followers of the descent theory rejoiced to be able to bring this forward as a confirmation of their doctrine. The occurrence was explained as a sporadic return to an ancestral form. The naïve exposition of the laws of inheritance that were supposed to control such phenomena was accepted without question. And when finally a large number of fossil remains were found by paleontologists,—remains showing a gradual increase in the middle finger, and a decrease in size of the lateral fingers,—it was supposed that the proof was complete; and anatomists even went so far as to hold that the original ancestor of the horse was a five-fingered animal.

This same law of type of structure was found to extend to the entire vertebrate series, and the only plausible explanation appeared to be that adopted by Darwin and his followers, namely, that the resemblance is the result of the blood-relationship of the different forms. But a simple comparison of the skeleton of the limbs if carried out without theoretical prejudice would show, Fleischmann thinks, that there is only a common style, or plan of structure, for the vertebrates. This anatomical result has about the same value as the knowledge of the different styles of historical architecture—that, for instance, all large churches of the Gothic period have certain general principles in common. The believers in the theory of descent have, however, he thinks, gone beyond the facts, and have concluded that the common plan in animals is the consequence of a common descent. “I cannot see the necessity for such a conclusion, and I certainly should unhesitatingly deny that the common plan of the Gothic churches depended on a common architect. The illustration is, however, not perfect, because the influence of the mediæval school of stone-cutters on its wandering apprentices is well known.”

Fleischmann adds that if the descent theory is true we should expect to find that if a common plan of structure is present in one set of organs, as the limbs, it should be present in all other organs as well, but he does not add that this is generally the case.

The weakness of Fleischmann’s argument is so apparent that we need not attempt an elaborate refutation. When he says there is no absolute proof that the common plan of structure must be the result of blood-relationship, he is not bringing a fatal argument against the theory of descent, for no one but an enthusiast sees anything more in the explanation than a very probable theory that appears to account for the facts. To demand an absolute proof for the theory is to ask for more than any reasonable advocate of the descent theory claims for it. As I have tried to show in the preceding pages, the evidence in favor of the theory of descent is not absolutely demonstrative, but the theory is the most satisfactory one that has as yet been advanced to account for the facts. Fleischmann’s reference to the common plan of structure of the Gothic churches is not very fortunate for his purpose, since he admits himself that this may be the result of a common tradition handed down from man to man, a sort of continuity that is not very dissimilar in principle from that implied in the descent theory; in the latter the continuity of substance taking the place of the tradition in the other. Had the plan for each, or even for many of the churches, originated independently in the mind of each architect, then the similarity in style would have to be accounted for by a different sort of principle from that involved in the theory of descent; but as a matter of fact the historical evidence makes it probable that similar types of architecture are largely the result of imitation and tradition. Certain variations may have been added by each architect, but it is just the similarity of type or plan that is generally supposed to be the outcome of a common tradition.

Fleischmann’s attempt in the following chapter to belittle Gegenbaur’s theory of the origin of the five-fingered type of hand from a fin, like that of a fish, need not detain us, since this theory is obviously only a special application which like any other may be wrong, without in the least injuring the general principle of descent. That all phylogenetic questions are hazardous and difficult is only too obvious to any one familiar with the literature of the last thirty years.

Fleischmann devotes a long chapter to the geological evidences in connection with the evolution of the horse, and attempts to throw ridicule on the conclusions of the paleontologists by emphasizing the differences of opinion that have been advanced in regard to the descent of this form. After pointing out that the horse, and its few living relatives, the ass and the zebra, are unique in the mammalian series in possessing a single digit, he shows that by the discovery of the fossil horses the group has been simply enlarged, and now includes horses with one, three, and five toes. The discovery of the fossil forms was interpreted by the advocates of the descent theory as a demonstration of the theory. The series was arranged by paleontologists so that the five-toed form came first, then those with three and one toe, the last represented by the living horses. But the matter was not so simple, Fleischmann points out, as it appeared to be to the earlier writers, for example to Haeckel, Huxley, Leidy, Cope, Marsh. Different authors came to express different opinions in regard to the genealogical connection between the fossil forms. Several writers have tried to show that the present genus, Equus, has not had a single line of descent, but have supposed that the European horses and the original American horses had different lines of ancestry, which may have united only far back in the genus Epihippus. Fleischmann points out that the arrangement of the series is open to the criticism that it is arbitrary, and that we could equally well make up an analogous series beginning with the five-fingered hand of man, then that of the dog with the thumb incompletely developed, then the four-fingered hind-foot of the pig without a big toe and with a weak second and fifth digit, then the foot of the camel with only two toes, and lastly the foot of the horse with only one toe. It sounds strange that Fleischmann should make such a trivial reply as this, and deliberately ignore the all-important evidence with which he is, of course, as is every zoologist, perfectly conversant. Not only are there a hundred other points of agreement in the horse series, but also the geological sequence of the strata, in which some at least of the series have been found, shows that the arrangement is not arbitrary, as he implies.

Fleischmann then proceeds to point out that when the evidence from other parts of the anatomy is taken into account, it becomes evident that all the known fossil remains of horses cannot be arranged in a single line, but that there are at least three families or groups recognizable. Many of these forms are known only from fragments of their skeletons—a few teeth, for instance, in the case of Merohippus, which on this evidence alone has been placed at the uniting point of two series. At present about eight different species of living horses are recognized by zoologists, and paleontological evidence shows only that many other species have been in existence, and that even three- and one-toed forms lived together at the same time.

Fleischmann also enters a protest against the ordinary arrangement of the fossil genera Eo-, Oro-, Meso-, Merohippus in a series, for these names stand not for single species, but for groups containing no less than six species under Protohippus, fourteen under Equus, twelve under Mesohippus, and twenty under Hipparion. Fleischmann concludes: “The descent of the horses has not been made out with the precision of an accurate proof, and it will require a great deal of work before we get an exact and thorough knowledge of the fossil forms. What a striking contrast is found on examination between the actual facts and the crude hopes of the apostles of the descent theory!...”

In so far as this criticism of Fleischmann’s applies to the difficulties of determining the past history of the horse, it may be granted that he has scored a point against those who have pretended that the evidence is simple and conclusive; but we should not fail to remember that this difficulty has been felt by paleontologists themselves, who have been the first to call attention to the complexity of the problem, and to the difficulties of finding out the actual ancestors of the living representative of the series. And while we may admit that the early enthusiasts exaggerated, unintentionally, the importance of the few forms known to them, and went too far in supposing that they had found the actual series of ancestors of living horses, yet we need not let this blind us to the importance of the facts themselves. Despite the fact that it may be difficult and, perhaps, in most cases, impossible, to arrange the fossil forms in their relations to one another and to living forms, yet on an unprejudiced view it will be clear, I think, that so far as the evidence goes it is in full harmony with the theory of descent. This is especially evident if we turn our attention to a part of the subject that is almost entirely ignored by Fleischmann, and yet is of fundamental importance in judging of the result. The series of forms beginning with the five-toed horses and ending with those having a single toe has not been brought together haphazard, as Fleischmann’s comparison might lead one to suppose, but the five-fingered forms are those from the older rocks, and the three-toed forms from more recent layers. The value of this kind of evidence might have been open to greater doubt had the series been made up of forms found scattered over the whole world, for it is well known how difficult it is to compare in point of time the rocks of different continents. But in certain parts of the world, especially in North America, series of fossil horses have been found in sedimentary deposits that appear to be perfectly continuous. This series, by itself, and without regard to the point as to whether in other parts of the world other series may exist, shows exactly those results which the theory of descent postulates, and we find here, in all probability, a direct line of descent. While it may be freely admitted that no such series can demonstrate the theory of descent with absolute certainty, yet it would be folly to disregard evidence as clear as this.

In regard to the other point raised by Fleischmann concerning the large number of species of fossil horses that have existed in past times, it is obvious that while this greatly increases the difficulty of the paleontologist it is not an objection to the descent theory. In fact, our experience with living species would lead us to expect that many types have been represented at each geological period by a number of related species that may have inhabited the same country. On the descent theory, one species only in each geological period could have been in the line of descent of the present species of horse. The difficulty of determining which species (if there were several living in a given epoch) is the ancestor of the horse is increased, but this is not in itself an objection to the theory.

The descent of birds from flying reptiles is used by Fleischmann as another point of attack on the transmutation theory. The theory postulates that the birds have come from ancestors whose fore-legs have been changed into highly specialized wings. The long vertebrated tail of the ancestral form is supposed to have become very short, and long feathers to have grown out from its stump which act as a rudder during flight. Flying reptiles with winged fore-legs and a long vertebrated tail have been actually found as fossil remains, as seen in the pterodactyls and in the famous archæopteryx. The latter, which is generally regarded either as the immediate ancestor of living birds, or at least as a closely similar form, possessed a fore-leg having three fingers ending in claws, and feathers on the forearm similar to those of modern birds. It had a long tail, like that of a lizard, but with well-developed feathers along its sides. It had pointed teeth in the horn-covered jaws. Fleischmann proceeds to point out that the resemblance of the hand of archæopteryx to that of the reptiles is not very close, for two fingers are absent as in modern birds. The typical form of the foot is that of the bird, and is not the simple reptilian type of structure. Feathers and not scales cover the body, and give no clew as to how the feathers of birds have arisen. He concludes, therefore, that archæopteryx, having many true bird-like characters, such as feathers, union of bones in the foot, etc., has other characters not possessed by living birds, namely, a long, vertebrated tail, a flat breastbone, biconcave vertebræ, etc. Therefore, it cannot be regarded as an intermediate form. Fleischmann does not point out that it is just these characters that would be postulated on the descent theory for the ancestor of the birds, if the latter arose from reptiles. Even if it should turn out that archæopteryx is not the immediate forefather of living birds, yet the discovery that a form really existed intermediate in many characters between the reptiles and the birds is a gain for the transmutation theory. It is from a group having such characters that the theory postulates that the birds have been evolved, and to have discovered a member of such a group speaks directly and unmistakably in favor of the probability of the transmutation theory.

Fleischmann again fails to point out that the geological period in which the remains of archæopteryx were found, is the one just before that in which the modern group of birds appeared, and, therefore, exactly the one in which the theory demands the presence of intermediate forms. This fact adds important evidence to the view that looks upon archæopteryx as a form belonging to a group from which living birds have arisen. That a number of recent paleontologists believe archæopteryx to belong to the group of birds, rather than to the reptiles, or to an intermediate group, does not in the least lessen its importance, as Fleischmann pretends it does, as a form possessing a number of reptilian characters, such as the transmutation theory postulates for the early ancestors of the birds.

The origin of the mammalian phylum serves as the text for another attack on the transmutation theory. Fleischmann points out that the discovery of the monotremes, including the forms ornithorhynchus and echidna, was hailed at first as a demonstration of the supposed descent of the mammals from a reptilian ancestor. The special points of resemblance between ornithorhynchus and reptiles and birds are the complete fusion of the skull bones, the great development of the vertebræ of the neck region, certain similarities in the shoulder girdle, the paired oviducts opening independently into the last part of the digestive tract (cloaca), and the presence of a parchment-like shell around the large, yolk-bearing egg. These are all points of resemblance to reptiles and birds, and were interpreted as intermediate stages between the latter groups and the group of mammals. In addition to these intermediate characters, ornithorhynchus possesses some distinctive, mammalian features—mammary glands and hair, for instance. Fleischmann takes the ground, in this case, that there are so many points of difference between the monotremes and the higher mammals, that it is impossible to see how from forms like these the higher groups could have arisen, and that ornithorhynchus cannot be placed as an intermediate form, a link between saurians and mammals, as the followers of the transmutation theory maintain. He shows, giving citations, that anatomists themselves are by no means in accord as to the exact position of ornithorhynchus in relation to the higher forms.

In reply to this criticism, the same answer made above for archæopteryx may be repeated here, namely, that because certain optimists have declared the monotremes to be connecting forms, it does not follow that the descent theory is untrue, and not even that these forms do not give support to the theory, if in a less direct way. I doubt if any living zoologist regards either ornithorhynchus or echidna as the ancestral form from which the mammals have arisen. But on the other hand it may be well not to forget that these two forms possess many characters intermediate between those of mammals and reptiles, and it is from a group having such intermediate characters that we should expect the mammals to have arisen. These forms show, if they show nothing else, that it is possible for a species to combine some of the characters of the reptiles with those of the mammals; and the transmutation theory does no more than postulate the existence at one time of such a group, the different species of which may have differed in a number of points from the two existing genera of monotremes.

The origin of lung-bearing vertebrates from fishlike ancestors, in which the swim-bladder has been changed into lungs, has been pointed to by the advocates of the transmutation theory as receiving confirmation in the existence of animals like those in the group of dipnoan fishes. In these animals both gills and a swim-bladder, that can be used as a lung, are present; and through some such intermediate forms it is generally supposed that the lung-bearing animals have arisen. Fleischmann argues, however, that, on account of certain trivial differences in the position of the duct of the swim-bladder in living species, the supposed comparison is not to the point; but the issue thus raised is too unimportant to merit further discussion. Leaving aside also some even more doubtful criticisms which are made by Fleischmann, and which might be added to indefinitely without doing more than showing the credulity of some of the more ardent followers of the transmutation theory, or else the uncertainty of some of the special applications of the theory, let us pass to Fleischmann’s criticism of the problem of development.[[4]]

[4]. The long argument of Fleischmann in regard to the origin of the fresh-water snails, as illustrated by the planorbis series, and also the origin of the nautiloid group, has been recently dealt with fully by Plate, and, therefore, need not be considered here.

With fine scorn Fleischmann points to the crudity of the ideas of Oken and of Haeckel in regard to the embryology (or the ontogeny) repeating the ancestral history (or the phylogeny). We may consider briefly (since we devote the next chapter almost entirely to the same topic) the exceptions to this supposed recapitulation, which Fleischmann has brought together. The young of beetles, flies, and butterflies creep out of the egg as small worm-like forms of apparently simple organization. They have a long body, composed of a series of rings; the head is small and lacks the feelers, and often the faceted eyes. The wings are absent, and the legs are short. At first sight the larva appears to resemble a worm, and this led Oken to conclude that the insects appear first in the form of their ancestors, the segmented worms. If we examine the structure of the larva more carefully, we shall find that there are a great many differences between it and the segmented worms; and that even the youngest larva is indeed a typical insect. The tracheæ, so characteristic of the group of insects, are present, the structure of the digestive tract with its Malpighian tubes, the form of the heart, the structure of the head, as well as the blastema of the reproductive organs, show in the youngest larva the type of the insects. In other words the body of the caterpillar is formed on exactly the same fundamental plan as that of the butterfly.

In regard to the larval forms of other groups we find the same relations, as, for example, in the amphibians. The young of salamanders, toads, and frogs leave the egg not in the completed form, but as small tadpoles adapted to life in the water. A certain resemblance to fish cannot be denied. They possess a broad tail, gills (rich in blood vessels) on each side of the neck, and limbs are absent for a long time. These are characters similar to those of fish, but a more careful anatomical examination destroys the apparent resemblance. The superficial resemblances are due to adaptation to the same external conditions.

Fleischmann ridicules the idea that the young chick resembles at any stage an adult, ancestral animal; the presence of an open digestive tract shows how absurd such an idea is. The obvious contradiction is explained away by embryologists, by supposing that the ancestral adult stages have been crowded together in order to shorten the period of development; and that, in addition, larval characters and provisional organs have appeared in the embryo itself, which confuse and crowd out the ancestral stages.

In regard to the presence of gill-slits in the embryo of the higher vertebrates, in the chick, and in man, for example, Fleischmann says: “I cannot see how it can be shown by exact proof that the gill-slits of the embryos of the higher vertebrates that remain small and finally disappear could once have had the power of growing into functional slits.” With this trite comment the subject is dismissed.

On the whole, Fleischmann’s attack cannot be regarded as having seriously weakened the theory of evolution. He has done, nevertheless, good service in recalling the fact that, however probable the theory may appear, the evidence is indirect and exact proof is still wanting. Moreover, as I shall attempt to point out in the next chapter, we are far from having arrived at a satisfactory idea of how the process has really taken place.


CHAPTER III
THE THEORY OF EVOLUTION (Continued)

The Evidence from Embryology

THE RECAPITULATION THEORY

At the close of the eighteenth, and more definitely at the beginning of the nineteenth, century a number of naturalists called attention to the remarkable resemblance between the embryos of higher animals and the adult forms of lower animals. This idea was destined to play an important rôle as one of the most convincing proofs of the theory of evolution, and it is interesting to examine, in the first place, the evidence that suggested to these earlier writers the theory that the embryos of the higher forms pass through the adult stages of the lower animals.

The first definite reference[[5]] to the recapitulation view that I have been able to find is that of Kielmeyer in 1793, which was inspired, he says, by the resemblance of the tadpole of the frog to an adult fish.[[6]] This suggested that the embryo of higher forms corresponds to the adult stages of lower ones. He adds that man and birds are in their first stages plantlike.

[5]. The earlier references of a few embryologists are too vague to have any bearing on the subject.

[6]. Autenrieth in 1797 makes the briefest possible reference to some such principle in speaking of the way in which the nose of the embryo closes.

Oken in 1805 gave the following fantastic account of this relation: “Each animal ‘metamorphoses itself’ through all animal forms. The frog appears first under the form of a mollusk in order to pass from this stage to a higher one. The tadpole stage is a true snail; it has gills which hang free at the sides of the body as is the case in Unio pictorum. It has even a byssus, as in Mytilus, in order to cling to the grass. The tail is nothing else than the foot of the snail. The metamorphosis of an insect is a repetition of the whole class, scolopendra, oniscus, julus, spider, crab.”

Walther, in 1808, said: “The human fœtus passes through its metamorphosis in the cavity of the uterus in such a way that it repeats all classes of animals, but, remaining permanently in none, develops more and more into the innate human form. First the embryo has the form of a worm. It reaches the insect stage just before its metamorphosis. The origin of the liver, the appearance of the different secretions, etc., show clearly an advance from the class of the worm into that of the mollusk.”

Meckel first in 1808, again in 1811, and more fully in 1821 made much more definite comparisons between the embryos of higher forms and the adult stages of lower groups. He held that the embryo of higher forms, before reaching its complete development, passes through many stages that correspond to those at which the lower animals appear to be checked through their whole life. In fact the embryos of higher animals, the mammals, and especially man, correspond in the form of their organs, in their number, position, and proportionate size to those of the animals standing below them. The skin is at first, and for a considerable period of embryonic life, soft, smooth, hairless, as in the zoophytes, medusæ, many worms, mollusks, fishes, and even in the lower amphibians. Then comes a period in which it becomes thicker and hairy, when it corresponds to the skin of the higher animals. It should be especially noted here, that the fœtus of the negro is more hairy than that of the European.

The muscular system of the embryo, owing to its lack of union in the ventral wall, corresponds to the muscles of the shelled, headless mollusks, whose mantle is open in the same region. Meckel compares the bones of the higher vertebrates with the simpler bones of the lower forms, and even with the cartilages of the cephalopod. He points out that in the early human embryo the nerve cord extends the whole length of the spinal canal. He compares the simple heart of the embryo with that of worms, and a later stage, when two chambers are present, with that of the gasteropod mollusk. The circulation of the blood in the placenta recalls, he says, the circulation in the skin of the lower animals. The lobulated form of the kidney in the human embryo is compared with the adult condition in the fishes and amphibians. The internal position of the reproductive organs in the higher mammals recalls the permanent position of these organs in the lower animals. The posterior end of the body of the human embryo extends backwards as a tail which later disappears.

Some of these comparisons of Meckel sound very absurd to us nowadays, especially his comparison between the embryos of the higher vertebrates, and the adults of worms, crustaceans, spiders, snails, bivalve mollusks, cephalopods, etc. On the other hand, many of these comparisons are the same as those that are to be found in modern text-books on embryology; and we may do well to ask ourselves whether these may not sound equally absurd a hundred years hence. Why do some of Meckel’s comparisons seem so naïve, while others have a distinctly modern flavor? In a word, can we justify the present belief of some embryologists that the embryos of higher forms repeat the adult stages of lower members of the same group? It is important to observe that up to this time the comparison had always been made between the embryo of the higher form and the adult forms of existing lower animals. The theory of evolution had, so far, had no influence on the interpretation that was later given to this resemblance.

Von Baer opposed the theory of recapitulation that had become current when he wrote in 1828. According to Von Baer, the more nearly related two animals are, or rather the more nearly similar two forms are (since Von Baer did not accept the idea of evolution), the more nearly alike is their development, and so much longer in their development do they follow in the same path. For example two similar species of pigeons will follow the same method of development up to almost the last stage of their formation. The embryos of these two forms will be practically identical until each produces the special characters of its own species. On the other hand two animals belonging to different families of the same phylum will have only the earlier stages in common. Thus, a bird and a mammal will have the first stages similar, or identical, and then diverge, the mammal adding the higher characters of its group. The resemblance is between corresponding embryonic stages and not between the embryo of the mammal and the adult form of a lower group.

Von Baer was also careful to compare embryos of the same phylum with each other, and states explicitly that there are no grounds for comparison between embryos of different groups.[[7]]

[7]. In one place Von Baer raises the question whether the egg may not be a form common to all the phyla.

We shall return again to Von Baer’s interpretation and then discuss its value from our present point of view.

Despite the different interpretation that Von Baer gave to this doctrine of resemblance the older view of recapitulation continued to dominate the thoughts of embryologists throughout the whole of the nineteenth century.

Louis Agassiz, in the Lowell Lectures of 1848, proposed for the first time the theory that the embryo of higher forms resembled not so much lower adult animals living at the present time, as those that lived in past times. Since Agassiz himself did not accept the theory of evolution, the interpretation that he gave to the recapitulation theory did not have the importance that it was destined to have when the animals that lived in the past came to be looked upon as the ancestors of existing animals.[[8]] But with the acceptation of the theory of evolution, which was largely the outcome of the publication of Darwin’s “Origin of Species” in 1859, this new interpretation immediately blossomed forth. In fact, it became almost a part of the new theory to believe that the embryo of higher forms recapitulated the series of ancestral adult forms through which the species had passed. The one addition of any importance to the theory that was added by the Darwinian school was that the history of the past, as exemplified by the embryonic development, is often falsified.

[8]. Carl Vogt in 1842 suggested that fossil species, in their historical succession, pass through changes similar to those which the embryos of living forms undergo.

Let us return once more to the facts and see which of them are regarded at present as demanding an explanation. These facts are not very numerous and yet sufficiently apparent to attract attention at once when known.

The most interesting case, and the one that has most often attracted attention, is the occurrence of gill-clefts in the embryos of reptiles, birds, and mammals. These appear on each side of the neck in the very early embryo. Each is formed by a vertical pouch, that grows out from the wall of the pharynx until it meets the skin, and, fusing with the latter, the walls of the pouch separate, and a cleft is formed. This vertical cleft, placing the cavity of the pharynx in communication with the outside, is the gill-slit. Similar openings in adult fishes put the pharynx in communication with the exterior, so that water taken through the mouth passes out at the sides of the neck between the gill filaments that border the gill-slits. In this way the blood is aerated. The number of gill-slits that are found in the embryos of different groups of higher vertebrates, and the number that open to the exterior are variable; but the number of gill-openings that are present in the adults of lower vertebrates is also variable. No one who has studied the method of development of the gill-slits in the lower and higher vertebrates will doubt for a moment that some kind of relation must subsist between these structures.

In the lowest adult form of the vertebrates, amphioxus, the gill-system is used largely as a sieve for procuring food, partly also, perhaps, for respiration. In the sharks, bony fishes, and lower amphibians, water is taken in through the mouth, and passes through the gill-slits to the exterior. As it goes through the slits it passes over the gills, that stand like fringes on the sides of the slits. The blood that passes in large quantities through the gills is aerated in this way. In the embryos of the higher vertebrates the gill-slits may appear even before the mouth has opened, but in no case is there a passage of water through the gill-slits, nor is the blood aerated in the gill-region, although it passes through this part on its way from the heart to the dorsal side of the digestive tract. It is quite certain that the gill-system of the embryo performs no respiratory function.[[9]]

[9]. This statement is not intended to prejudice the question as to whether the presence of the gill-slits and arches may be essential to the formation of other organs.

In the higher amphibians, the frogs for example, we find an interesting transition. The young embryo, when it emerges from the egg-membranes, bears three pairs of external gills that project from the gill-arches into the surrounding water. Later these are absorbed, and a new system of internal gills, like those of fishes, develops on the gill-arches. These are used throughout the tadpole stage for respiratory purposes. When the tadpole is about to leave the water to become a frog, the internal gills are also absorbed and the gill-clefts close. Lungs then develop which become the permanent organs of respiration.

There are two points to be noticed in this connection. First, the external gills, which are the first to develop, do not seem to correspond to any permanent adult stage of a lower group. Second, the transition from the tadpole to the frog can only be used by way of analogy of what is supposed to have taken place ancestrally in the reptiles, birds, and mammals, since no one will maintain that the frogs represent a group transitional between the amphibians and the higher forms. However, since the salamanders also have gills and gill-slits in the young stages, and lose them when they leave the water to become adult land forms, this group will better serve to illustrate how the gill-system has been lost in the higher forms. Not that in this case either, need we suppose that the forms living to-day represent ancestral, transitional forms, but only that they indicate how such a remarkable change from a gill-breathing form, living in the water, might become transformed into a lung-breathing land form. Such a change is supposed to have taken place when the ancestors of the reptiles and the mammals left the water to take up their abode on the land.

The point to which I wish to draw especial attention in this connection is that in the higher forms the gill-slits appear at a very early stage; in fact, as early in the mammal as in the salamander or the fish, so that if we suppose their appearance in the mammal is a repetition of the adult amphibian stage, then, since this stage appears as early in the development of the mammal as in the amphibians themselves, the conclusion is somewhat paradoxical.

The history of the notochord in the vertebrate series gives an interesting parallel. In amphioxus it is a tough and firm cord that extends from end to end of the body. On each side of it lie the plates of muscles. It appears at a very early stage of development as a fold of the upper wall of the digestive tract. In the cartilaginous fishes the notochord also appears at a very early stage, and also from the dorsal wall of the digestive tract. In later embryonic stages it becomes surrounded by a cartilaginous sheath, or tube, which then segments into blocks, the vertebræ. The notochord becomes partially obliterated as the centra of the vertebræ are formed, but traces of it are present even in adult stages. In the lower amphibians the notochord arises also at an early stage over and perhaps, in part, from the dorsal wall of the digestive tract. It is later almost entirely obliterated by the development of the vertebræ. These vertebræ first appear as a membraneous tube which breaks up into cartilaginous blocks, and these are the structures around and in which the bone develops to form the permanent vertebræ.

In higher forms, reptiles, birds, and mammals, the notochord also appears at the very beginning of the development, but it is not certain that we can call the material out of which it forms the dorsal wall of the archenteron (the amphibians giving, perhaps, intermediate stages). It becomes surrounded by continuous tissue which breaks up into blocks, and these become the bases of the vertebræ. The notochord becomes so nearly obliterated in later stages that only the barest traces of it are left either in the spaces between, or in, the vertebræ.

In this series we see the higher forms passing through stages similar at first to those through which the lower forms pass; and it is especially worthy of note that the embryo mammal begins to produce its notochord at the very beginning of its development, at a stage, in fact, so far as comparison is possible, as early as that at which the notochord of amphioxus develops.

The development of the skull gives a somewhat similar case. The skulls of sharks and skates are entirely cartilaginous and imperfectly enclose the brain. The ganoids have added to the cartilaginous skull certain plates in the dermal layer of the skin. In the higher forms we find the skull composed of two sets of bones, one set developing from the cartilage of the first-formed cranium, and the other having a more superficial origin; the latter are called the membrane bones, and are supposed to correspond to the dermal plates of the ganoids.

In the development of the kidneys, or nephridia, we find, perhaps, another parallel, although, owing to recent discoveries, we must be very cautious in our interpretation. As yet, nothing corresponding to the nephridia of amphioxus has been discovered in the other vertebrates. Our comparison must begin, therefore, higher up in the series. In the sharks and bony fishes the nephridia lie at the anterior end of the body-cavity. In the amphibia there is present in the young tadpole a pair of nephridial organs, the head-kidneys, also in the anterior end of the body-cavity. Later these are replaced by another organ, the permanent mid-kidney, that develops behind the head-kidney. In reptiles, birds, and mammals a third nephridial organ, the hind-kidney, develops later than and posterior to the mid-kidney, and becomes the permanent organ of excretion. Thus in the development of the nephridial system in the higher forms we find the same sequence, more or less, that is found in the series of adult forms mentioned above. The anterior end of the kidney develops first, then the middle part, and then the most posterior. The anterior part disappears in the amphibians, the anterior and the middle parts in the birds and mammals, so that in the latter groups the permanent kidney is the hind-kidney alone.

The formation of the heart is supposed to offer certain parallels. Amphioxus is without a definite heart, but there is a ventral blood vessel beneath the pharynx, which sends blood to the gill-system. This blood vessel corresponds in position to the heart of other vertebrates. In sharks we find a thick-walled muscular tube below the pharynx; the blood enters at its posterior end, flows forward and out at the anterior end into a blood vessel that sends smaller vessels up through the gill-arches to the dorsal side.

In the amphibia the heart is a tube, so twisted on itself that the original posterior end is carried forward to the anterior end, and this part, the auricle, is divided lengthwise by a partition into a right and a left side. In the reptiles the ventricle is also partially separated into two chambers, completely so in the crocodiles. In birds and mammals the auricular and ventricular septa are complete in the adult, and the ventral aorta that carries the blood forward from the heart is completely divided into two vessels, one of which now carries blood to the lungs. When we examine the development of the heart of a mammal, or of a bird, we find something like a parallel series of stages, apparently resembling conditions found in the different groups just described. The heart is, at first, a straight tube, it then bends on itself, and a constriction separates the auricular part from the ventricular, and another the ventricular from the ventral aorta. Vertical longitudinal partitions then arise, one of which separates the auricle into two parts, and another the ventricle into two parts, and a third divides the primitive aorta into two parts. In the early stages all the blood passes from the single ventral aorta through the gill-arches to the dorsal side, and it is only after the appearance of the lung-system that the gill-system is largely obliterated.

We find here, then, a sort of parallel, provided we do not inquire too particularly into details. This comparison may be justified, at least so far that the circulation is at first through the arches and is later partially replaced by the double circulation, the systemic and the pulmonary.

A few other cases may also be added. The proverbial absence of teeth in birds applies only to the adult condition, for, as first shown by Geoffroy Saint-Hilaire, four thickenings, or ridges, develop in the mouth of the embryo; two in the upper, two in the lower, jaw. These ridges appear to correspond to those of reptiles and mammals, from which the teeth develop. It may be said, therefore, that the rudiments of teeth appear in the embryo of the bird. This might be interpreted to mean that the embryo repeats the ancestral reptilian stage, or, perhaps, the ancestral avian stage that had teeth in the beak; but since only the beginnings of teeth appear, and not the fully formed structures, this interpretation would clearly overshoot the mark.

The embryo of the baleen whale has teeth that do not break through the gums and are later absorbed. Since the ancestors of this whale probably had teeth, as have other whales at the present time, the appearance of teeth in the embryo has been interpreted as a repetition of the original condition. Some of the ant-eaters are also toothless, but teeth appear in the embryo and are lost later. In the ruminants that lack teeth in the front part of the upper jaw, e.g. the cow and the sheep, teeth develop in the embryo which are subsequently lost.

One interpretation of these facts is that the ancestral adult condition is repeated by the embryo, but as I have pointed out above in the cases of the teeth in whales, since the teeth do not reach the adult form, and do not even break through the gums in some forms, it is obviously stretching a point to claim that an adult condition is repeated. Moreover, in the case of the birds only the dental ridges appear, and it is manifestly absurd to claim in this case that the ancestral adult condition of the reptiles is repeated.

That a supposed ancestral stage may be entirely lost in the embryo of higher forms is beautifully shown in the development of some of the snakes. The snakes are probably derived from lizardlike ancestors, which had four legs, yet in the development the rudiments of legs do not appear, and this is the more surprising since a few snakes have small rudimentary legs. In these, of course, the rudiments of legs must appear in the embryo, but in the legless forms even the beginnings of the legs have been lost, or at any rate very nearly so.

Outside the group of vertebrates there are also many cases that have been interpreted as embryonic repetitions of ancestral stages, but a brief examination will suffice to show that many of these cases are doubtful, and others little less than fanciful. A few illustrations will serve our purpose. The most interesting case is that given by the history of the nauplius theory.

The free-living larva of the lower crustaceans—water-fleas, barnacles, copepods, ostracods—emerges from the egg as a small, flattened oval form with three pairs of appendages. This larva, known as the nauplius, occurs also in some of the higher crustaceans, not often, it is true, as a free form, as in penæus, but as an embryonic stage. The occurrence of this six-legged form throughout the group was interpreted by the propounders of the nauplius theory as evidence sufficient to establish the view that it represented the ancestor of the whole group of Crustacea, which ancestor is, therefore, repeated as an embryonic form. This hypothesis was accepted by a large number of eminent embryologists. The history of the collapse of the theory is instructive.

It had also been found in one of the groups of higher crustaceans, the decapods, containing the crayfish, lobster, and crabs, that another characteristic larval form was repeated in many cases. This larva is known as the zoëa. It has a body made up of a fused head and thorax carrying seven pairs of appendages and of a segmented abdomen of six segments. The same kind of evidence that justified the formulation of the nauplius theory would lead us to infer that the zoëa is the ancestor of the decapods. The later development of the zoëa shows, however, that it cannot be such an ancestral form, for, in order to reach the full number of segments characteristic of the decapods, new segments are intercalated between the cephalothorax and abdomen. In fact, in many zoëas this intercalated region is already in existence in a rudimentary condition, and small appendages may even be present. A study of the comparative anatomy of the crustaceans leaves no grounds for supposing that the decapods with their twenty-one segments have been evolved from a thirteen-segmented form like the zoëa by the intercalation of eight segments in the middle of the body. It follows, if this be admitted, and it is generally admitted now, that the zoëa does not represent an original ancestral form at all, but a highly modified new form, as new, perhaps, as the group of decapods itself. We are forced to conclude, then, that the presence of a larval form throughout an entire group cannot be accepted as evidence that it represents an ancestral stage. We can account for the presence of the zoëa, however, by making a single supposition, namely, that the ancestor from which the group of decapod has evolved had a larva like the zoëa, and that this larval form has been handed down to all of the descendants.

The fate of the zoëa theory cast a shadow over the nauplius theory, since the two rested on the same sort of evidence. The outcome was, in fact, that the nauplius theory was also abandoned, and this was seen to be the more necessary, since a study of the internal anatomy of the lowest group of crustaceans, the phyllopods, showed that they have probably come directly from many segmented, annelidian ancestors. The presence of the nauplius is now generally accounted for by supposing that it was a larval form of the ancestor from which the group of crustaceans arose.

The most extreme, and in many ways the most uncritical, application of the recapitulation theory was that made by Haeckel, more especially his attempt to reduce all the higher animals to an ancestral double-walled sac with an opening at one end,—the gastræa. He dignified the recapitulation theory with an appellation of his own, “The Biogenetic Law.” Haeckel’s fanciful and extreme application of the older recapitulation theory has probably done more to bring the theory into disrepute amongst embryologists than the criticisms of the opponents of the theory.

In one of the recognized masterpieces of embryological literature, His’s “Unsere Körperform,” we find the strongest protest that has yet been made against the Haeckelian pretension that the phylogenetic history is the “cause” of the ontogenetic series. His writes: “In the entire series of forms which a developing organism runs through, each form is the necessary antecedent step of the following. If the embryo is to reach the complicated end-forms, it must pass, step by step, through the simpler ones. Each step of the series is the physiological consequence of the preceding stage and the necessary condition for the following. Jumps, or short cuts, of the developmental process, are unknown in the physiological process of development. If embryonic forms are the inevitable precedents of the mature forms, because the more complicated forms must pass through the simpler ones, we can understand the fact that paleontological forms are so often like the embryonic forms of to-day. The paleontological forms are embryonal, because they have remained at the lower stage of development, and the present embryos must pass also through lower stages in order to reach the higher. But it is by no means necessary for the later, higher forms to pass through embryonal forms because their ancestors have once existed in this condition. To take a special case, suppose in the course of generations a species has increased its length of life gradually from one, two, three years to eighty years. The last animal would have had ancestors that lived for one year, two years, three years, etc., up to eighty years. But who would claim that because the final eighty-year species must pass necessarily through one, two, three years, etc., that it does so because its ancestors lived one year, two years, three years, etc.? The descent theory is correct so far as it maintains that older, simpler forms have been the forefathers of later complicated forms. In this case the resemblance of the older, simpler forms to the embryos of later forms is explained without assuming any law of inheritance whatsoever. The same resemblance between the older and simpler adult forms, and the present embryonic forms would even remain intelligible were there no relation at all between them.”

Interesting and important as is this idea of His, it will not, I think, be considered by most embryologists as giving an adequate explanation of many facts that we now possess. It expresses, no doubt, a part of the truth but not the whole truth.

We come now to a consideration of certain recently ascertained facts that put, as I shall try to show, the whole question of embryonic repetition in a new light.

A minute and accurate study of the early stages of division or cleavage of the egg of annelids has shown a remarkable agreement throughout the group. The work of E. B. Wilson on nereis, and on a number of other forms, as well as the subsequent work of Mead, Child, and Treadwell on other annelids, has shown resemblances in a large number of details, involving some very complicated processes.[[10]]

[10]. On the other hand it should not pass unnoticed that Eisigh as shown in one form (in which, however, the eggs are under special conditions being closely packed together) that the usual type of cleavage is altered.

Not only is the same method of cleavage found in most annelids, but the same identical form of division is also present in many of the mollusks, as shown especially by the work of Conklin, Lillie, and Holmes. This resemblance has been discussed at some length by those who have worked out these results in the two groups. The general conclusion reached by them is that the only possible interpretation of the phenomenon is that some sort of genetic connection must exist between the different forms; and while not explicitly stated, yet there is not much doubt that some at least of these authors have had in mind the view that the annelids and mollusks are descended from common ancestors whose eggs segmented as do those of most of the mollusks and annelids of the present day. This conclusion is, I believe, of more far-reaching importance than has been supposed, and may furnish the key that will unlock the whole question of the resemblance of embryos to supposed ancestral forms. It is a most fortunate circumstance that in the case of this cell lineage the facts are of such a kind as to preclude the possibility that the stages in common could ever have been ancestral adult stages. If this be granted then only two interpretations are possible: the results are due either to a coincidence, or to a common embryonic form that is repeated in the embryo of many of the descendants. That the similarity is not due to a coincidence is made probable from the number and the complexities of the cleavage stages.

I believe that we can extend this same interpretation to all other cases of embryonic resemblance. It will explain the occurrence of gill-slits in the embryo of the bird, and the presence of a notochord in the higher forms in exactly the same way as the cleavage stages are explained. But how, it may be asked, can we explain the apparent resemblance between the embryo of the higher form and the adult of lower groups. The answer is that this resemblance is deceptive, and in so far as there is a resemblance it depends on the resemblance of the adult of the lower form to its own embryonic stages with which we can really make a comparison. The gill-slits of the embryo of the chick are to be compared, not with those of the adult fish, but with those of the embryo of the fish. It is a significant fact, in this connection, that the gill-slits appear as early in the embryo of the fish as they do in the bird! The notochord of the embryo bird is comparable with that of the embryo of amphioxus, and not with the persistent notochord in the adult amphioxus. Here also it is of the first importance to find that the notochord appears both in the embryo bird and in amphioxus at the very beginning of the development. The embryo bird is not fishlike except in so far as there are certain organs in the embryo fish that are retained in the adult form. The embryo bird bears the same relation to the embryo fish that the early segmentation stages of the mollusk bear to the early segmentation stages of the annelid. There are certain obvious resemblances between this view and that of Von Baer, but there are also some fundamental differences between the two conceptions.

Von Baer thought that within each group the embryonic development is the same up to a certain point. He supposed that the characters of the group are the first to appear, then those of the order, class, family, genus, and, finally, of the species. He supposed that two similar species would follow the same method of development until the very last stage was reached, when each would then add the final touches that give the individual its specific character. We may call this the theory of embryonic parallelism. Here there is an important difference between my view and that of Von Baer, for I should not expect to find the two embryos of any two species identical at any stage of their development, but at most there might exist a close resemblance between them.

Von Baer’s statement appears to be erroneous from a modern point of view in the following respects. We know that in certain large groups some forms develop in a very different way from that followed by other members of the group, as shown by the cephalopods, for instance, in the group of mollusks. Again, it is entirely arbitrary to assume that the group-characters are the first to appear, and then successively those of the order, family, genus, species. Finally, as has been said above, we do not find the early embryos of a group identical; for with a sufficient knowledge of the development it is always possible to distinguish between the embryos of different species, as well as between the adults, only it is more difficult to do so, because the embryonic forms are simpler. The most fundamental difference between the view of Von Baer and modern views is due to our acceptation of the theory of evolution which seems to make it possible to get a deeper insight into the meaning of the repetition, that carries us far ahead of Von Baer’s position. For with the acceptance of this doctrine we have an interpretation of how it is possible for the embryonic stages of most members of a group to have the same form, although they are not identical. There has been a continuous, although divergent, stream of living material, carrying along with it the substance out of which the similar embryonic forms are made. As the stream of embryonic material divided into different paths it has also changed many of the details, sometimes even all; but nevertheless it has often retained the same general method of development that is associated with its particular composition. We find the likeness, in the sense of similarity of plan, accounted for by the inheritance of the same sort of substance; the differences in the development must be accounted for in some other way.

Among modern writers Hurst alone has advanced a view that is similar in several respects to that which I have here defended. It may be well to give his statement, since it brings out certain points of resemblance with, as well as certain differences from, my own view.[[11]] He says: “Direct observation has shown that, when an animal species varies (i.e. becomes unlike what it was before) in adult structure, those stages in the development which are nearest the adult undergo a similar, but usually smaller, change. This is shown in domestic species by the observations of Darwin, and the result is in exact harmony with the well-known law of Von Baer, which refers to natural species, both nearly related and widely dissimilar. Von Baer’s observations as well as Darwin’s, and as well as those of every student who has ever compared the embryos of two vertebrate species, may be summarized as follows:—

[11]. Hurst, C. H., “Biological Theories, III,” “The Recapitulation Theory,” Natural Science, Vol. ii., 1893.

“Animals which, though related, are very similar in the adult state, resemble each other more closely in early stages of development, often, indeed, so closely as to be indistinguishable in those early stages. As development proceeds in such species, the differences between the two embryos compared become more and more pronounced.” On this point, which is an essential one, I cannot agree with Hurst; for I do not think that the facts show that the early stages of two related forms are necessarily more and more alike the farther back we go. The resemblance that is sometimes so striking in the earlier stages is due to the fewer points there are for comparison, and to the less development of the parts then present. Hurst continues: “If similar comparisons could be instituted between the ancestral species and its much modified descendants, there is no reason for doubting that a similar result would be reached. This, indeed, has been done in the case of some breeds of pigeons, which we have excellent reasons for believing to be descended from Columba livia. True, C. livia is not a very remote ancestor, but I do not think that will vitiate the argument. Let me quote Darwin verbatim: ‘As we have conclusive evidence that the breeds of the pigeon are descended from a single wild species, I have compared the young within twelve hours after being hatched; I have carefully measured the proportions (but will not here give the details) of the beak, width of mouth, length of nostril, and of eyelid, size of feet, and length of leg in the wild, parent species, in pouters, fantails, runts, barbs, dragons, carriers, and tumblers. Now some of these birds when mature differ in so extraordinary a manner in the length and form of the beak, and in other characters, that they would certainly have been ranked as distinct genera if found in a state of nature. But when the nestling birds of these several breeds were placed in a row, though most of them could just be distinguished, the proportional differences in the above specified points were incomparably less than in the full-grown birds. Some characteristic points of difference—for instance, that of the width of the mouth—could hardly be detected in the young. But there was one remarkable exception to this rule, for the young of the short-faced tumbler differed from the young of the wild-rock pigeon, and of the other breeds in almost exactly the same proportions as in the adult state.’”

Hurst concludes that: “The more the adult structure comes to be unlike the adult structure of the ancestors, the more do the late stages of development undergo a modification of the same kind. This is not mere dogma, but it is a simple paraphrase of Von Baer’s law. It is proved true not only by the observations of Von Baer and of Darwin, already referred to, but by the direct observation of every one who takes the trouble to compare the embryos of any two vertebrates, provided only he will be content to see what actually lies before him and not the phantasms which the recapitulation theory may have printed on his imagination.”

The growth of the antlers of stags is cited by Hurst in order to illustrate that what has been interpreted as a recapitulation may have a different interpretation. “Each stag develops a new pair of antlers in each successive year, and each pair of antlers is larger than the pair produced in the previous year. This yearly increase in the size of the antlers has been put forward as an example of an ontogenetic record of past evolution. I, however, deny that it is such a record.”

“The series of ancestors may have possessed larger antlers in each generation than in the generation before it. It is not an occasional accidental parallelism between the ontogeny and the phylogeny which I deny, but the causal relation between the two. Had the ancestors had larger antlers than the existing ones, there is no justification for the assumption that existing stags would acquire antlers of which each pair, in later years, would be smaller than those of the previous year.”

Hurst concludes: “There are many breeds of hornless sheep, but they do not bear large horns in early years and then shed them. If a rudiment ever appears in the embryo of such sheep, its growth is very early arrested.” The case of the appendix in man might have been cited here as a case in point. It is supposed to have been larger in the ancestors of man, but we do not find it appearing full size in the embryo and later becoming rudimentary. The preceding statements will show that, while Hurst’s view is similar in some respects to my own, yet it differs in one fundamental respect from it, and in this regard he approaches more nearly to the theory of Von Baer.

Hertwig has recently raised some new points of issue in regard to the recapitulation theory, and since he may appear to have penetrated farther than most other embryologists of the present time, it will be necessary to examine his view somewhat carefully. He speaks of the germ-cell (egg, or spermatozoön) as a species-cell, because it contains, in its finer organization, the essential features of the species to which it belongs. There are as many of these kinds of cells as there are different kinds of animals and plants. Since the bodies of the higher animals have developed from these species-cells, so the latter must have passed in their phylogeny through a corresponding development from a simple to a more and more complex cell-structure. “Our doctrine is, that the species-cell, even as the adult, many-celled representative of the species, has passed through a progressive, and, indeed, in general a corresponding development in the course of phylogeny. This view appears to stand in contradiction to the biogenetic law. According to the formula that Haeckel has maintained, the germ development is an epitome of the genealogy; or the ontogeny is a recapitulation of the phylogeny; or, more fully, the series of forms through which the individual organism passes during its development from the egg-cell to the finished condition is a short, compressed repetition of the longer series of forms which the forefathers of the same organism, or the stem-form of the species, has passed through, from the earliest appearance of organisms to the present time.” “Haeckel admits that the parallel may be obliterated, since much may be absent in the ontogeny that formerly existed in the phylogeny. If the ontogeny were complete, we could trace the whole ancestry.” Hertwig states further, that “The theory of biogenesis[[12]] makes it necessary to change Haeckel’s expression of the biogenetic law, so that a contradiction contained in it may be removed. We must drop the expression ‘repetition of the form of extinct forefathers,’ and put in its place the repetition of forms which are necessary for organic development, and lead from the simple to the complex. This conception may be illustrated by the egg-cell.”

[12]. This term, by which Hertwig designates a particular view of his own, has been already preoccupied in a much wider sense by Huxley to mean that all life comes from preëxisting life. Hertwig means by the theory of biogenesis that as the egg develops there is a constant interchange between itself and its surroundings.

Since each organism begins its life as an egg we must not suppose that the primitive conditions of the time, when only single-celled amœbas existed on our planet, are repeated. The egg-cell of a living mammal is not, according to Hertwig’s hypothesis, an indifferent structure without much specialization like an amœba, but is an extraordinarily complex end-product of a long historical process, which the organized substance has passed through. If the egg of a mammal is different from that of a reptile, or of an amphibian, because in its organization it contains the basis of a mammal, just so much more must it be different from the hypothetical one-celled amœba, which has no other characteristics than those that go to make up an amœba. Expressed more generally, the developmental process in the many-celled organisms begins, not where it began in primitive times, but as the representation of the highest point which the organization has at present reached. The development commences with the egg, because it is the elemental and fundamental form in which organic life is represented in connection with the reproductive process, and also because it contains in itself the properties of the species in its primordia.

“The egg-cell of the present time, and its one-celled predecessor in the phylogenetic history, the amœba, are only comparable in so far as they fall under the common definition of the cell, but beyond this they are extraordinarily different from each other.”

“The phyletic series must be divided into two different kinds of processes:—First. The evolution of the species-cell, which is a steady advance from a simple to a complex organization. Second. The periodically repeated development of the many-celled individual out of the single cell, representative of the species (or the individual ontogeny), which in general follows the same rules as the preceding ontogeny, but is each time somewhat modified according to the amount to which the species-cell has itself been changed in the phylogeny. Similar restricting and explanatory additions to the biogenetic law, like those stated here for the one-celled stage, must be made in other directions. Undoubtedly there exists in a certain sense a parallel between the phylogenetic, and the ontogenetic, development.

“On the basis of the general developmental hypothesis on which we stand, all forms which in the chain of ancestors were end-products of the individual development are now passed through by their descendants as embryonic stages, and so in a certain degree are recapitulated. We also admit that the embryonic forms of higher animals have many points of comparison with the mature forms of related groups standing lower in the system.

“Nevertheless, a deeper insight into the conditions relating to these resemblances shows that there are very important differences that should not be overlooked. Three points need to be mentioned: 1. The cell-material which in the ancestral chain gives the basis for each ontogenetic process is each time a different material as far as concerns its finer organization and primordia. Indeed, the differences become greater the farther apart the links of the original chain become. This thought may be formulated in another way: The same ontogenetic stages that repeat themselves periodically in the course of the phylogeny always contain at bottom a somewhat different cell-material. From this the second rule follows as a consequence. 2. Between the mature end-form of an ancestor and the corresponding embryonic form of a widely remote descendant (let us say between the phylogenetic gastræa and the embryonic gastrula stage of a living mammal, according to the terminology of Haeckel) there exists an important difference, namely, that the latter is supplied with numerous primordia which are absent in the other, and which force it to proceed to the realization of its developmental process. The gastrula, therefore, as the bearer of important latent forces, is an entirely different thing from the gastræa, which has already reached the goal of its development. 3. In the third place, at each stage of the ontogeny outer and inner factors are at work, in fact even more intensely than in the fully formed organism. Each smallest change that acts anew in this way at the beginning of the ontogeny can start an impulse leading to more extensive changes in later stages. Thus the presence of yolk and its method of distribution in the egg alone suffice to bring about important changes in the cleavage, and in the formation of the germ-layers, the blastula, and gastrula stages,” etc. “Moreover, the embryo may adapt itself to special conditions of embryonic life, and produce organs of an ephemeral nature like the amnion, chorion, and placenta.”

“A comparison of ontogenetic with antecedent phylogenetic stages must always keep in view the fact that the action of external and internal factors has brought about considerable changes in the ontogenetic system, and, indeed, in a generally advancing direction, so that in reality a later condition can never correspond to a preceding one.”

Hertwig sums up his conclusion in the statement that ontogenetic stages give us, therefore, a greatly changed picture of the phylogenetic series of adult ancestors. “The two correspond not according to their actual contents but only as to their form.” Hertwig also repeats His’s idea, that the reason that certain kinds of form repeat themselves in the development of animals with a great constancy depends principally on this, that they supply the necessary conditions under which alone the following higher stage of the ontogeny can be formed. The development, for instance, begins with the division of the egg, because this is the only way that a one-celled condition can give rise to a many-celled form. Again, the organs can be formed only when groups of cells have made a closer union with one another. Thus the gastrula must begin with the antecedent blastula, etc. Definite forms are, despite all modifying influences, held to firmly, because by their presence the complicated end-stages can be reached in the simplest and most suitable way.

Thus Hertwig adopts here a little from one doctrine and there a little from another, and between his attempt to reinstate the old biogenetic law of Haeckel, and to adopt a more modern point of view, he brings together a rather curious collection of statements which are not any too well coördinated. Take, for example, his description of the relation between Haeckel’s gastræa and the embryonic gastrula stage. The latter he maintains is a repetition of the other, but only in form, not in actual contents. And in another connection we are told that the cause of this repetition is that the gastrula is the simplest way in which the later stages can be reached, and, therefore, it has been retained. It seems to me that Hertwig has undertaken an unnecessary and impossible task when he attempts to adjust the old recapitulation theory to more modern standards. His statement that the egg is entirely different from its amœba prototype is, of course, only the view generally held by all embryologists. His mystical statement that the embryonic form repeats the ancestral adult stage in its form, but not in its contents, will scarcely recommend itself as a model of clear thinking. Can we be asked to believe for instance that a young chick repeats the ancestral adult fish form but not the contents of the fish?

In conclusion, then, it seems to me that the idea that adult ancestral stages have been pushed back into the embryo, and that the embryo recapitulates in part these ancestral adult stages is in principle false. The resemblance between the embryos of higher forms and the adults of lower forms is due, as I have tried to show, to the presence in the embryos of the lower groups of certain organs that remain in the adult forms of this group. It is only the embryonic stages of the two groups that we are justified in comparing; and their resemblances are explained on the assumption that there has been an ancestral adult form having these embryonic stages in its development and these stages have been handed down to the divergent lines of its descendants.

Since we have come to associate with the name of the recapitulation theory the idea of the recurrence of an ancestral adult form, it may be better to find a substitute for this term. I suggest, therefore, for the view, that the embryos of the higher group repeat the modified form of the embryos of the lower groups, the term, the theory of embryonic repetition, or, more briefly, the repetition theory.