CHAPTER XIV

GRAPE PRODUCTS

Over-production, with the attendant losses caused by glutted markets, is a factor which, like frosts and freezes, is ever in the mind of the grape-grower. No season passes but that some of the grape regions of the country suffer from over-production. Not uncommonly the grape industry in a region is better off in a season when the crop is small and prices high, than when the crop is large and prices low. In every part of the country where grapes are grown, over-production has been a great deterrent to viticulture; this, in spite of the fact that grape-growers have availed themselves of the opportunity to manufacture products from this fruit. Thus, wine and raisins are made from the grape in California, and a large part of the harvest in the East goes into wine, champagne and grape-juice. But the growth of prohibition now threatens the wine and champagne industries of the country, in fact may be said to have driven them to the wall, making the need of new outlets in manufactured products a greater necessity.

Under these conditions, grape-growers must seek in every way to enlarge the sale of the crop to manufacturers with the hope that thus, together with more perfect distribution of his commodities, the inroads made by prohibition on the industry may be offset and the over-production of table-grapes be better prevented. With this brief emphasis on the importance of manufactured products of the grape, we approach the discussion of the several possible outlets to over-production in this fruit.

Wine

The manufacture and use of wine in America, as has been intimated, is likely to cease through prohibition. Therefore, whatever may be said of this product of the grape is of less and less interest to grape-growers. However, a few years of grace probably remain for the making of wines in America, and since wine-making yet offers the greatest outlet for the grape crop, next to table-grapes, wine must be considered as a factor in the grape industry.

Since the demand and price for grapes depend very largely on the kind of wine to be made, it is necessary to characterize the wines made in America. Wine, it should be said, is the product of alcoholic fermentation of the grape. Alcoholic fermentations made from other fruits are not, strictly speaking, wines. Natural wines are divided into three broad groups; dry, sweet and sparkling wines. Dry wines are those in which sugar has been eliminated by fermentation; sweet wines those in which sufficient sugar remains to give a sweet taste; and sparkling wines are those which contain sufficient carbonic acid gas to give a pressure of several atmospheres in the bottle. The carbonic acid gas is produced in sparkling wines by fermentation in the bottle of a dry wine.

The color in these three classes of wine may be red or white, depending on whether or not the color is extracted from the skins in the process of fermentation. To make red wine, of course, the grapes to be fermented must have red coloring matter in skin or juice or both. Each of these groups of wine includes a very large number of kinds distinguished by the name of the region, the locality or the name of the vineyard in which a wine is made. Wines are still further distinguished according to the year of the vintage.

Wine-making.

There are four distinct stages in the making of wine after the grapes are grown. The first is the harvesting of the grapes when they have reached the proper stage of maturity, which is known as "wine-making ripeness." This stage of ripeness is determined by means of a must-scale or saccharometer. The wine-maker squeezes the juice from a number of bunches of grapes into a receptacle into which he drops the must-scale, whereupon the sugar-content of the juice is indicated on the scale, determining whether the proper stage of ripeness has been reached. Suitable varieties of grapes having been grown, it is necessary that they be permitted to hang on the vine until the proper degree of ripeness is developed, after which they are delivered at the winery as free as possible from injury or decay.

The second stage is the preparation of the grapes for fermentation. The grapes are weighed on arriving at the winery and are then conveyed either by hand or more often by a mechanical conveyor to the hopper or crusher. The ancient method of crushing, which still prevails in some parts of Europe, was to tramp the grapes with bare feet or wooden shoes. Tramping has been superseded by mechanical crushers which break the skin but do not crush the seeds. The best mechanical crushers consist of two-grooved revolving cylinders. As the grapes pass through the crusher, they fall into the stemmer, a machine which tears off the stems, discharging them at one end, while the seeds, skins, pulp and juice pass through the bottom to the presses usually on the floor below. There are several types of wine-presses, all of which, however, are modifications of screw, hydraulic or knuckle-joint power. In large wineries, the hydraulic press has almost driven out the other two forms of power and when great quantities of grapes must be handled a number of hydraulic presses are usually in operation. The grape pomace is built up into a "cheese" by the use of cloths and racks variously arranged. The "cheese" is then put under heavy pressure from which the juice or "must" is quickly extracted.

The third stage is fermentation. The "must" is carried from the press into open tanks or vats which hold from 500 to 5000 gallons or even more. The yeast cells which cause fermentation may be introduced naturally on the skins of the grapes; or in many modern wineries the "must" is sterilized to rid it of undesirable micro-organisms and a "starter" of "wine-yeast" is added to start the fermentation. Yeast organisms attack the sugar and must, breaking it up into alcohol and carbonic acid gas, the latter passing off as it is formed. When active fermentation ceases, the new wine is drawn from the pomace and is put into closed casks or tanks where it undergoes a secondary fermentation, much sediment settling at the bottom of the cask. To rid the new wine of this sediment, it must be drawn off into clean casks, an operation called "racking." The first racking usually takes place within a month or six weeks. A second racking is necessary at the end of the winter and a third is desirable in the summer or fall.

The fourth stage is the aging of the wine. Before aging begins, however, the wine usually must be rendered perfectly clear and bright by "fining." The materials used in fining are isinglass, white of egg or gelatine. These, introduced into the wine, cause undissolved matters to precipitate. The wine is now ready for bottling or consumption. Most wines acquire a more desirable flavor through "aging," a slow oxidation in the bottles.

Champagne.

When champagne wines have gone through their first fermentation, they are racked off into casks to age until their quality can be ascertained, after which a blend of several different wines is made. This blend is called the "cuvée." The cuvée is bottled and a second fermentation starts. The bottles are now put in cool cellars, corded in horizontal layers with thin strips of wood between each layer of bottles. The champagne in this stage is said to be in "tirage." The carbonic acid gas generated at this second fermentation is confined in the bottles and absorbed by the wine. When the bottle is uncorked, the gas, seeking to escape, produces the sparkling effect desirable in sparkling wines. After the wine has been in tirage for one or two years, the bottles are placed in A-shaped racks, the neck of the bottle pointing downward so that the sediment formed during fermentation drops to the cork. To further the settling of the sediment, workmen turn or shake each bottle daily for a period of one to three months. The bottles are then taken to the finishing room, cork down and the wine is "disgorged." Disgorging is accomplished by freezing a small quantity of wine in the neck of the bottle containing the sediment, after which the cork is removed and with it the frozen sediment. The bottle is refilled, recorked, wired, capped, and the champagne is ready for shipment.

The vintage.

The wine-making season the world over is known as the "vintage." The time at which the vintage begins depends, of course, on the region, the variety of grapes, the growing season and the location of the vineyard. Its duration, also, depends on these same factors. The season is usually lengthened by the fact that wine-makers require for their purposes a number of varieties of grapes which ripen at different times. Before or during the vintage, representatives of wine cellars usually make contracts for the number of tons of grapes required at a certain price a ton.

The notion prevails that grapes for wine and grape-juice need not be first-class. This is far from the truth. To make good wine the grapes must be carefully harvested, transported with as little injury as possible and must be protected from dirt, mold and fermentation before reaching the winery. European vintagers maintain that grapes picked at sunrise produce the lightest and most limped wines and yield more juice. They say, also, that the grapes should not be gathered in the heat of the day because fermentation sets in at once. These niceties are not observed in America.

Prices paid for wine grapes.

Supply and demand regulate the price paid for wine grapes. There is always demand for good wine grapes, although a poor product often goes begging for market. In the East, the highest prices are paid for the grapes used in making champagne. The champagne region of the East is confined to a few localities along Lake Erie and to western New York about Keuka Lake, where the industry is most largely developed. The varieties used in champagne-making in the East are Delaware, Catawba, Elvira, Dutchess, Iona, Diamond and a few other sorts. Prices differ with the many conditions affecting the grape and champagne industries, perhaps the average price for Catawba, the grape chiefly used in making champagne in this region, being from $40 to $50 a ton. Choicer grapes, as Delaware, Iona and Dutchess, often sell from $75 to $100 a ton. Concords are sometimes utilized in making dry wines in the eastern states, $30 or $40 a ton being the average price. Ives and Norton are much used for red wines and sell for top prices.

Wine-makers in the East are at a disadvantage in producing wines other than champagne, since the price paid on the Pacific slope for wine grapes is much lower; Grapes for sweet wine in California often sell as low as $6 or $7 a ton, the average price being $10 or $12. Grapes for dry wines, such as Zinfandel and Burger, bring on the Pacific coast from $10 to $12 a ton. Choice varieties of grapes in this region, such as Cabernet, Sauvignon, Petite Sirah and Riesling, bring from $22 to $24. The eastern wine-makers, however, have the advantage of being close to the largest and best markets in the country. Wines made in the East are very different from those made in California and supply a different market.

A few years ago most of the Muscadine grapes grown in the South were used for wine-making. From these grapes wine has been made since colonial times, and for a century there have been some large vineyards of Muscadine grapes in the South from which wine was made in a commercial way. Since Muscadine grapes do not sell well in the markets in competition with the grapes of the North or the Pacific slope, the Muscadine grape industry has been dependent on the wine industry of the section in which the fruit is produced. The growth of prohibition in the South, however, has driven the wine industry to the North and West and there is now little wine manufactured from Muscadine grapes in the South, although some grapes are shipped North for wine-making. The wine made from these grapes is very distinct in flavor and on that account a special trade has been developed for it. It is possible that this special trade will keep up the demand for Muscadine wine so that some part of the crop may be shipped to wine-making states to supply this demand.

Grape-juice

When properly made, grape-juice is the undiluted, unsweetened, unfermented juice of the grape and contains no preservatives, fermentation being prevented by sterilization with heat. The product is as ancient as wine, and, therefore, as the cultivation of the vine, for all wine-making peoples have used new wine or grape-juice as a beverage. For centuries physicians in wine-making countries have prescribed grape-juice as it comes from the wine-press for certain maladies, the treatment constituting an essential part of the grape-cures of European countries. The process of making an unfermented grape-juice that will keep from season to season as an article of commerce is, however, a modern invention, and is the outcome of the discoveries of the last half century regarding the control of the agents of fermentation.

The manufacture of commercial grape-juice in America, to which country the industry is confined, began as a home practice following the fundamental processes of canning fruit. Toward the close of the last century, several inventive minds discovered methods of making a commercial product and began developing markets for their wares. The beginning of the present century found the new industry in full swing, since which time its growth has been truly marvelous. In 1900 the amount of grape-juice made in the United States was so small as to be negligible in the census report of that year. By 1910, the annual output had reached for the whole country over 1,500,000 gallons and at present writing, 1918, it is well above 3,500,000 gallons per annum. The manufacture of grape-juice is no longer a home industry but a great commercial enterprise. It is an industry closely associated with grape-growing, however, and as such needs further consideration here.

Grape-juice regions.

The manufacture of grape-juice is centered in the Chautauqua grape-belt in New York, Pennsylvania and Ohio. So far, the demand seems to be almost wholly for juices made from native grapes, the juice of European grapes grown on the Pacific slope being so sweet as to be insipid. Possibly 80 per cent of the grape-juice now manufactured in America comes from a single variety, the Concord. There can be no question, however, but that sooner or later grape-juices of distinct qualities will be made from many varieties of grapes, thus giving wider sale and greater variation for the product. A very good sparkling grape-juice is now on the market and its reception seems to promise a great increase in the production of an article that closely simulates champagne in color and sparkling vivacity, but not, of course, in taste, since it contains no alcohol. The grape-juice industry has been started and is in a flourishing condition in several other grape regions than the Chautauqua belt which is now its center. There are factories at Sandusky, Ohio, using grapes grown in the Kelly Island district; in southwestern Michigan there are several factories; and the industry still survives at Vineland, New Jersey, which probably should be called the original home of the manufacture of grape-juice. In the South, some grape-juice is made from Muscadine grapes, but this product seems not as yet to have been well received in the markets.

Commercial methods of making grape-juice.

There is at present a great diversity of methods and of apparatus employed in the grape-juice manufacturing plants throughout the country. Since the industry is in its infancy, and the attempt has been made to hold some of the methods as trade secrets, the diversity of methods and appliances is not to be wondered at. No doubt there will be greater uniformity of method and machinery and, therefore, greater efficiency, as the industry develops.

Husmann[19] gives the following account of the manufacture of grape-juice in the eastern states and in California:

"Sound, ripe, but not over-ripe, grapes are used. These are first crushed or, in case the stems are to be removed, are run through a combined stemmer and crusher. If the machinery is stationed high enough, the crushed fruit can be run through chutes directly into the presses or kettles; otherwise, it must be pumped into them by means of a pomace or must pump or carried in pomace carts or tubs.

"If a white or light colored juice is desired, the crushed grapes are first pressed, the juice which comes from the press being heated to about 165° F., skimmed, run through a pasteurizer at a temperature of between 175° and 200° F. into well-sterilized containers, and then placed in storage.

"If a colored juice is desired, the crushed grapes are heated immediately, usually in aluminum kettles having double bottoms, which prevent the steam from coming in contact with the contents. These kettles usually contain revolving cylinders, the arms of which keep the crushed grapes thoroughly stirred while they are being heated to about 140° F. The simultaneous heating and stirring help to extract the coloring matter from the skins, tear the cells of the berries, increase the quantity of juice obtained per ton of fruit, and give to the must many ingredients of red wine, with the substitution of grape sugar for alcohol of the wine.

"The aluminum kettles are filled and emptied in rotation, thereby making continuous manipulation possible. The presses should be situated below the kettles, so that the hot juice can be drained directly into them. The expressed juice is then reheated to about 165° F., skimmed, and run through the pasteurizer in the same manner in which the white juice is handled. The juice passes from the pasteurizer while still hot (about 160° F.) into the container, which should be sealed immediately. The lower the temperature (above the freezing point) at which these containers are then stored, the less is the danger of fermentation and the more rapidly the juice will clear and deposit its sediment.

"The ordinary receptacles in which the juice is stored are 5-gallon demijohns, 20-gallon carboys, or clean, new barrels or puncheons, well washed and drained. All containers should be thoroughly sterilized before they are filled, and the covers, corks, bungs, cloths, etc., used in sealing them should be scrupulously clean and carefully sterilized. If barrels or puncheons are used as containers, they are placed on skids and firmly wedged to prevent movement. As the juice cools, air laden with fermentation germs is apt to be drawn into the barrels by the decrease in the volume of the liquid. In order to prevent this, tight air-filtering plugs of sterilized cotton are sometimes used instead of the ordinary bungs of solid wood.

"The type of pasteurizer differs in almost every establishment. As the industry is of comparatively recent development commercially, there are few models on the market and each manufacturer has constructed the model best suited to his particular ideas or requirements. There are two general types, however, (1) open, double-bottomed kettles in which the juice is heated to the required temperature and then drawn off, and (2) continuous pasteurizers in which the juice is heated to the required temperature as it passes through the water bath.

"The presses also show great variation in different establishments, either hydraulic, screw or lever power being used, and there is a marked difference between the types of pomace containers. Sometimes the crushed grapes are heaped on burlap cloths the sides of which are folded in, and these burlaps are placed one on top of the other in the press; sometimes press baskets take the place of these burlaps.

"The manufacturers in California and those in the grape-growing regions of the Rocky Mountains seem to have adopted entirely different methods of handling the juice after it is first pasteurized and stored. Most of the eastern juices are red and are obtained from the Labrusca varieties, generally the Concord. When the juice comes from the presses, some manufacturers strain it to remove the coarse particles and then pour it directly into well-sterilized bottles; others siphon it off the sediment in the containers in which it is stored after the first pasteurization and pour it into pasteurized bottles. In either case, the bottles are securely corked and then repasteurized. The California juices, however, both red and white, are made exclusively from Vinifera varieties. They are allowed to settle in the original containers and are siphoned out of these and carefully filtered to make them clear and bright.

"The clearing of the juice is sometimes facilitated by fining or adding a small quantity of a substance which coagulates and when settling carries down with it the solid matters causing cloudiness in the liquid. Such finings may be applied at the time of the first pasteurization or just before the final filtration and bottling. In the latter case the juice is drawn off the settlings in containers, the finings are added, and the juice again pasteurized into other receptacles. When it clears, it is either bottled directly or first passed through a filter, drawn into carefully sterilized bottles, securely corked, and then repasteurized. Care must be taken that the final sterilization is not at a higher temperature than the previous one; otherwise, solid matter may be precipitated and the must clouded again.

"A simple and efficient form of sterilizer consists of a wooden trough provided with a wooden grating which is raised 2 inches from the bottom and on which rest the filled bottles in wire baskets. The trough contains enough water to submerge the bottles and is kept at a temperature of 185° F. by means of a steam coil beneath the grating. It requires about 15 minutes for the must at the bottom of the bottles to reach that temperature; for packages of other sizes it is necessary to make a test with a thermometer in order to determine how long it takes for the entire contents to reach 185°.

"To prevent the corks from being expelled during sterilization, they are either tied down with a strong twine or with some contrivance such as the cork holder. In order that mold germs may not enter the must through the corks, especially if a poor quality of cork is used, the necks of the corked bottles are dipped in heated paraffin before putting on the caps, or the corks are sealed down with sealing wax. It is also well to keep the bottles on their rider to prevent the corks drying out."

Home methods of making grape-juice.

The principles involved in making grape-juice in the home are the same as those used in canning. The grapes may be crushed by hand or in mills similar or identical with the small cider-mills owned by many farmers. In making a light-colored juice, the crushed grapes are put in a cloth sack and hung up to drain, or the filled sack may be twisted by two persons until the greater part of the juice is expressed. The juice is then sterilized in a double-boiler by heating it at a temperature of 180° to 200° F., care being taken that the thermometer never goes above 200°. The sterilized juice is now poured into a glass or enameled vessel to stand for twenty-four hours, after which it is drained from the sediment and strained through several thicknesses of clean flannel. The juice is now put in clean bottles preparatory to a second sterilization, care being taken that at least an inch of space is left at the top for the liquid to expand when heated. The second sterilization may be conducted in a wash-boiler or similar receptacle. The filled bottles must not rest on the bottom of the boiler but should be separated from it with a thin board. The boiler is filled with water up to within an inch of the tops of the bottles and heated until the water begins to boil. The bottles should then be taken out and corked immediately, using only new corks. After corking, the bottles are further sealed by dipping the corks in melted paraffin. A cheap corking machine is a great convenience in this work, and in any case the corks should be soaked for at least a half hour in warm but not boiling water.

The process varies somewhat in the making of red grape-juice. The crushed grapes are heated to a temperature of 200° F., and are then strained through a drip bag without pressure, after which the liquid is set away in glass or enamel vessels to settle for twenty-four hours. Except for this difference in the preliminary treatment of the juice, the methods are the same in making the red or the light-colored product. For proper keeping it is not necessary to let the juice settle after it is strained, but a clearer and brighter product is obtained if the juice is permitted to settle. In either case the grape-juice should keep indefinitely if the work has been well done. As soon as bottles are opened, fermentation begins with the formation of alcohol.

Raisins

The grape is best conserved as a raisin. Canning is seldom practiced with this fruit. A raisin is a dried grape. Tree-fruits are evaporated as by-products, but the raisin is a primary product. This is a difference worth noting; for with tree-fruits the cream of the crop goes to the fresh fruit market, while with the grape the entire crop of raisin varieties may go into the cured product. The raisin industry is dependent on a sunny and rainless climate and hence in America is confined to the grape regions of certain parts of California. In this state, raisin-making is a rich resource of the grape-grower, the annual output now averaging well above 200,000 pounds, grown on 120,000 acres of land, and having a market value of $10,000,000. Fresno County, California, produces nearly 60 per cent of the output of the state and the city of Fresno is the center of the industry. The raisin industry does not stand alone in California, as some raisin grapes, notably Muscat of Alexandria, are good dessert sorts and are also much used for wine and brandy. Only the first crop of the variety named is used for raisins, while practically all of the second crop each season is made into wine and brandy.

Raisins proper are mostly made from the Muscat of Alexandria, although other large, white, sweet grapes are sometimes used. Sultana raisins, naturally seedless, are made from Sultanina and the Sultana. The dried currants of commerce are made from grapes, and of these California produces small quantities from White Corinth.

The following account of raisin-making is given by Husmann:[20]

"In the raisin districts grapes are ripe by the middle of August, the season often lasting into November. The average time necessary for drying and curing a tray of raisins is about three weeks, depending on the weather, the earliest picked grapes drying in ten days and the later ones often taking four weeks or more.

"The method of drying is very simple. The bunches are cut from the vines and placed in shallow trays 2 feet wide, 3 feet long, and 1 inch high on which the grapes are allowed to sun-dry, being turned from time to time by simply placing an empty tray upside down on the full one and then turning both over and taking off the top tray. After the raisins are dried they are stored away until they are packed and prepared for shipment. Some of the larger growers, in order not to run so much risk in drying on account of rain, and also to enable them to handle the crop fast enough, have curing houses, where the curing is finished after having been partially done outside."

Dipping and scalding raisins.

"The operation of dipping and scalding is designed to accomplish several purposes, namely, to cleanse the fruit, to hasten its drying, and to give the dried fruit a lighter color. In dipping and drying, the fruit, immediately after being cut from the vines, is either dipped in clear water to first rinse it of particles of dust and other foreign matter, or it is taken direct to the scalder and immersed in a boiling alkaline mixture called 'legia' (lye) until the grapes show an almost imperceptible cracking of the skin, the operation consuming perhaps from one-fourth to one-half of a minute. This dipping calls for skill on the part of the operator, the duration of the emersion depending on the strength and temperature of the mixture and the condition of the fruit. Desiccation follows the scalding process, which is accomplished on trays in the sun, the same as undipped raisins cured entirely by solar heat. On account of the scald they cure rapidly, and the fruit is also often of lighter color when cured.

"The following formula has been used for Sultana and Sultanina grapes at Fresno:

"Fifteen pounds of 'Greenbank's 98-per cent lye' are boiled in 100 gallons of water. This mixture is for grapes containing 25 per cent of sugar. Should their sugar content be less, enough lye is added to remove the bloom and open the pores of the skin of the grapes. After dipping, the grapes are spread on trays and sulphured for 1 to 11/2 hours. Observation will show whether it may be necessary to vary this formula a trifle to suit conditions of ripeness and influence of temperature. The length of time required for dipping is ascertained by experience, and differs with the strength of the lye, the heat of the solution, and the thickness of the skins of the grapes."

Packing raisins.

"The raisins as received at the packing house are weighed and the loose raisins and those that are to be shipped as dried grapes are immediately run through a stemmer and grader which stems, cleans, and assorts the raisins into three or four different grades, after which they are packed and shipped to various parts of the country, some also being exported. Those producing cluster or layer raisins (if they have not already been equalized) are first stored in the equalizing rooms. In these rooms the sweat boxes, filled with layers of new raisins, are stacked and left usually from 10 to 30 days, or long enough for the overdried berries to absorb moisture from the under-dried ones. This sweating also properly softens and toughens the stems, which prevents their breaking and enables them to hold the berries better. In California, where the climate is so dry, no first class pack could be made without thus first equalizing the raisins. After having been equalized the raisins are taken out, assorted into the different grades, and placed in trays holding 5 pounds each. The trays of the same grades are then pressed and stacked away in piles ready for packing.

"Pressing the raisins so that they look well and so none are burst open is work requiring experience and good judgment. It takes four pressed trays to fill a 20-pound box. The loose raisins that have dropped from the cluster through handling before they were equalized are also graded, the largest, of course, making the choicest pack."

Classes of raisins.

"Previous to the consolidated organization of the packers the three best grades of raisins on the stems were known as 'Imperial,' 'Dehesia,' and 'Fancy Clusters,' respectively. The California Raisin Growers Association established classification and grades similar to those of the Spanish raisin packers, on which the French trade names are also based. The original Spanish, as well as English terms with which they correspond, and the different grades in descending order of quality are shown in the following table:

Spanish TermsFrench TermsEnglish TermsCalifornia Terms
ImperialImperiaux ExtraExtra Imperial ClusterSix-Crown Cluster
Imperial BajoImperiauxImperial ClusterFive-Crown Cluster
Royan BajoRoyauxRoyal ClusterFour-Crown Cluster
Cuarta (4a)Surchoix ExtraChoicestThree-Crown Cluster
Quinta (5a)Choix ExtraChoice ClusterTwo-Crown Cluster

"The grading is optical, as a result of experience, there being no linear or cubic measurement standard. Thus, a nice cluster with all berries of large size, would be a 'Six-Crown Cluster,' such being the very finest raisins on the stem. 'Five-Crown Clusters' were formerly the 'Dehesia' cluster, and 'Four-Crown Clusters' were formerly 'Fancy Clusters.' Grades less than 'Four-Crown' on the stems (the 'Three-Crown' and 'Two-Crown') are known as 'Layers,' or 'London Layers.' These are placed in boxes containing 20 pounds net; in half boxes of 10 pounds; and quarter boxes of 5 pounds; and in fancy boxes containing 21/2 pounds. Loose raisins, or raisins off the stem, are graded into Two-Crown, Three-Crown, and Four-Crown raisins by being run through screens the meshes of which are thirteen thirty-seconds, seventeen thirty-seconds, and twenty-two thirty-seconds of an inch in size, respectively. The Sultanina (erroneously called Thompson Seedless), and the Sultana are packed in 12-ounce cartons, 45 to the case."

Seeded raisins.

"The invention of a raisin-seeding machine by George E. Pettit in the early seventies, and its use, has had a wonderful effect on the industry.

"Seeded raisins were first put on the market by the late Col. William Forsythe, of Fresno, Cal., who at first found it very difficult to dispose of 20 tons. The output in the last 15 years has increased from 700 tons to 50,000 tons per annum, and their popularity is constantly increasing. In 1900 about 14,000 tons were placed on the market, in 1905 about 21,000 tons, in 1910 about 31,000 tons, and in 1913 about 49,000 tons. The seeding machines in present use can turn out 300 tons per day. Seeded raisins are now the most important branch of the raisin industry.

"A brief outline of how seeded raisins are prepared will prove interesting. The raisins are first exposed to a dry temperature of 140° F. for three to five hours, after which they are put through a chilling process so that the pedicels can be easily removed, and are then thoroughly cleansed by being passed through cleaning machines. They are then taken by automatic carriers to another room, spread out on trays, and exposed to a moist temperature of 130° F. to bring them back to their normal condition. The raisins pass to the seeding machine, where they are carried between rubber-faced rollers and the impaling device of the seeding machine which catches the seeds and removes them from the fruits as they are flattened between the surfaces of the rollers. The impaled seeds are removed from the roller by a whisking device in such a way as to be caught in a separate receptacle. The seeded raisins pass through chutes to the packing tables on the floor below.

"The seeded or loose raisins are packed in 50-pound boxes; in 1-pound cartons, 36 to the case; in 12-ounce cartons, 45 to the case; and some in bulk in 25-pound boxes.

"Information has recently been sent out to the effect that the California Associated Raisin Co. is arranging to do away with the grades in seeded raisins, so there will only be one grade. This contemplates using all of the Three-Crown, the smallest of the Four-Crown, and the best of the Two-Crown in one blended grade.

"From the seeds, formerly used as a fuel, a number of by-products are now made.

"The seeds and pedicels removed from the raisins in seeding vary from 10 to 12 per cent of the original weight of the raisins according to their conditions and quality.

"The grading, seeding, facing, and packing have become separate branches of the industry, and the work is nearly all done by especially trained women, who have become experts at it. The establishments in which this work is done furnish employment for over 5000 persons. The aggregate pay roll each month during the season is between $200,000 and $350,000."

Grape-vinegar

A very good vinegar can be made from grapes, although as yet this outlet for over-production is not largely utilized in America. Grapes which are unsuitable for raisins, dessert, wine-making or grape-juice can be used for vinegar-making. Under the most favorable conditions, grape-vinegar cannot compete in cheapness with vinegar made from numerous other products and must, therefore, always sell at a high price. Indeed, it is doubtful whether a high-grade grape-vinegar can be manufactured at a less price than good wine. The production of grape-vinegar requires as much care, but possibly not as much expert knowledge, as the making of wine. Unlike the latter, however, the vinegar can be produced on a small scale for domestic purposes by any one possessing a knowledge of wine-making or vinegar-making.

Grape-vinegar may be manufactured from either white or red grapes, although that from white grapes is generally preferred. It may be made either directly from grapes or from wine, the acetifying process being the same for both. There are, therefore, two distinct stages in the manufacture of this product. First, there must be alcoholic fermentation by which the sugar in the grape is changed into alcohol with the escape of carbonic acid gas. Second, acetic fermentation must follow the alcoholic fermentation by which the alcohol is changed into acetic acid.

By-products of Grape Industries

There are several valuable by-products in the wine-making and grape-juice industries, and even raisin-making yields a by-product in the seeds taken from the raisins. The utilization of these wastes has been rendered profitable in Europe, and there is no reason why by-products should not yield considerable profit in America, as a few already do. Good authorities state that if all the wastes of the grape crop could be utilized the value of the crop would be increased over 10 per cent.

Pomace.

The pomace or marc, the residue left after grape pressing, is the most valuable of the by-products of the wine and grape-juice manufacturers. If the pomace is permitted to ferment, and afterwards is distilled, a product called pomace-brandy is made. Unscrupulous wine-makers often add water and sugar to pomace, after which it is refermented and the resulting product is sold as wine. Notwithstanding the fact that the word "wine" as applied to this product is a misnomer, the total amount of such wine made and consumed in America is large. Piquette is another product in which the pomace is put into fermenting vats, sprinkled with water and the liquid after a time is drawn off, carrying with it the wine contained in the pomace. This liquid is re-used in other pomace, until it is high enough in alcoholic strength, when it is distilled into "piquette" or "wash."

In Europe, the pomace from stemmed grapes is said to make a sheep and cattle food of more or less value when salted slightly and stored in silos. The pomace is also oftentimes used as a manure, for which it has considerable to recommend it, being rich in potash and nitrogen. Acetic acid is made from pomace by drying it in vapor-tight rooms, during which process 50 to 60 per cent of the weight of the pomace becomes vapor, and this, condensed, yields considerable quantities of acetic acid.

Cream-of-tartar.

The lees of wine, the sediment which settles in the casks in which new wine or grape-juice is stored, form a grayish or reddish crust on the inside of the receptacle. This is the argol or wine-stone of the wine-maker, and from it is made cream-of-tartar, an article considerably used in medicine, the arts and for culinary purposes. From 20 to 70 per cent of the lees consist of either cream-of-tartar, or of calcium tartrate, the latter also having commercial value. Red wines are much richer in argol than white wines. A ton of grapes yields from one to two pounds of argol. This product becomes a source of considerable profit in large wineries and in grape-juice manufacturing plants.

Seeds.

In Europe, the seeds are separated from the pomace and used in various ways. They are also utilized to a smaller extent in America, especially when separated from raisins. The seeds are used as food for horses, cattle and poultry, for which they are said to have considerable value. If crushed and ground, the seeds yield a clear yellow oil which burns without smoke or smell and which may also be employed as a substitute for olive oil. A ton of grapes yields from forty to one hundred pounds of seeds from which may be made from three to sixteen pounds of oil. This oil is also used as a substitute for linseed oil and in soap-making. Besides oil, the seeds yield tannin. After the oil and tannin have been taken from the seeds, there remains a meal which may still be utilized as a stock food or as a fertilizer.

Domestic Uses for Grapes

At present, when food conservation is being emphasized everywhere, mention of the domestic use for grapes is particularly appropriate. The country over, no fruit is more generally grown than the grape; yet grape products are not as common for home use as those of several other fruits, although many attractive and appetizing preserves can be made from grapes without the use of large quantities of sugar, spices or other ingredients. Few housekeepers realize the high quality and the cheapness of the products that can be made from the grape. Thus, grape-juice, jelly, jam, marmalade, grape-butter, catsup, spiced grapes, canned grapes, conserves in which grapes are used, preserves and mince-meat are among the desirable culinary products easily and cheaply prepared from home-grown grapes or those bought in the market. Only simple domestic utensils are needed in the preparation of any of these products.

Grape-sirup is less easily produced, yet can be made in any home without the addition of sugar. It is not only a good table sirup, but is a most useful sugar substitute for the preparation of other culinary products. The Muscadine grapes in the South, to be purchased by almost every householder in southeastern United States, in particular, are useful for these domestic products. Recipes for all of these products can be found in cook books, and one or two bulletins and circulars from the United States Department of Agriculture give recipes for preparing grapes for domestic purposes. Farmers' Bulletin 859 entitled Home Uses for Muscadine Grapes is a particularly valuable publication on this subject.

It is interesting to note that several large manufacturers of grape-juice are putting on the market grape jams, jellies and marmalades. It would seem that these delicious and wholesome products would find a ready sale in the markets of the country, and that their manufacture would prove profitable to the maker and to the grape-grower. The greater the use of grapes for their products, the better the grower can breast the blows of unfavorable markets and over-production.

Plate XX.—Isabella (×2/3).