DIPHTHERIA.
BY A. JACOBI, M.D.
DEFINITION; SYNONYMS; HISTORY.—Diphtheria is a specific, infectious, and contagious disease, characterized principally by epithelial changes in, and the exudation of fibrin on and into mucous membranes, the surface of wounds, and the rete Malpighii, thereby constituting the so-called pseudo-membrane. Under the names ulcus syriacum, ulcus ægyptiacum, garotillo, morbus suffocans, morbus suffocatorius, affectus suffocatorius, pestilentis gutturis affectio, pedancho maligna, angina maligna, angina passio, mal de gorge gangréneux, ulcère gangréneux, angina polyposa, angine couenneuse, cynanche, croup, diphtheritis, and diphtheria, the disease has been known and described at different periods by the writers of different nations. The Hippocratic writings and some remarks in the Talmud allow of some doubt in regard to their explanation. Whether their authors observed or recognized diphtheria cannot be proven. There is less doubt in regard to Archigenes, quoted by Oribasius. Aretæus of Cappadocia is notably the first, if we except Asclepiades only, who is said to have performed laryngotomy. The description of the pharyngeal and laryngeal manifestations furnished by the former, however, can leave no doubt in our minds that he knew diphtheria and recognized it. Galen, in his remarks on the Chironian ulcer, tells us that the pseudo-membrane was gotten rid of by coughing when the respiratory passages were affected by the disease, and by hawking when the disease was in the pharynx. Cælius Aurelianus recognized diphtheria of the pharynx and larynx, as well as the diphtheritic paralysis of the soft palate; it is to him we are indebted for the information that Asclepiades resorted to scarification of the tonsils, and even to laryngotomy. Aëtius in the fifth century distinguished white and grayish patches and gangrenous degeneration, observed paralysis of the soft palate, and advised against energetic local treatment and the forcible removal of the deposits before they were in a condition to fall off spontaneously. The Arabs and Arabists contain no allusions to the subject, but early chronicles tell of an epidemic raging in St. Denis in 580, subsequent to a great inundation. There appear to have been memorable epidemics in Rome in 856 and 1005, in Byzantium in 1004. The former are mentioned by Baronius, the latter by Cedrenus.1
1 Haeser, Lehrb. a. Gesch. du Med. u. d. Epidem. Krankh., 3d ed., vol. iii., p. 434.
According to Morejon, Gutierrez wrote his Tradado del enfermedad del garrotillo in the second half of the fifteenth century. A malignant form of angina raged in 1517 in Switzerland, along the Rhine, and in the Netherlands; in 1544 and 1545 in Northern Germany and on the Rhine; in 1557 in France, Germany, and Holland; to the latter refer the reports of Tetrus Fosterus. Antonio Soglia, quoted by Chomel, describes an epidemic in Naples and Sicily (1563), which spread in the following year as far as Constantinople; Joannes Wierus, epidemics in Dantzic, Cologne, and Augsburg (1565); Ballonius (Baillon), in Paris (1576). At the same time this disease was frequent in Denmark. From Spain there are reports on severe epidemics between the years 1583 and 1618; the year 1613 was long known as the year of diphtheria (anno de los garrotillos).
Mercado (1608) speaks of a child that had communicated the disease to his father by biting his finger. Casealez advised gargles containing alum and sulphate of copper. Herrera described diphtheria of the skin and of wounds, and looked upon the pseudo-membrane as the essential characteristic of the disease. Heredia, in 1690, recognized the suffocative and asthenic forms, as well as the paralysis of the soft palate, the pharynx, and the limbs; he also called attention to the occurrence of relapses, which he attributed to the absorption of the morbid products, and endeavored to prevent by cauterization.
Naples had diphtheria 1610-45, in its worse form 1618-20, together with erysipelas, and diphtheritic affection amongst cattle. About those times tracheotomy was often performed by Severino, the same who found pseudo-membrane in the larynx at a post-mortem examination made in 1642. In 1620 the disease was in Portugal, Sicily, and Malta; in 1630 in Spain, according to Fontechu, Villa Real, and Herrera. It was remarked that in some instances no membranes were perceived in the throat, but the cases were liable to terminate fatally with large glandular swellings round the neck and general symptoms of adynamia. Sicily was again invaded in 1632, Rome in 1634, Italy from 1642 to 1650, Spain in 1666. The Italian reports emphasize the marked contagiousness of the disease and its tendency to depress the vital powers, also the weakness of the mental faculties left behind. In Germany the disease was described by Wedel in 1718. The epidemics observed by him were not very instructive, yet they sufficed to teach the importance of isolating the sick.
In the New England States diphtheria appeared in the seventeenth century. Samuel Danforth lost the four youngest of his twelve children by the "malady of bladders in the windpipe" within a fortnight in December, 1659, in Roxbury, Mass. John Josselyn mentions an epidemic in New England, mainly in Maine, which lasted at least until the year 1671. Mr. Douglass reports another, which commenced on the 20th of March, 1735, in Kingston township, about fifty miles east of Boston, and extended all over, and also to Boston, where it was mild at first. But in 1738 it was very severe, and remained so for some time. Indeed, it did not abate for a long time, to judge from a letter of Cadwalader Colden written in 1753 to Dr. Fothergill, and the two letters of Dr. Jacob Ogden, written in 1769 and 1774 to Mr. Hugh Gaine of New York; as also from John Archer's "Inaugural Dissertation on Cynanche Trachealis, commonly called Croup or Hives," published in 1798.2 In 1809 there was a severe epidemic in Philadelphia;3 in 1816 in Crete.
2 For extensive quotations from these and other writers on diphtheria at a very interesting period of our medical literature, see A. Jacobi, A Treatise on Diphtheria, New York, 1880.
3 Caldwell, in ed. of Cullen's First Lines of the Practice of Physic, Philadelphia, 1816, 1, p. 260.
The reports of Le Cât concerning epidemics in Rouen in 1736 and 1737 being doubtful, the first great epidemic must be set down, in France, for 1745. It commenced in Paris, and invaded the provinces afterward. Chomel gave an accurate description of the diphtheritic paralysis of the soft palate, and reports a case of strabismus. Epidemics are reported from the Netherlands in 1745, 1746, 1769, 1770, 1778-86; from Spain in 1764-71; from England in 1744-48 (by Starr), from Plymouth, England, in 1751-53 (Thurham) and 1776. Dropsy and glandular swellings were frequent; emetics and pure air were the sheet-anchors of treatment. The Netherlands, France, and the West Indies were invaded from 1770-80 by the disease, which was found often complicated with scarlatina; Portugal in 1786 and 1787; France again in 1787 and 1788; Northern Germany in 1790. At that time, particularly in France, the main reliance was had on the internal administration of cinchona and the insufflation into the throat of alum.
Epidemics have been described since from different localities in different years: in Glasgow, 1812 and 1819; Switzerland, 1823-26; Norway and St. Helena, 1824; New York and Kentucky, 1826 and 1828; French provinces, 1834; Paris, 1841; several parts of Europe and North America, 1845-56; Paris, 1853-55; England, 1854 and 1859, when 95 per cent. of all the cases of nasal diphtheria proved fatal; Netherlands and Sweden, 1855; all Western Europe, 1855-65, up to the present time, and all Europe since; California, 1856 and 1857; Portugal and France, 1856; Eastern Prussia, 1850, 1852, 1856, 1857; and all the countries with a cold or moderate climate to this very day.
During the second half of the eighteenth century but two writers are worthy of especial notice—Home, a Scotchman, 1765, and Samuel Bard, an American, 1771.
Home deserves credit for having distinctly drawn the line between the pseudo-membranous and the gangrenous affections. He also endeavored to prove that croup and angina maligna were two distinct diseases, notwithstanding all that had been said since the time of Aretæus in favor of their identity. The false membrane of croup he looked upon as an aggregation of mucus. He sought for it exclusively in the respiratory tract, and disregarded any connection between it and the false membrane found in the pharynx.
Bard's experience was very extensive; he saw membranous pharyngitis, laryngitis, and pharyngo-laryngitis; he speaks of the membrane as met upon the skin, of paralysis of the muscles of deglutition and of the larynx, and likewise of paralysis of the lower extremities, as sequelæ. He looked upon the morbific process as the same whichever were the mucous membranes attacked, and made a distinction only according to the localization of the disease. The influence which he might have exercised in shaping the professional opinion on the nature of the disease did not make itself felt, partly because of his classical modesty, and partly because of his remoteness from the centres of European learning. Not before 1810 was his book translated into French (by Ruette). While his style is classical in its simplicity, his observation is astonishingly correct, and his conclusions as to the actual identity of all the diphtheritic processes in the most various clinical symptoms unimpeachable this very day. His description of the various forms of pharyngeal diphtheria is painfully good, his observations on cutaneous diphtheria very accurate, his few dissections well recorded, particularly when he speaks of tracheal and tracheo-laryngeal diphtheria, and his historical reviews very judicious indeed. "Upon the whole, I am led to conclude that the morbus strangulatorius of the Italians, the croup of Home, the malignant ulcerous sore throat of Huxham and Fothergill, and the disease I have described and that first described by Douglas of Boston, however they may differ in symptoms, do all bear an essential affinity and relation to each other, or are apt to run into each other, and, in fact, arise from the same leaven. The disease I have described appeared evidently to be of an infectious nature, and, being drawn in by the breath of a healthy child, irritated the glands of the throat and windpipe. The infection did not seem to depend so much on any prevailing disposition of the air as upon effluvia received from the breath of infected persons. This will account why the disorder sometimes went through a whole family, and yet did not affect the next-door neighbors. Here we learn a useful lesson—viz. to remove young children as soon as any one of them is taken with the disease, by which many lives have been saved and may again be preserved."
Jurine, in his prize essay of 1807, denies the gangrenous nature of angina maligna and emphasizes the frequent complication of membranous croup with membranous pharyngitis. It was reserved for Bretonneau to enforce attention to the ideas of Bard by asserting (though he did not mention either his monograph or its French translation of 1810) the identity of angina maligna, or by whatever other title it may be known, with membranous laryngitis, and by inaugurating his theory with a new name for the disease to perpetuate the views expressed therein. First and foremost, he called attention to the continuity of the membrane (according to him, composed of coagulated mucus and fibrin) of the nose, pharynx, and respiratory tract, its identity with certain morbid conditions of the skin, and promulgated the theory that "diphtherite"—the name dates from that time—is a specific disease, an affection sui generis, and differs both from a catarrhal and a scarlatinous inflammation.
The modern history of diphtheria may be dated from June 26, 1821, when Bretonneau read his first essay on that subject before the French Academy of Medicine, and gave to the disease the name it now bears. His second and third (Nov. 25th) papers belong to the same year; his fourth was read in March, 1826; his fifth appeared in the Archives gén. of January and September, 1855. It was only in 1826 that the material, previously gathered, was summed up in his celebrated monograph.4 Before this time, however, the separate essays had received prominence from the reports and commentaries of Guersant, who laid particular stress on the statement that diphtheria was a non-gangrenous affection, identical, and even synchronous, with croup in the majority of epidemics. Since that epoch the literature on the subject has assumed enormous proportions. It is a matter of regret that the limited space allotted to this subject should exclude much historical detail of the etiology, pathology, and therapeutics of diphtheria. If the history of any disease is interesting, and the neglect of its study has ever punished itself, it is diphtheria. Particularly would the treatment have been more successful if the knowledge of former times had been available and more heeded. As long ago as in the seventeenth century depletion in diphtheria was condemned, and in the seventeenth and eighteenth centuries the local treatment with muriatic acid and the internal administration of cinchona, camphor, and roborant diet were held to be the only admissible ones. Bretonneau urged the same principles, and still in our own times, for want of historical knowledge, we had to learn the old lesson over again.5
4 P. Bretonneau, Des Inflammations spéciales du tissu muqueux, et en particulier de la Diphthérite, etc., Paris, 1826.
5 See history and bibliography of diphtheria in Chatto; Sanné, Traité de la Diphthérie, Paris, 1874; Jacobi, in Gerhardt's Handb. d. Kinderk., vol. ii., 1877; Seitz, Diphtheric und Croup gesch. u. Klin. dargest, Berlin, 1879; Index-Catalogue of the Library of the Surgeon-General's Office, U.S.A., vol. iii., Washington, 1882.
The following is a brief review of the main points of discussion upon subjects connected with the symptomatology and pathology of diphtheria since Bretonneau's first paper:
Bourquoise and Brunet express their belief (1823) in the contagious character of this disease. Desruelles (1824) sees a diagnostic difference between the sporadic and the epidemic forms in the participation of the brain in the latter. Louis referred a number of cases of croup in adults to pharyngeal diphtheria as their source. Mackenzie considers that croup has its origin in the fauces, and urges the employment of lunar caustic. Billard (1826) denies the specific character of diphtheritic inflammation. Hamilton describes cases that terminated in suppuration, and which he therefore distinguishes from Bretonneau's cases. He describes two modes of termination of the disease—one in croup, the other in a state of debility arising from the effect of the absorbed secretion on the respiratory nerves. Pretty looks upon those cases of croup that have their original seat in the tonsils as contagious. Bland (1827) explains the difference between croup and diphtheria. Deslandes declares them to be identical. Bretonneau publishes a work in which he compares diphtheria with scarlatina anginosa, and recommends the use of alum. Emmangard is the first one of the physiological school who, likening diphtheria to typhoid and claiming its origin in a malarial infection, calls it angina gastro-enterica. Abercrombie is in favor of distinguishing diphtheria from croup, but reports a number of cases of diphtheria of the pharynx that terminated fatally by stenosis of the larynx. Ribes, who encountered the disease in nine members of a single family, asserts that croup rarely occurred without a preceding diphtheria in his experience; he advises an examination of the throats of apparently healthy individuals. Fuchs relates the history of epidemics of angina maligna, and declares croup to be a genuine angina maligna trachealis, which only does not run through all the stages. Broussais opposes the identity of croup and diphtheria (1829), and gives a report of cures by means of antiphlogistic regimen and laryngotomy. Diphtheria and gangrenous angina are synonymous with him. Gendron expresses a belief in the identity of diphtheria and gangrenous angina. Roche considers the membrane rather of hemorrhagic than of inflammatory origin, and consisting of discolored fibrin. About the same time Trousseau is endeavoring to clearly establish the diagnosis between diphtheria and scarlatinous angina. Shortly after (1830), he reports cases of diphtheria which originated in blistering wounds, and of diphtheria of the skin giving rise to throat affections, and diphtheria of the throat followed by skin disease. T. F. Hoffmann cites a severe case, that ultimately recovered, with consecutive paralysis of certain cranial nerves. Cheyne (1833) makes a stand against the "confounding of croup and cynanche maligna under the name of diphtheritis." Bourgeois witnessed an epidemic succeeding mumps.
Fricout and Burley (1836) declare their belief in the contagiousness of the disease. Bouillaud attacks the theory of its specific character on the ground that abstraction of blood produced favorable results. Stokes makes a distinction between primary and secondary croup according to the original seat of the affection (1837). Kessler advocates (1841) the view of its contagious nature, and Rilliet and Barthez adduce evidence of the occurrence of ulceration and gangrene in the course of the disease. Taupin, like Ribes, enjoins a methodical examination of the throat of every patient during the prevalence of an epidemic of diphtheria, whatsoever be the disease from which the child suffers. Boudet (1842) opposes Bretonneau's hypothesis that croup is a descending diphtheria, and holds to the identity of diphtheria and gangrenous angina. In this contest Durand (1843) also takes sides against Bretonneau, and lays particular stress on the point that the diphtheritic patient succumbs rather from the severity of the constitutional symptoms than from suffocation. Rilliet and Barthez, on the other hand, rally to the support of the attacked master, asserting that the usual form of croup and that resulting from a descending diphtheritis are one and the same, while they claim that diphtheritis and gangrenous angina are distinct affections.
Meanwhile, the strife regarding the nature of the disease continued. Guersant and Blache (1844) describe the stomatite couenneuse (noma, stomacace, according to them, the rarest kind of gangrenous angina) as a form of Bretonneau's diphtheritis, and Landsberg raises the question whether a nerve-inflammation, present in a certain case, was to be looked upon as an accidental or an essential feature of the disease, and finally comes to the conclusion, with Schönlein, that it was a neurophlogosis dependent on the disease. Bouisson (1847) reports a case of diphtheritic conjunctivitis resulting in loss of the eye. Robert publishes his observations on diphtheria of the skin and of wounds, which he attributes to an atmospheric contamination in crowded wards of hospitals, and looks upon it, with Delpech and Eisenmann, as a form of hospital gangrene. Virchow, in the same year, distinguished the catarrhal, croupous, and diphtheritic varieties of the disease. Meanwhile, reports of paralysis of the soft palate after diphtheria came from Morisseau, from Trousseau and Lasegue, and lastly (1854-59) from Maingault. The subject of diphtheritic conjunctivitis was studied by A. v. Graefe (1854), who encountered the disease as a complication of diphtheria of the pharynx, nose, and skin, and hence considered it a part of the general disease rather than an independent local affection. Diphtheria, in its effects on the system, had at the same time been investigated by Trousseau, who sums up with the statement that the principal source of danger lies in the invasion of the larynx, and that the large majority of cases of croup began as a diphtheria of the pharynx, but that, even without the occurrence of a laryngeal localization, many cases terminate fatally owing to adynamia.
Outside of France, too, the subject had attracted attention. West, who had never seen the disease occur primarily, describes diphtheria as a complication of measles. Bamberger (1855) divides the inflammations of the mouth and pharynx into the catarrhal and croupous forms, and considers croup and diphtheria to be subdivisions of the latter form, differing only in degree. The paralysis of the muscles of deglutition is discussed by Dehænne (1857) who had contracted the disease, and the paralysis of other muscles by Faure. A case of diphtheria of the tonsils, nipples, and vagina in a woman recently confined, followed by infection of the new-born and the death of both, is reported by Mathieux; and cases of diphtheritic conjunctivitis by Grichard, Warlomont, and Testelin. The same year Isambert published a work in which he divided the diphtheritic affections into three forms—viz. angine couenneuse, scarlatinous angina, and diphtheritic angina. The last-mentioned is further subdivided into a croupous-diphtheritic angina, in which croup of the larynx plays an important part, and into that form in which death results from adynamia; in the latter form there is a marked swelling of the lymphatic glands. Apparently, at this time the epidemic in Paris underwent a considerable change, for the croupous form does not occur by far so frequently as Bretonneau had asserted, and croup of the larynx without a preceding diphtheria of the pharynx was observed more frequently than he would lead us to believe.
The various changes in the symptoms of the epidemics of diphtheria which were observed in different places and countries, and at different times, explain many of the differences of opinions in regard to the nature of the disease. The literature of that subject is in the last twenty-five years simply stupendous, and a few more notes must suffice for the elucidation of the drift of theories and observations. Beale was the first to look for organic beings as the cause of the disease, without finding any. Laycock sees it in the bacilli and spores of oidium albicans; Wilks, however, found the same parasite in other affections. Cammack declares the diphtheritic membrane to be herpetic. Feron also calls Bretonneau's mild form of the disease a herpetic angina with pseudo-membrane; so does Gubler. Bouchut writes against the identity of diphtheria, croup, and gangrene. Condie describes the disease as occurring with scarlatina. Litchfield claims that it is a concealed scarlatina, and Hillier that it has some connection with it. Millard cites one case in the course of which gangrene occurred, and another in which skin, mouth, pharynx, respiratory passages, oesophagus, and vulva were affected at the same time. Harley vainly endeavored to inoculate the disease in animals. Stephens declares the disease to be infectious. Sanderson looks upon it as identical with the angina maligna of the aged. Farr considered the exhalations from sewers an important etiological factor. Sellerier, Kingsford, and Harley (1859) report paralyses as sequelæ. Maugin speaks of a specific eruption; Ward, of an accompanying purpura. Bouchut and Empis remarked the frequent presence of and danger from albuminuria; so did Wade. Maugin calls attention to the fact that, when present in diphtheria, it occurs early, whereas in scarlatina it is seen during the period of desquamation, and is not of frequent occurrence even then. Gull gives an account of cases in which death resulted from asthenia, and speaks of a nerve-lesion which he attributes to the severity of the local inflammation. Hildige describes diphtheritic conjunctivitis as seen in Graefe's practice, and looks upon it as contagious. Magne denies its contagious or infectious character. Mackenzie, while probably having seen false membrane appear on the conjunctiva when in a state of inflammation, yet refuses to recognize diphtheritic conjunctivitis as a distinct disease.
In the same degree that observations of cases and epidemics increased in number, the nature of the disease and its cause commenced to be studied. The assumption that the latter was a chemical poison was soon doubted, and the parasitic nature of diphtheria considered by many as proven.
After Henle had (1840) expressed his belief in the existence of a contagium animatum, and morbid processes had for some time been compared with the phenomena of fermentation, Schwann demonstrated the presence of lower organisms in fermentation and putrefaction. The discovery of the cause of the silk-worm disease by Bassis, of the achorion by Schönlein, of the acarus by Simon, of bacteria in malignant pustule by Pollender, Brauell, and, above all, by Davaine, in relapsing fever by Obermeier, the teachings of Pasteur concerning the conditions under which putrefaction occurs,—all tended to explain the various infectious and contagious diseases by analogy also, and to stimulate the search for a vegetable organism in diphtheria. Buhl was the first to discover schizomycetæ in diphtheritic membrane, but expressed no opinion as to the part they played in the process. Hüter found them in the gray diphtheritic covering of wounds, in the surrounding apparently healthy tissues, and in the blood. Hüter and Tomasi found them in the diphtheritic membranes of the pharynx and larynx, inoculated them on the mucous membranes of animals, and described them as small, round or oval, dark-colored, active little bodies. The latter observers look upon these organisms as a part of the infectious element. Oertel found them in diphtheritic membrane and in inflamed mucous membranes in the lymphatic vessels, lymphatic glands, kidneys, and other organs; he considers them as the contagious element of diphtheria. Nassiloff, too, after inoculations in the cornea resulted in an enormous multiplication of the microscopic organisms and their appearance with pus-cells in the lacteals and in the lymphatics of the palate, and even in the bones and cartilages, asserts that the development of organisms is the primary step in the diphtheritic process. Eberth made successful inoculations in living tissues; the micro-organisms, introduced into the cornea, proliferated actively and caused an inflammation of irritative character in the surrounding tissue. He asserts, with the positiveness of an evangelist, that diphtheria cannot occur without bacteria. Klebs inoculated the micrococci in pigeons and dogs, and found them in the blood of the animals after death. Orth found them in the pleura, lungs, kidneys, and urinary bladder. But what their action is, whether they are directly pernicious, or deprive the body of certain elements (as of oxygen in malignant pustule, according to Bollinger), or injure mechanically by acting on the coats of the blood-vessels (either directly or by means of altering the blood), thus depriving whole territories of their blood-vessels, is a question upon which the principal advocates of the parasitic theory have not yet agreed. Even Oertel acknowledges the impossibility of explaining the manner in which bacteria act (Ziemssen, Handbuch, ii., 1, p. 581, 2d ed.). This much is positive, at any rate: that no one has yet proven that the vegetable organisms alone, and not other, free or fixed, parts of the diphtheritic membrane, are the vehicles of the infecting elements (Steudener); and even now the question has not been decided whether the bacteria met with in diphtheria constitute the cause of the disease, or are a part of the process, or co-effects of the poisonous action—whether they are the carriers of the poison or entirely indifferent entities.
The most important observations made by those who deny a direct etiological connection between micro-organisms and septic diseases in general, and diphtheria in particular, are those of Hiller and Billroth. The latter has proven the morphological identity of the various kinds of bacteria, although it cannot be denied that the apparent similarity may mask a yet unknown difference. Hiller calls attention to the fact that large numbers of micrococci have been found in the cadaver where death has not been the result of septic disease, and also that septic infection is not always severest where the bacteria most abound, but where an extensive chemical decomposition or a mass of putrefying tissue is found. This would indicate that the septic process is rather dependent on chemical decomposition than on the presence of bacteria.
Panum, Bergmann, and Schmiedeberg have isolated poisons that contained no bacteria. Rawitsch and many others prove that septic infection is not dependent on the existence of bacteria. Davaine has shown that an infinitely small amount of a chemical poison, free from bacteria, can kill quickly.
The presence of cocco-bacteria (Billroth) in the blood during life has not once been proven, not even in pyæmia or septicæmia. Yet their being swept into the lungs with the atmospheric air is indisputable. It would therefore seem as though living blood had a greater tendency to destroy bacteria than to allow itself to be decomposed by them. Not only, however, would it seem so, but P. Grawitz (Virch. Arch., vol. lxx., p. 546) proves that sporules do not grow in the (tissue and) blood, but that they are in part dissolved, in part eliminated through the kidneys, and that this result is accomplished through the combination of the following four factors—viz. the elasticity of the blood, its constant motion, the absence of oxygen in sufficient quantity in the circulating blood, and the presence of living animal cells. All of these factors appear to be of great importance. Thus it is that, where the constant motion of the blood and the animal living cells are not present (as in the anterior chamber of the eye or in the humor vitreous) a rapid proliferation and accumulation of bacteria can take place. They are also known to increase rapidly and emigrate into the liver when deposited in the abdominal cavity.
The destruction of bacteria in the circulating blood, into which they may have penetrated, accounts for some microscopical facts in connection with (actually or apparently morbid) blood. Their remnants are probably the pale and dark particles which are discovered in the blood alongside the red and white blood-corpuscles. They could not be identified as micrococci, while in the tissue they are more recognizable. In autopsies they have been found in the urinary tubules, pressing forward and piercing the walls, not occupying a nidus of inflammation, however, and probably are even here a post-mortem phenomenon. A direct necrosis or inflammation by the inoculation of diphtheritic elements can only be produced in the cornea, as was shown by Recklinghausen, and particularly Eberth. Besides, there is nothing characteristic in the cocco-bacteria of diphtheria, with the exception, perhaps, of their browner color, to justify their being looked upon as a distinct variety, certainly not as another species. It is more likely that a difference of action is not so much to be sought for in a different parasite as in the peculiarity of the corneal tissue. When fluid containing cocco-bacteria was injected into the eye of a rabbit, in twenty-four hours the eye was destroyed. If injected into the eye of a dog or guinea-pig, only a slight inflammation resulted (Billroth and Ehrlich). If these experiments were continued on a larger scale, we might eventually, by analogy, infer, and even prove, that the immunity against certain diseases enjoyed by some animals is owing to peculiarities in the very structure of their own tissues. In a similar manner I shall prove hereafter that even peculiarities and variations in the tissue and epithelium of the human body give rise to different shades and variable clinical symptoms in the diphtheritic processes.
The views of Curtis, Satterthwaite, and Charlton Bastian fully agree with those of the above observers. The latter is rather inclined to look upon bacteria as an effect of the disease than as a cause. Similar views were expressed by Burdon Sanderson.
Nor are the researches of Weissgerber and Terls, Lukomsky, Weigert, Lücke, any more conclusive; and, finally, Fürbringer, in his most recent and careful studies of diphtheritic nephritis, insists upon this, that it is not caused by immigration of fungi into the kidneys, that the very best methods employed for the finding of parasites result in the absence of micrococci from the inflamed organ, and that the renal inflammation following diphtheria is the result of a chemical process.
H. C. Wood and Henry F. Formad, in Supplement 7 of the National Board of Health Bulletin (1880), declare it altogether improbable that bacteria have any direct function in diphtheria—i.e. that they enter the system as bacteria and develop as such in the system, and cause the symptoms. It is, however, possible that they may act upon the exudations of the trachea as the yeast-plant acts upon sugar, and cause the production of a septic poison which differs from that of ordinary putrefaction, and bears such relations to the system as to, when absorbed, cause the systemic symptoms of diphtheria. Now, these bacteria may be always in the air, but not in sufficient quantities to cause tracheitis, but enough when lodged in the membrane to set up the peculiar fermentation; whilst during an epidemic they may be sufficiently numerous to incite an inflammation in a previously healthy throat.
The same authors publish a number of other experiments and conclusions in Suppl. 17 (Jan., 1882): "There is no proof as yet that the micrococci are the cause of the disease. Their presence in the exposed dead tissue is no evidence, for the membrane represents but the necrotic mucous lining.... Indeed, when the healthy mucous membrane of the mouth or trachea is destroyed by caustics—for instance, ammonia—the eschar into which it is converted—really a pseudo-membrane—contains the same micrococci as are found in true diphtheria, as Wood and Formad have learned. Moreover, in the scrapings of the healthy tongue the same micrococci can be seen. Of more significance is the detection of the same or similar micrococci in the blood of the living patients during severe attacks. But since these parasites were found only in the more severe cases, and not in all instances of the disease, were seen also in the blood of other septic disorders, and since no cultures have been made with the fresh blood, there is not yet enough evidence for any decision. In the internal organs bacteria are not found with any regularity in diphtheria."6
6 H. Gradle, Bacteria and the Germ Theory of Disease, Chicago, 1883, p. 186.
O. Heubner, while studying both the local affection and the general infection of diphtheria, availed himself of the methods of Cohnheim and Litten, who produced diphtheritic deposits by cutting off the circulation of the blood. He ligated the neck of the bladder in rabbits for two hours. On the first day he noticed a hemorrhagic oedema of the mucous membrane, with loosened and tumefied epithelium; on the second a firm and coagulated exudation took the place of the normal tissue; on the third there were genuine diphtheritic spots in the mucous membrane. The newly-formed pseudo-membrane exhibited all the morphological elements of human diphtheria (genuine or scarlatinous) and epidemic dysentery.7 Thus Heubner's results agree with the definition of diphtheria as the compound of severe inflammation and necrosis. The inoculation of his diphtheritic artefacts he found sterile. Animals, however, which were inoculated with diphtheritic masses taken from the diseased human patient fell sick with tumor of the spleen, hemorrhages, and general sepsis, besides a local diphtheritic affection. Scarlatinal diphtheria used for the same purpose had the same effect. Bacilli were developed, but they were not found in the blood-vessels (differing in that respect from the bacilli of anthrax), in spite of continued examination. Thus, Heubner refuses to accept the bacilli as the diphtheritic poison; they are, in his opinion, the result of the morbid process, and not its cause. Thus, though he believes the diphtheria poison to be organic, he concludes that its nature is not yet explained; contrary to the assertions of many prolific prophets of the bacteria literature, who now and then claim for this year's microscopic revelations the same infallibility which was claimed for last year's opposite views.8
7 Die Experimentelle Diphtherie, Leipzig, 1883.
8 L. Letzerich recognized in former years the specific parasites of diphtheria, whooping cough, and typhoid fever as if they were labelled. Then, again (Arch. f. Experim. Pathol. u. Pharmacol.), he admitted the great difficulty in discriminating the specific schizomycetæ of diphtheria, croupous pneumonia, epidemic influenza, and typhoid fever.
E. Rindfleisch9 expresses himself as follows: "The microphytes of diphtheria, septicæmia, and pyæmia have not been isolated and cultivated as yet. But experimenters are convinced that there are a great many species of microphytes underlying genuine putrefaction. In producing septicæmic conditions in animals their efficacy differs. Not every animal is influenced by the same microphyte. Thus it becomes probable that the human organism is endangered by a certain number of the putrefaction microphytes. Some one may have a particular predilection for granulating wounds and mucous membranes, and thereby produce a diphtheritic inflammation. Another may enter the blood from a recent wound and give rise to a septicæmic fever with rapidly fatal termination. The third may invade the body by means of a phlegmonous inflammation, purulent infiltration, thrombosis, embolism, and metastatic abscesses, accompanied with a pyæmic fever of a remittent type."
9 Die Elemente der Pathologie, Leipzig, 1883, p. 301.
After all, it does not appear to me that the bacteria question has come any nearer its solution in the last few years, in spite of the most eager researches and the fact that some of the best medical names in the world of medicine take the parasitic nature of diphtheria for granted. For instance, in the second Congress for Internal Medicine (Wiesbaden, 1883) C. Gerhardt rises in its favor. He makes the statement, or rather admits, that several parasites have been found by different men, that every one considers his the genuine one, that several writers assume that there are several diphtheria parasites, and suggests that, in his opinion, the disease may be produced by different varieties of bacteria. At the same time, he contends that the essence of the disease consists in the erosion (and change) of the epithelium and the emigration of leucocytes. If that be the case, I understand less than ever why diphtheria is, or is to be called, a parasitic disease.
Panum's words seem still to be the soundest expression of all our knowledge on the subject when he says: "It is a matter of rejoicing that physicians have come to the conclusion that certain microscopic organisms, be they considered vegetable or animal, and designated as bacteria, fungi, monads, micrococci, or vibriones, do not exist merely in the minds of theorists as causes of disease, but are in reality enemies that must be combated with all the known efficient weapons in our possession. But, while thus rejoicing, it must be borne in mind that we have but a feeble insight into the relation between these organisms and diseases, and in order to effect that much-desired advance in scientific knowledge—a matter of considerable importance in the practice of medicine—it is necessary not only to grasp at isolated data, but carefully and deliberately to observe and study all the facts before us, and even to devote some attention to those which would tend to prove that there are bacteria and fungi which, under certain circumstances, are perfectly harmless, and that even some of the malignant ones among them do not commit all those outrages with which they are charged, directly and personally."
SYMPTOMS.—In the majority of cases the disease has a prodromal stage, which usually lasts a day or two, and may run a similar course to that of a catarrhal pharyngitis. The patient feels somewhat indisposed, has slight fever, is dejected, complains of painful deglutition, more marked when swallowing fluids than solids or semi-solids, has headache and occasionally vomiting. The occurrence of the latter, however, is very much less frequent than in the outbreak of scarlatina. In very severe cases convulsions have been observed, chills very rarely; elevations of temperature of from 102.5° to 104° F. are frequent; higher ones, from 105° to 107°, rare. At this time it is often difficult or impossible to distinguish a catarrhal angina from a diphtheritic by the subjective symptoms. Slight glandular swellings under the jaw may occur in either. The characteristic objective symptom of the latter disease is the presence of membrane on the reddened mucous membrane of the fauces, which, usually, is markedly injected over all or part of the surface. The arches of the palate and the tonsils, less frequently the posterior wall of the pharynx, are so affected. A distinctly localized redness cannot be but either traumatic or diphtheritic. Larger or smaller deposits are found thereon, lying loose on the surface or deeply imbedded according to the locality. At times the first examination reveals their presence in large numbers; at other times but a single one can be detected, which is soon followed by others, however. Within a certain period of time, as a rule twenty to twenty-four hours, the single deposits coalesce and form a membrane of greater or less extent. Mostly in the same proportion to its increase in size it increases in thickness. On the uvula, soft palate, and the posterior wall of the pharynx the membrane is located superficially, and at times can be easily removed; on the tonsils it has a firmer hold, and is usually amalgamated with their uppermost tissues. On the other hand, there are cases in which no actual membranous formation is observed; in such cases the tissues are more or less swollen, the surrounding portions more or less reddened, and the grayish-white discoloration is the result of an infiltration of the tissues themselves, and cannot be removed.
There are still other cases in which deposits of membrane and tissue infiltration are found at the same time, and where both history and evidence indicate that these two phenomena are the result of one and the same process. When the uvula takes part in the process the swelling is, as a rule, more marked than when the remaining parts of the fauces only are implicated. Its circumference is very considerable, and amounts sometimes to the treble or quadruple of the normal, in consequence of the oedematous condition of the entire tissue.
We have to deal, then, with three different manifestations of the diphtheritic process: first, with a membrane lying on the mucous membrane, and removable without causing much injury to the epithelium or any to the basement membrane; such membranes were given by some the name of croupous deposits; secondly, with a membrane implicating the epithelium and upper layers of the mucous membrane; to this the title of diphtheritic membrane has been given by preference; thirdly, with a whitish or grayish infiltration of the surface and the deeper tissue, which, if abundant, may give rise to a necrotic destruction of the tissue.
The severity of the disease does not always depend on the predominance of one of these three forms, for any of them may accompany a mild or a severe attack. By a severe attack we understand one attended with chills, temperatures as high as 105° and 107° F., and marked nervous symptoms, such as vomiting and convulsions. It is characteristic of such cases that when the membrane is accidentally or forcibly removed it is speedily reproduced; the lymphatic system, in addition, takes an active part in the process. The neighboring glands become swollen; the periglandular tissue does likewise, so that the circumference of the neck becomes enormous, and the space between the lower jaw and the clavicle appears one immense tumefaction. These are the cases in which, as a rule, loss of strength and general debility speedily ensue, and death occurs from exhaustion. The membrane in cases of this description frequently undergoes changes in appearance; under the influence of the atmosphere and of foreign substances, and by admixture of blood, its color becomes yellowish or brownish. The odor of the membrane and surrounding parts becomes sweetish and musty, and occasionally so fetid that it contaminates the atmosphere of the room, and the air in its transit through the nose and over the pharynx becomes by inhalation dangerous to the patient. His throat becomes more swollen, his respiration loud; he keeps his mouth open constantly, has an indifferent expression; the saliva dribbles continually, the color of the skin is sallow and livid, the appetite very poor, and pulse both frequent and small. When the symptoms are of long duration, and a deep infiltration of the affected parts occurs, hemorrhages not infrequently make their appearance. These may be slight although frequent; occasionally, however, larger blood-vessels are encroached upon in the process of destruction, and dangerous, nay even fatal, hemorrhages may be the result. The septic forms which I have here described are more dangerous than the mild ones previously mentioned. Still, even in the latter bad results may ensue from a direct absorption into the blood of putrid substances and by the penetration of fetid gases to the lungs.
Occasionally, where the infiltration has been extensive, we meet with a condition that can only be considered as gangrene. In such cases we see collections of a grayish pulpy mass, which on falling off leaves a considerable loss of tissue, the further course of the disease being either favorable, or dangerous through absorption of septic material, or accompanied by local hemorrhages. When, after a time, health is completely restored, marked cicatrices are left behind. Such loss of tissue is generally seen in the tonsils only, but it may also be encountered in the soft palate. Its cicatrices on the soft palate are always a source of inconvenience, partly in swallowing, partly in speaking. Actual local perforation of the soft palate I have seen but five times in twenty-five years, sloughing without perforation very often.
The diphtheritic membrane not infrequently spreads from the pharynx to the neighboring organs. From the posterior aspect of the soft palate or pharynx the disease gradually ascends to the nasal cavities; this is particularly apt to occur when the uvula is the seat of extensive deposits, and by forced inspiration and deglutition its posterior surface becomes affected. In such cases the membrane which extends thence to the nasal cavities is very dense, and capable of narrowing the capacity of the nasal cavities anteriorly, and occasionally even to close them entirely; as a rule, however, several days elapse before the membrane assumes such a condition. Usually, when this form of nasal diphtheria is in its incipient stage, it is impossible to diagnosticate it; the most important sign thereof, besides a more nasal articulation and sometimes greater difficulty in deglutition, and the result of close ocular examination while the uvula is turned sideways or drawn forward, is a swelling of the deep facial glands at the angle of the lower jaw; when these swell rapidly it can be asserted positively that the nasal cavities have been invaded. There is little or no discharge from the nostrils under these circumstances.
The picture is a very different one, however, when the nose becomes primarily affected. This usually occurs only where an acute catarrh with but little secretion, not so often where a chronic catarrh, has preceded infection. When the secretion is thin and serous, the diphtheritic infection renders it no thicker, but makes it slightly flocculent, and it may become very profuse. This form is frequently attended with a disagreeable odor, equally unpleasant to the patient and to those around him. During the prevalence of an epidemic one must always be prepared to see an acute nasal catarrh or an influenza, or even a chronic nasal catarrh, become complicated with diphtheria or pass into it. Schuller reports the case of a five-weeks-old male child who, having had a nasal catarrh since birth, became affected with diphtheria of the nose. The glandular swelling of which I spoke above is a very important diagnostic, and likewise a decidedly unpleasant symptom, which becomes very marked inside of twenty-four hours; frequently a partial swelling remains long after the disappearance of the diphtheritic membrane. Such glands rarely suppurate or undergo a necrotic degeneration; sometimes they become permanently indurated. This induration and a chronic pharyngeal and nasal catarrh are very serious matters in many instances. Both of these conditions are starting-points for a number of acute or subacute attacks of diphtheria in the same person. It is they which constitute the liability of persons once affected to be taken sick again. Not only are they liable to be affected themselves, but they are a constant danger to all around them. Diphtheria, in a large family of children living in one of the best houses of the city, after having returned half a dozen times in the course of a year, disappeared instantaneously, not to return, when a seamstress living in an infected neighborhood and suffering from occasional sore throats was relieved of her daily work in the house. Oedematous swelling of the mucous membrane and submucous tissue is often observed for a long period to come; elongated uvulæ, enlarged tonsils, often date back to such an acute attack. Thus it is with the upper portion of the larynx about the posterior insertion of the vocal cords (see below); its large amount of loose submucous tissue is liable to swell considerably in acute attacks. Frequent spells of croupy cough and a certain degree of dyspnoea are often observed for years afterward. Though the cases of genuine cicatrization between the arytenoid cartilages, as described by Michael,10 be rare, with their result of permanent paresis of the thyroarytenoid interni muscles, when they do occur they are either obstinate or altogether incurable.
10 Deutsch. Arch. f. klin. Med., 1879, xxiv. p. 618.
Diphtheritic conjunctivitis occurs either primarily or as a complication of pharyngeal or nasal diphtheria. Fortunately, it is not of frequent occurrence; the cornea may become destroyed either by pressure through the considerable swelling of the eyelid or by diphtheritic keratitis. Usually the upper eyelid is the first to suffer; it is red, rigid, swollen. In the beginning the conjunctiva palpebræ is smooth, dry and pale, while that of the eye is chemosed; afterward diphtheritic deposits take place either in floccules or in solid masses. Knapp distinguishes between croup and diphtheria of the eyelid according to the facility or impossibility of removing the deposit. In favorable cases the membranes begin to macerate and the eyelids to soften after a few days. In those less favorable perforation of the cornea, prolapse of the iris, or total destruction of the eye take place.
The ear is but rarely the primary seat of diphtheria. A girl of three years died of laryngeal diphtheria on Sept. 6, 1882, after an illness of four days. A girl of seven years was removed from the house on Sept. 6th and returned on Sept. 8th. On the afternoon of the 10th an earring taken from the corpse was attached to the left ear of the sister, after having been washed with soap and water only. About noon on the 11th the lobe of the left ear reddened, on the 12th it exhibited a membrane and became swollen, and some glands enlarged in the neighborhood. On the right mastoid process the skin was not quite healthy, a vesicatory having been applied three weeks previously. This surface became diphtheritic on the 12th, without consecutive glandular swelling. On the 13th the membranes grew thicker; on the 14th the pharynx was also affected, and the physician called in.
Most diphtheritic affections of the ear, however, are secondary. In pharyngeal and nasal diphtheria the narrow orifice of the Eustachian tube is easily obstructed by either catarrhal swelling or diphtheritic deposit. The disease may invade the middle ear and the drum membrane with perforation, caries, and deafness following.
The descent of the diphtheritic process into the respiratory organs may give rise to various conditions. The membrane is not always found to pass uninterruptedly from the mucous membrane of the fauces into the larynx; not infrequently isolated diphtheritic spots are found in the pouches on either side of the attached extremity of the epiglottis, or on the epiglottis, or in the larynx. At such times the epiglottis is moderately swollen, its margins hard and reddened. Occasionally the redness is interrupted by small diphtheritic deposits, which may remain isolated for a considerable time, but generally coalesce so as to coat the edges of the epiglottis with a continuous membrane. As a rule, the upper surface of the epiglottis is not completely covered by membrane, while only now and then diphtheritic deposits are found on its under surface.
The subjective symptoms accompanying the affection of the epiglottis are not always in direct proportion to the extent of the membranes. Dyspnoea and hoarseness occasionally occur where the only abnormal condition is a marked oedema at the entrance of the larynx, particularly of the posterior wall near the arytenoid cartilages and the attachment of the vocal cords. The oedematous condition causes a functional paralysis of the vocal cords, together with marked dyspnoea on inspiration. The difficulty of breathing may become so excessive that the clinical diagnosis of croup is unquestionable, and tracheotomy resorted to, while expiration is comparatively free and the voice not markedly affected. Furthermore, cases occur in which there is no marked oedema, but merely a general catarrh of the epiglottis and larynx; here, too, the subjective symptoms of hoarseness and dyspnoea may become severe and necessitate the performance of tracheotomy. Still, bearing this in mind, I have on several occasions refrained from performing this operation where I judged that, aside from the diphtheria of the pharynx, I had to deal with a moderate oedema of the glottis or a laryngeal catarrh.
Frequently, however, membranes form in the larynx in the same way as in the pharynx or nose; then inspiration and expiration are equally interfered with, and hoarseness is a more constant symptom than in the above-mentioned cases. Fever and pain are not necessarily prominent symptoms; in fact, they are frequently unimportant, but in proportion as the degree of narrowing of the larynx increases the respiration becomes more difficult, long-drawn, and loud.
It may happen that the trachea and bronchi may become affected, although diphtheria of the fauces does not exist. This does not occur as rarely as Henoch and Oertel seem to believe. They think that diphtheritic tracheo-bronchitis is mistaken for the primary condition, because the throat is not examined early enough.
Oertel is of the opinion that the membrane in the fauces is overlooked in such cases. Steiner,11 too, asserts that "the tendency of the times is to question, nay, rather to deny, the existence of croup extending from below upward." Now, on the contrary, repeated experience enables me to assert with positiveness that diphtheritic tracheo-bronchitis may occur without an affection of the pharynx at the same time. I do not deny that it may last for days without giving rise to dangerous symptoms. I know it does. But when the process reaches the larynx, the symptoms of suffocation become so urgent that tracheotomy may be absolutely required at once, and, in spite of the operation, death soon after occurs.
11 Ziemssen's Handb., iv., 1, 126.
Of course these cases are exceptions; as a rule, laryngeal and tracheal diphtheria result from a descent of the disease from the fauces. More or less uncomplicated cases of primary laryngeal diphtheria, or so-called sporadic membranous croup, were, however, observed before the end of the sixth decade of this century. They were then almost the only cases of diphtheria, and linked former epidemics and the present one together.
Inflammatory affections of the lungs may occur at various times and in various forms during an attack of diphtheria. That which appears after tracheotomy is usually a broncho-pneumonia, and results from rarefaction of the air in the respiratory passages during the period of impeded respiration, with consequent collapse of pulmonary tissue and dilatation of the blood-vessels, and hence a disturbance of the circulation. It may not fully develop until after tracheotomy, and is a frequent cause of death on the second or third day after the operation. Now and then a case of lobular pneumonia will result from the aspiration of pieces of membranes into the smallest bronchi. It can be easily recognized when the trachea is opened, but previous to the operation the auscultatory signs are of little or no value, being masked by the laryngeal râles. Percussion is equally useless, for a dulness may just as well indicate collapse of the lung as infiltration. The second form of pneumonia associated with diphtheria is from the beginning fibrinous in character. Here, too, auscultation and percussion are of little assistance in establishing a diagnosis when there is a laryngeal diphtheria at the same time, for the above reasons. Where, however, the dulness on percussion is accompanied by high fever, and the long-drawn inspiration is replaced by rapid respiratory movements, the diagnosis of pneumonic complication is justified.
Diphtheria of the mouth, as a primary affection, is not of very frequent occurrence; not rarely, however, is it associated with diphtheria of the fauces and nose, mainly when they have assumed a septic or gangrenous character; it appears on cheeks, tongue, angles of the mouth and gums, and, after the fetid discharges have excoriated the skin, on the lips also. In all of these localities it appears less in the form of an extensive, thick membrane than an infiltration of the tissues. It is most apt to occur where, from the start, the mucous membrane of the mouth was eroded or ulcerated. The ulcerated base of a follicular stomatitis is very frequently the starting-point of a general diphtheria of the mouth. It is always a disagreeable symptom, points to a long duration of the whole process, and threatens septic absorption.
The oesophagus and the cardiac portion of the stomach are the seat sometimes of very massive and extensive, mostly fibrinous exudations, in typhoid fever, dysentery, cholera, measles, and scarlatina, or after injuries following contact with mineral acids, alkalies, corrosive sublimate, or antimony. When the normal tissue was not injured I never saw any that were not superjacent and could not easily be peeled off (croupous). In cases of extensive pharyngeal and laryngeal diphtheria the upper part of the oesophagus is often covered to a distance of half an inch or an inch with membrane, the lower part of which is thinning out into a mere film. A case of local diphtheritic deposit near the cardiac portions of the oesophagus, upon the seat of a stricture, I have described in my Treatise, p. 83. Actual diphtheria of the stomach is rare. So is that of the intestine, which is much more liable to be affected in animals than in man. In the cow intestinal diphtheria is frequent (Bollinger). In the gall-bladder, resulting from the irritation produced by calculus, it was seen by Weisserfels. The diphtheritic form of inflammation of the human colon and rectum—dysentery—is frequent enough, but will be the subject of discussion in another place. But, besides this, in the lower portion of the small intestines and in the colon long, tough, coherent membranes are sometimes found in the male and female (not in the hysterical female only). As a rule they are not diphtheritic, but consist mostly of nothing but mucus hardened and flattened down by protracted compression. The few cases of intestinal diphtheria I have met with gave rise to the usual symptoms of enteritis, and were diagnosticated as such.
Wounds of all kinds are easily and rapidly infected by diphtheria; for instance, vaginal abrasions and erosions of the external ear, tongue, and corners of the mouth. Scarification or removal of part of the tonsils is followed in half a day or a day by a deposit of diphtheritic membrane on the wound. The wound caused by tracheotomy becomes liable to be infected with diphtheria within twenty-four hours. Leech-bites, skin denuded by vesicatories, removal of the cuticle by scratching during cutaneous eruptions, all furnish a resting-place for diphtheria in a short time. What Billroth has described under the name of muco-salivary diphtheritis, as it occurs after the extirpation of a large portion of the tongue and resection of the lower jaw, belongs to this class.
At times immediately at the beginning of an invasion of diphtheria, at other times only on the second or third day, an erythematous eruption, more or less general, appears on the skin. Now and then it appears on the chest, shoulders, and back; at other times it covers the body, and has not infrequently led to its being confounded with scarlatina. It is not always accompanied by much fever, and cannot therefore be mistaken for that form of erythema which frequently appears in children with delicate skins during high fever from any source. I cannot say that I have found this complication to give a more malignant character to the disease, but true erysipelas does. I am not prepared to prove that the two processes, erysipelas and diphtheria, are identical under some circumstances, but the complication of the two, and the ferocity with which they combine, renders a close relationship probable. I have seen an infant dying from an erysipelas added to a post-auricular diphtheria, this being due to a slight abrasion of the surface. Erysipelas originating in the tracheotomy wound, though ever so carefully disinfected and secured, is frequently observed after two or three days, and is a very ominous symptom. Erysipelatous surfaces, denuded of their epidermis by spontaneous vesication or injured by ever so slight a trauma, are very liable to be covered with diphtheritic membranes.
An eruption resembling urticaria in the beginning is as innocent as erythema, but purpura in the latter stage is a symptom of mostly ominous nature.
On the vulva and vagina of little girls diphtheria is sometimes met with; probably in every case it is due, under the epidemic influence, to a local catarrh or erosion. In but few cases, comparatively, the inguinal glands are swollen. There are not many cases of vaginal diphtheria which are followed by the pharyngeal affection. Diphtheria of the vagina in puerperal women is liable to become the cause of general sepsis, and is a dangerous disease; it is seldom complicated, but uterus, Fallopian tubes, and peritoneum may become the seat of inflammatory and septic disturbances. In the bladder it may occur when the urine is alkaline, in chronic cystitis, after lithotomy, urethotomy, the operation for vesico-vaginal fistula, and in ectopia vesicæ. This form has a marked tendency toward localization, but by extension of the phlegmon, when of putrid character, to the retro-peritoneal cellular tissue, peritonitis may ensue and terminate fatally. Sepsis from absorption is also frequent. Vesical diphtheria is sometimes quite unsuspected. A man of sixty had urinary trouble a long time; his urine was frequently very offensive, containing blood and pus. About five days before his death he suddenly collapsed. I found the bladder well filled, and introduced a catheter, but succeeded in removing but a few drops of fetid liquid. Assuming the presence of a malignant tumor at the neck of the bladder, I attempted to draw off the urine by puncturing above the symphisis pubis; again without success. At the post-mortem examination a thick membranous lining of the bladder was found detached in the form of a sac containing about a quart of urine. During life the beak of the catheter evidently passed into the space between the bladder and the membranous sac, which accounts for the unsuccessful attempts at catheterization.
Diphtheria of the placenta was observed by Schüller. The membrane was between uterus and placenta, and attached to the latter. It resulted from puerperal sepsis. Balano-posthitis is liable to result in local and general diphtheria; so are circumcision wounds. They are apt to become affected either primarily, without apparent cause, or when other members of the family are suffering from the disease.
The kidneys may become affected in various ways. Albuminuria is not always of significance, as it occurs in severe and mild cases alike, both before and after tracheotomy, and therefore is not connected always either with the height of the fever or the degree of dyspnoea; at times it disappears in a few days, in other cases it is of longer duration. It is not invariably complicated with changes in the kidney, neither do we always discover casts or degenerated epithelial cells in the urine. In other respects also it does not behave like albuminuria in scarlatina. In the latter it appears seldom before the second week of the process, and frequently later, while in diphtheria it is often seen early. It sometimes lasts but a few days, particularly in many cases which set in with a high fever, which rapidly diminishes, and terminates in speedy recovery. In these occurrences the presence of albumen appears to attend the rapid elimination of the poison.
Albuminuria seldom lasts longer than a week, and is not often complicated with oedema, but sometimes it is but a symptom of a local or general nephritis, and then hyaline, epithelial, and fibrin casts and granular cells are found in the urine. Nephritis then assumes as serious a character as it possesses in scarlatina. Cases of nephritis, fortunately rare in a very early period of diphtheria, are liable to run a rapid and often fatal course.
The heart and blood are affected in various ways by the diphtheritic process. Where the disease runs a slow course, accompanied by high fever, a granular degeneration occurs, similar to that appearing in other acute infectious disorders—typhoid, for example. In diphtheria, however, it would seem that this condition may arise even without marked elevation of temperature. The pathological changes in the heart produced by diphtheria are not always the same. Ecchymoses, cellular hypertrophy, and granular degeneration have frequently been noticed after death where the symptoms had been severe. The result, of course, is considerable weakness of its muscular tissue, evidenced by the formation of local (Beverly Robinson) thrombi, general sluggishness of the circulation, dyspnoea, muffled heart-sounds, a cool and pale skin, and sudden death, preceded by a very feeble and frequent, sometimes, however, by a very slow, pulse. Aside from this, there is actual endocarditis during the course of diphtheria or convalescence therefrom. It affects especially the valves, and among them particularly the mitral. It is characterized by high fever, precordial pain, attacks of syncope, and a systolic murmur.
The rapid decrease of red blood-cells and a moderate increase of leucocytes were demonstrated by Bouchut and Dubrisay, but the disproportion was not such as to necessitate the diagnosis of leucocythæmia. Wunderlich reports two cases of Hodgkin's disease, the pseudo-leukæmia developing during diphtheria. And the slowness of final recovery in many cases, even of but short duration and not complicated with nervous disorders, appears to point to a serious disintegration of the elements of the blood. The dark color and defective coagulation of the blood in autopsies of diphtheria cases have often been remarked.
The direct and rapid introduction into the blood of a foreign substance has amongst its earliest symptoms fever. This reaction of a nervous system depends both on the quantity and quality of the substance or poison introduced, and on the susceptibility of the patient. High temperatures are, however, not the only, nor are they the most dangerous, nervous symptoms. To the latter belong the different shades of paralysis met with during or subsequent to diphtheria.
Sudden and unexpected collapse is sometimes observed, not infrequently in the earlier part of the disease. The changes found in autopsies, such as a dark color of the blood, deficient coagulability, extravasations into and friability and granular degenerations of the tissues, accumulations of degenerated cells, and granules between the fibres, degeneration mainly of the heart-muscle, the presence of heart-clots, thrombi in remote veins,—they all show to what extent the disease can destroy life in the shortest time possible. In the heart either the pneumogastric or the ganglionic nerves may be affected, and the symptoms will vary accordingly. Paralysis of the former will accelerate the pulse, degeneration of the sympathetic will diminish its frequency, yet death may ensue in either.
The usual form of diphtheritic paralysis makes its appearance during the period of convalescence, at a time when all danger seems to have passed by. As a rule, the soft palate and the muscles of deglutition are the first to be attacked, while the condition of these organs is apparently normal (and no longer oedematous, and thereby inactive, as in the first period of the disease). While they are recovering, or before, the accommodation muscles of the eyes become paralyzed. Sometimes, however, these are the first to be affected. This paralysis does not, as a rule, follow severe cases; on the contrary, it is not uncommon to observe it after apparently mild attacks of the disease. In consequence of the former paralysis, deglutition becomes difficult; fluids are expelled through the nose or enter the larynx and bronchi, thereby giving rise to pneumonia; in the latter there is strabismus. The upper and lower extremities become paralyzed afterward. As a rule, a number of muscles are affected at the same time, and improvement will take place in about the same order in which the individual muscles became affected. After paralysis has become affected, circulation begins to suffer. The extremities now and then become bluish, cool, emaciated; rarely atrophy and fatty degeneration have been observed. The muscles of the neck also become paralyzed; the head cannot be carried, or with difficulty only. The fingers are but seldom affected. The same holds good of the bladder and intestines. The respiratory muscles are not frequently attacked. Their paralysis is very ominous, and may prove fatal in a short time from apnoea.
Not only motory but sensory paralyses may occur. Anaesthesia, amaurosis, deafness have been observed; a number of cases of locomotor ataxia are on record, and but lately Hadthagen12 publishes a case which he claims as disseminated sclerosis.
12 Arch. f. Kinderheilk., vol. v., 1883.
Sometimes the nervous affection in diphtheria is localized in a peculiar manner; it seems as if there is a predisposition on the part of a certain nerve to become diseased. The case of a boy, active and healthy, in the practice of H. Guleke, is very interesting. In the course of three years he had three attacks of diphtheria. In the very beginning of the disease he always became soporous with an almost normal temperature and a slow but regular pulse. Probably the heart's ganglia are the first to submit to the influence of the poison and exhibit symptoms of flagging function. In most of the cases of diphtheritic paralysis the prognosis is good; the large majority will run a favorable course in from six to ten weeks.
INVASION.—Is diphtheria, primarily, a local or a constitutional disease? Mercado's well-known case of diphtheria, engendered by the biting of a finger, has been alluded to. I know of one case in which the vagina became first affected, and later the pharynx. Bayles saw denuded portions of skin assume a membranous character, and general diphtheria develop afterward. Fresh wounds become diphtheritic, and the general disease arises from this source. Even paralysis will follow. I had a death from diphtheria when a long incision into a phlegmon of the thigh had become diphtheritic. A little girl, who had a considerable amount of discharge from a catarrhal vagina, and sore thighs in consequence, exhibited first, during the epidemic of 1877, membranes on the denuded cutis, and afterward general diphtheria. Brehm reports the case of a woman on whom he performed colotomy. The wound became thoroughly diphtheritic and gangrenous, but the pharynx and respiratory organs remained intact. A few days after, her daughter, who attended her in her sickness, was infected. In her the pharynx was the seat of disorder. Besides, the tonsils are very frequently coated with a membrane without any general symptoms in the beginning, fever and general illness occurring only later on. Now, all of these facts tend to show that there are cases in which the origin of the disease is purely local.
It must, however, not be forgotten that during the prevalence of an epidemic every one is more or less under its influence, and but little is wanting to call forth the disease. Some years ago a well-known physician, with whom I was intimately acquainted, died from facial erysipelas and meningitis which had originated in a slight abrasion of the upper lip. During an epidemic of typhoid we daily see persons with fever, headache, and lassitude. Diarrhoeas are frequent during an epidemic of cholera. An epidemic of diphtheria is accompanied by a great number of cases of pharyngitis. When, in the year 1860,13 I reported two hundred cases of bonâ fide diphtheria, I at the same time observed one hundred and eighty-five cases of non-membranous inflammations of the throat. Such occurrences may be considered as possible or incipient cases of pharyngeal diphtheria. Therefore, contrary to the view of a local origin of diphtheria, it may be claimed that the individual taking the disease was already saturated with the poison, and the local membrane represented perhaps nothing but a symptom, or at the utmost the causa proxima. Accordingly, then, there are undoubtedly cases in which the pharyngeal membrane is the first cause and symptom of the final affection, and others in which the poisoning of the blood through inhalation is the first step in the development of the disease, amongst the symptoms of which the pharyngeal or nasal membrane counts as one.
13 Amer. Med. Times., Aug.
In these cases the first complaints of the patients relate to their general condition. Sometimes they are ignorant of any local trouble when they consult a physician. When it is perceptible, however, it is usually found on the visible pharyngeal and respiratory mucous membranes. This would seem to indicate that the infectious elements while being inhaled are there deposited. Thus there is a possibility of simultaneous affections of both the throat and the blood in the lungs, in either equal or variable proportions. We are easily led to defend at least a partial admission of the poison by the respiratory act, when we reflect that the membranes which are swallowed are rendered innocuous by the action of the gastric fluids, and, therefore, the alimentary canal, from the oesophagus downward, cannot be made responsible for the admission of the poison into the system. Thus it is that the general symptoms—as fever, lassitude, etc.—precede the local phenomena in very many cases, while there are exceptional cases in which the membrane appears first and the fever later. This is especially the case when the tonsils are very large and occupy a prominent position in the throat.
Those cases which begin with high fever and moderate or no local symptoms must be looked upon as constitutional diseases. If a person, in the course of several hours or a day, be taken with high fever and a moderate membrane-formation, these symptoms subsiding in one or two days, leaving the patient weak and exhausted, but fully restored to health at the end of a week, we would be justified in assuming (cæteris paribus) that there was a rapid absorption of a large amount of poison, and an equally rapid elimination thereof. They are, moreover, the same cases in which the second or third day of the disease furnishes albuminuria, with rapid elimination and speedy recovery. When, however, the process is slow in developing, accompanied by moderate fever, and the course is indolent, we have reason to infer that moderate amounts of the poison are being continually taken into the system and making their influence felt to a moderate degree, but for a longer period. Such are the cases which, without any violent symptoms, are accompanied by frequent local relapses, or run, when the absorption is constant as well as copious, a septic course, or terminate in paralysis.
Thus there are cases in which a local infection of the skin or of a wound may be one of the causes, or the only cause, of the disease, and there are cases in which the poison, in passing through and caught in the pharynx, gives rise to local phenomena before the system at large gives evidence of infection. But, as a general thing, diphtheria must be looked upon as a constitutional disease, giving rise to local phenomena, in the same way as scarlatina does on the skin, on the mucous membrane of the alimentary canal, and in the uriniferous tubules; measles on the skin and respiratory mucous membrane; or typhoid in the lymph-follicles and on the mucous membrane of the intestine; or, in other words, the diphtheritic poison may enter the system locally through a defective, or sore, or wounded integument or through the lungs.
Is diphtheria contagious? Undoubtedly it is. The contagious element is liable to be directly communicated by the patient; it also clings to solid and semi-solid bodies, and in this way is transmitted even after a long time. There is hardly any disease which can cling so tenaciously to dwellings and furniture; it can be transported by the air, though probably not to a great distance, and hence in houses artificially heated, while the windows and doors are mostly closed, rises from the lower to the upper stories; and it is for this reason advisable to keep the sick on the top floor. It is certainly transmitted by spoons, glasses, handkerchiefs, and towels used by the patient. The contagious character increases directly in proportion to the neglect of proper ventilation. That it is spread by the feces is not clearly established in my mind. I can give personally no examples of its being carried by visitors or by the attending physician; this is said to have occurred, however. The character of the disease communicated, and the local manifestation, do not depend on that of the original sufferer; thus mild cases may produce severe ones, and vice versâ, and convalescents can convey the disease in its full force. Naturally, the softer character of the tissues in children renders them more susceptible to infection, and the activity of their lymphatic system more liable to severe forms of the disease.
Many tragic cases are recorded in literature of infection by direct contact from pharynx to pharynx, or from the opening in the trachea to the mouth of the surgeon; and one of the saddest cases, perhaps, is that of the much-lamented Carl Otto Weber. Myself and others have contracted diphtheria from sucking tracheotomy wounds.
In regard to the length of the incubation periods, there can be no better authenticated facts than those contained in a report of Elisha Harris to the National Board of Health, an abstract of which is found in No. 1, National Board of Health Bulletin, June 28, 1879. The report says that in the fourth school district of the township of Newark (Northern Vermont), amidst the steep hills where reside a quiet people in comfortable dwellings, the summer term of school opened on the 12th of May. Among the twenty-two little children who assembled in the school-room in the glen were two who had suffered from a mild attack of diphtheria in April, and one of them was, at the time school opened, suffering badly from what appeared to have been a relapse in the form of diphtheritic ophthalmia. Besides, it is proved that these recently sick pupils had not been well cleansed, one of them having on an unwashed garment that she had worn in all her sickness three weeks previously. At the end of the third day of school several of the children were complaining of sore throat, headache, and dizziness, and on the fourth day and evening so many were sick in the same way that the teacher and officers announced the school temporarily closed. By the end of the sixth day from school opening, sixteen of the twenty-two previously healthy children became seriously sick with symptoms of malignant diphtheria, and some were already dying. The teacher and six of the pupils were not attacked, nor have they since suffered from the disease.
A case14 is reported of a surgeon who, while attending a diphtheritic child, had some secretion thrown into his face. Twelve hours after his right eye was inflamed and painful. The affection proved diphtheritic, and recovery was completed after several weeks only. In a case seen by me, with Dr. L. Bopp, a child removed from a house infected with diphtheria was attacked after fourteen days and eight hours.
14 Würt. Med. Corresp. Bl., 1878, No. 2.
It would then appear that, in the direct communication of the disease to healthy or nearly healthy mucous membranes—as healthy as the prevailing epidemic will allow—the period of incubation is from one or two to fourteen days. In only a small number of cases the disease has an even shorter period of incubation than this, as when tonsillotomy or a similar operation is undertaken during the prevalence of an epidemic. One may rest assured that any operation on the tonsils while an epidemic of diphtheria is at its height will be followed within twenty-four hours by diphtheritic deposits on the wounded part. To what extent we are justified in considering this a bonâ-fide incubation of the disease in a previously healthy body is, of course, another question. It seems to me that these cases positively prove that the operation is only the causâ proxima of a diphtheritic affection, and that we may take it for granted that during an epidemic every individual is more or less under its influence and affected by it, so that it needs but a wound or an accidental abrasion of the surface of the mucous membrane to call the disease into action. In a similar way, fresh wounds or morbid conditions of the mouth may call forth the disease. The ruptured vesicles of a follicular stomatitis are liable to serve as resting-places for diphtheritic membranes, and thus I have seen the complication of a follicular stomatitis with oral diphtheria; and any lacerations of the vagina during labor may become diphtheritic within twenty-four hours. If now, on the one hand, incubation depends on the condition of the affected surface, it is probable, on the other hand, that the intensity of the poison at the time plays an important part in determining the period that is to elapse between infection and the invasion of the disease.
ETIOLOGY.—Diphtheria is pre-eminently a disease of early life; in this respect it is said to differ from the genuine fibrinous bronchitis, which by some is held an absolutely different disease, and stated to occur but rarely in children. But even this statement is probably incorrect. In the spring of 1879 I met with four cases of fibrinous bronchitis in children under three years of age. The number of cases of diphtheria in adult life is not very large, while in old age it is very small. Of 501 deaths in Vienna in 1868, only 1 had reached the age of sixty-two; of more than 300 cases in which I performed tracheotomy but 2 were over thirteen years old.
I do not know that sex exerts any predisposing influence over diphtheria, yet of the six hundred cases or thereabouts of laryngeal diphtheria in which I either personally performed tracheotomy or observed the progress of the disease in the practice of others, I found the majority in males, and the recoveries in inverse proportion to the number thereof, the mortality being greater among boys. As far as age is concerned, nearly all the zymotic diseases are seen most frequently in children. They exhibit a greater disposition to submit to diphtheria than adults, if we except those under ten months. Where, however, the disease has occurred previous to the seventh or eighth month, the greater number of cases has been found under three months. Tigri reports the disease in a child of fourteen days. A child of fifteen days was seen with diphtheritic laryngitis and oesophagitis by Bretonneau, one of seventeen days by Bednar, one of eight by Bouchut, one of seven days by Weikert; Parrot mentions several cases, and Sirédey15 reports eighteen cases of diphtheria in the newly-born. They occurred in the Hospital Lariboisière in the spring of 1877, and were probably infected by the nurses of a neighboring children's asylum. Membranes were found on the soft palate, tonsils, or larynx, and also on both pharynx and larynx. One case occurred where the posterior nares alone were affected. I have met with four cases of diphtheria of the pharynx and larynx in the newly-born myself. One of these became sick on the ninth day after birth, and died on the thirteenth day; the other died on the sixteenth day after birth; the third was taken when seven days old, and died on the ninth day. The predisposition to diphtheria during childhood16 seems to be explainable by several circumstances. The mucous membrane of the mouth and pharynx in the child is more succulent and softer, and frequently the seat of a congestive and inflammatory process. The nasal cavities are small and frequently affected by catarrhs, the buccal cavity often the seat of catarrh and of stomatitis, and insufficient cleanliness leads here to irritation of the mucous membrane. Any abnormal state of the mucous membrane, with the exception of an atrophic condition and cicatricial changes, affords an excellent abode for diphtheria. The tonsils are proportionally large; in fact, we rarely see the tonsils in children completely sheltered by the arches of the palate. On the other hand, the pharynx is anything but spacious, and while the protuberant condition of the tonsils affords a resting-place for the invading disease, the remaining space is so small that it becomes a source of uneasiness to the well in many instances, and very much more than that to the child during diphtheritic tumefaction. Furthermore, we must take into consideration the large number and size of the lymphatics, which can be more easily injected in the child than in the adult, according to Sappey, and the fact of greater intercommunication amongst the lymphatics and between them and the system; for S. L. Schenck has found that the network of lymphatics in the skin of the newly-born, at least, are endowed with stomata, loopholes through which the lymph-ducts can communicate with the neighborhood, and vice versâ.17 These circumstances, although they may have no influence in calling the disease into existence, yet assist in its development and in adding to the severity of the symptoms.
15 Thèse, Paris, 1877.
16 W. N. Thursfield (London Lancet, Aug. 3d, 10th, 17th, 1878) collects 10,000 cases of diphtheria in England between the years 1855 and 1877. Of these 90 per 1000 were under a year, 450 per 1000 from 1-5 years, 260 from 6-10, 90 from 11-15, 50 from 16-25, 35 from 26-45; 25 per 1000 were 45 years and over.
17 Mittheil. aus d. Embryol. Instit., i., 1877.
On the other hand, while the above reasons go to prove that diphtheria attacks children by preference, there is again an anatomical and physiological condition—to wit, the free slightly acid secretion of the mouth, beginning with the third month—that acts as a hindrance to the frequent occurrence of diphtheria after the third month. A poison or poisonous product of whatever nature can less readily find a hiding-place so long as it can be readily—we might always say must surely be—washed away. During these months of eruptive secretion from the mouth diphtheria, therefore, is not very frequent; thus teething, in the case of diphtheria, cannot be held responsible by mothers fond of diagnosticating dental diseases. In this connection the remark of Krieger ought not to be overlooked, who explains the relative scarcity of the disease in the first year of life by the fact that cumulative influences will produce a great number of cases, and cumulation requires time. Undoubtedly, however, an important etiological consideration is the fact of having had the disease previously. We can cite a host of zymotic diseases the occurrence of which once serves as a protection against future attacks. Not only can no such security be expected after one attack of diphtheria, but, cæteris paribus, the disease shows a preference for those who have survived a previous attack. The statement that only the mild cases, with but slight elevation of temperature and freedom from severe constitutional symptoms, are likely to suffer a relapse is founded on error. True, I have more frequently seen relapses after mild cases—which, fortunately, are in the majority—but the disease has also recurred where originally high fever and an extensive lymphadenitis proved it to be a severe case. Besides, second attacks of membranous croup are also recorded (Guersant, N. F. Gill, Quincke).
As there are individuals, so there are families, which have a predisposition to diseases, as there are others in whom, notwithstanding ample exposure, infection does not easily take place. Yet in the families in which diphtheria is of frequent occurrence it cannot always be attributed to enlarged tonsils and a tendency to pharyngeal or nasal catarrh.
Still, catarrh and the vulnerability of mucous membranes must be considered as a frequent source of diphtheria; children will get numerous relapses often after a nasal or pharyngeal catarrh. Sudden changes in the temperature of the atmosphere or of the surface of the body are therefore dangerous in predisposed persons. And thus it is that while severe epidemics have spared no climate or land known to us, the majority of cases have occurred in winter and spring; in other words, at a time when catarrhal disorders are of most frequent occurrence. In my experience at New York, the first quarter of the year yielded more cases than any other. Still, they are frequent enough in warm seasons. Krieger insists upon the injurious influence of hot summers and dry hot rooms. I do not doubt the correctness of his views, which cannot but be strengthened by the damaging results of our furnace-heating. But the influence of season on the invasion and course of diphtheria is but indirect and conditional, and may be, perhaps, after all, compared with that exerted by filth—a term which is lately used to express all sorts and forms of nastiness, from filthy bodies of men to their clothes, their habits, their food, and the air they breathe, whether polluted by carbonic acid, by excrementitious gases, or by exhalations of sewers.
Cases of diphtheria which are traced to exhalations from sewers (or even to filthy habits of life) are very frequent. Yet typhoid is attributed to the same causes. So is dysentery. Can, then, foul exhalations produce alike diphtheria, typhoid, and dysentery? Do these diseases arise from a common poison? Or is the poison of a treble character, so that a part may give origin to diphtheria, another part to typhoid, a third to dysentery?18 Have we to deal, in such occurrences, with specific influences, or only with a lowering of the standard of health, thereby affording other morbid influences an opportunity to exercise their power? These questions are still involved in darkness, and constitute problems the solution of which still engages the minds of both individual writers and authorities. A report of the Board of Health of Massachusetts, closely adhering to the results of exact observations,19 leaves them doubtful, and the affirmative reports of some modern writers do not bear scrutiny.20
18 In regard to the causal connection of the two latter diseases with sewer exhalations we can be more positive than in regard to the former.
19 Author's Treatise on Diphth., p. 35.
20 M. A. Avery, Med. Jour. and Obst. Rev., Feb., 1882.
Air polluted by bad drainage or leaky sewers has been considered responsible for diphtheria as well as for typhoid fever and dysentery. Not only the impairment of general health, but the direct and unmistakable disease, has been attributed to it. Thus Bayley refers, in the endemic of Bromley,21 the first cases to unventilated sewers and cesspools. School-children multiplied the disease. Thursfield attributes the diphtheria at Ellesmere22 to the accumulation of excrements under the school-room, and to deficient supply of water, which, moreover, was of bad quality. Tripe (like Railton, Bailey, Russell, Bell) accuses sewer gas;23 others polluted waters or bad drainage.24 I have not been convinced, however, that diphtheria can be considered a sewer-gas disease, in the same way as typhoid fever. The deterioration of the general health resulting from the inhalation of foul air is sufficient to explain the outbreak of the individual attack during a prevailing epidemic.
21 Sanit. Record, Aug. 10, 1877.
22 San. Rec., 158, 1877.
23 Ibid., June 14, 1878.
24 Ibid., April 18, May 2, 1879.
In regard to polluted water, I do not think that pathologists who attribute infectious diseases to bacteria only are justified in condemning it. It may not be so guilty, after all, for the admixtures, inorganic and organic, minerals, admixtures of wood and plants, also lower fungi and their products—algæ, infusoria—would render water rather disagreeable, but not exactly unhealthy. The latter effect can be accomplished—always assuming the bacteria theory correct, for the sake of argument—by bacteria only. But when they arrive in the stomach, their doom is sealed; they are decomposed. The only places where, possibly, they could take root would be diseased or ulcerated places in either the oral cavity or the upper portion of the oesophagus.
Not only water, but the milk of animals also, has been accused of being the direct cause of diphtheria. Powers concludes, though a connection between diphtheria and the consumption of milk have not been proven as yet, that it is very probable indeed. His careful investigations into the causes of some local epidemics in North London exclude any other source from which the people could have been affected. Perhaps one of the forms of garget, cow mammitis, is of an infectious character. His reasoning, however, is not accepted by A. Dowrus,25 who still believes that the milk which gave rise to diphtheria at a distance may have been soiled and infected. For though the connection between milk and scarlatina and typhoid fever had been known for years and variously studied, no observation of the kind had yet been made in regard to diphtheria. Besides, where the young, in England, drink much milk—viz. in the cities—diphtheria was very much less frequent than where little or no milk was taken—viz. in the country. Even in the country the well-to-do classes, who drink milk, had but little diphtheria, while the children of the poor, who obtained none, suffered a great deal from it.
25 "Diphtheria and Milk-Supply," Brit. Med. Journ., Feb. 1, 1879.
In regard to this transmission of diphtheria by means of milk O. Bollinger26 hesitates to express any opinion, except that the matter is very doubtful indeed. Probably the possibility of contracting diphtheria directly from animals is very much greater than the danger from water or milk. On a Pomeranian farm, during the winter 1875-76, every newly-born calf died of diphtheria. The superintendent of the farm and the woman who attended to the calves were taken with diphtheritic angina.27 Similar occurrences have been recorded. Bollinger reports a mycotic disease of the trachea and lungs in birds.
26 D. Z. f. Thiermed. u. vergleich. Pathol., vi., 1879, p. 7.
27 Damman, in D. Zeitsch. f. Thiermed., 1876, p. 1.
Friedberger's report,28 presented to the Veterinary Society of Munich, on croup and diphtheria of domestic fowls, leaves no doubt as to its frequency, particularly amongst the nobler varieties.
28 D. Zeitsch. f. Thiermed., v., 1879, p. 16.
Nicati29 studied an epidemic diphtheria amongst hens which had similar symptoms and a course very much like that in man; it could be inoculated into other animals, and was contemporaneous with the outbreak of the epidemic amongst the human population of Marseilles. Trasbot30 succeeded in inoculating a healthy hen from a diphtheritic one, but the attempts at transmission to dog, pig, and man were unsuccessful. The Med. and Surg. Journal31 contains the following: In a house at Ogdensburg, N. Y., five children were ill with diphtheria. Three kittens who had been playing with them from time to time took the disease and died. Post-mortem examination showed diphtheritic membranes in their throats.32
29 Revue d'Hygiène et de Police sanitaire, 1879, p. 3.
30 "De la transmission de la Diphth. des Animaux à l'Homme," Gaz. hebdom., 1879 Avril 25.
31 Med. Rec., Nov. 8, 1879.
32 An elaborate description of the croupo-diphtheritic inflammations of mucous membranes in hens, turkeys, pheasants, and pigeons may be found in Zürn. Krankh. d. Hausgeflügels, 1882, p. 104.
Gerhardt33 reports the following: 2600 hens were imported from Verona, Italy, into a village, Messelhausen, in Baden. Some of these hens were affected with diphtheria when they arrived. Within six weeks 600 of their number died of diphtheria, and 800 more soon after. In the following summer 1000 chickens were raised by artificial breeding, all of which died of diphtheria within six weeks. Five cats kept in the place also died of diphtheria; a parrot fell sick with it, but recovered. An Italian cook, suffering from diphtheria, in the month of November, 1881, while being subjected to local treatment with carbolic acid, bit the head-nurse's left foot and hand. Both these wounds became diphtheritic, the man falling sick with high fever, and requiring three weeks for his gradual recovery. Besides, four of the six workingmen employed in taking care of the hens of the establishment were taken with diphtheria. Not a single case, however, occurred in the neighboring village. Thus, it is safe to assume that the diphtheritic disease of hens can be transmitted to man.
33 Verhandlungen des (ii.) Congresses für Innere Medicin, Wiesbaden, 1883, p. 129.
Diphtheria may be also produced by outside influences. In this regard the attempts at generating pseudo-membranes by artificial means are very interesting indeed. As early as 1826, Bretonneau, by the introduction of tincture of cantharides and olive oil into the trachea, succeeded in producing a "dense, elastic, reed-like membranous concretion." Delafond called croup into existence by the use of ammonia, oxygen, chlorine, corrosive sublimate, arsenic, and sulphuric acid. On the other hand, H. Mayer asserts that it is impossible, by means of ammonia, to produce a croup in the windpipes of animals which in the slightest degree resembles that occurring in human beings. Trendelenburg, however, after producing membranes in the trachea by the use of a solution of corrosive sublimate (1:120), succeeded in hardening the entire mass with bichromate of potassium, which it was impossible to do with the most tenacious mucus.
Rey observed croup in horses that inhaled smoke in a burning stable.34 In the collection of the veterinary school of Zurich there is a croup membrane from a heifer which had been exposed to a fire; at Munich, one from the trachea of a horse, produced by forcibly injecting medicines into the nose. Hahn made an observation on cows, W. Ammon on horses, of long croup membranes after the animals had been exposed to smoke and fire; and Oertel constantly insists on there being "no actual difference between croup as it ordinarily occurs and that excited in the windpipe of a rabbit by means of ammonia. The color and texture, the physical, chemical, and histological characteristics, are identical."
34 Journ. de méd. vét. de Lyon, 1850, p. 249.
MORBID ANATOMY.—Either the membrane or the granular infiltration is characteristic of diphtheria. The statement that the former occurs only when atmospheric air can gain access thereto, as A. d'Espine and C. Picot still hold,35 is plainly contradicted by its appearance on the mucous membrane of the lower intestines. The condition of the membrane is not unalterable, any more than the clinical symptoms of the disease, for, according to different circumstances, epithelium, mucus, blood, and vegetable parasites are added thereto. The membrane can either be lifted from the mucous membrane on which it lies or is imbedded into and underneath it. In the first instance, it consists to a great extent of fibrin, the result either of epithelial changes or derived directly from the exuded blood-serum. E. Wagner, who makes no anatomical distinction between croup and diphtheria, considers epithelial changes the principal source. The pavement epithelium becomes altered in a peculiar manner. It becomes turbid, larger, dentated, and dissolves into a network; it is at first uninhabited, but serves later as the vehicle of newly-formed cells; there also occurs a considerable infiltration of the mucous membrane pus-cells and granules; besides, the cellular tissue is studded with granules, the granular degeneration resulting sometimes in necrotic destruction, which is looked upon by Virchow as the most important element in severe forms of diphtheria. The several conditions or degrees may occur independent of each other, associated or in succession. Classen shares Wagner's views, but, according to Boldygrew, the pseudo-membrane consists of successive coagulations of a fibrinous fluid which exudes from the diseased surface. Steudener also opposes the views of Wagner. He does not believe in the probability of an exclusively endogenous origin of the cellular elements of croup membrane; in fact, he doubts the occurrence of an endogenous formation of pus-globules in epithelium. Croupous membrane, according to him, is formed by the migration of numerous white blood-globules through the walls of the vessels in the mucous membrane, and by a direct formation of fibrin from the transuded plasma. In addition to this, the mucous membrane is stripped of its epithelium (except at the mouths of the acinous glands) and infiltrated with migrating cells. Fresh croupous membrane consists of a delicate network of homogeneous structure and shining appearance, in which numerous cells and the epithelium of the various layers of the trachea are imbedded. In old membranes the cells are destroyed by granular degeneration and general maceration. Tenacious mucus with pus-cells and detritus are then found. C. Weigert looks upon the deposits as analogous to those on serous membranes. Every inflammation yields an exudation which may coagulate when the coagulating ferment is added. This latter is probably produced by the white blood-cells when in disintegration. But he does not say why it is that there is no such coagulation in suppurative processes, where the leucocytes are more numerous. He believes himself justified in establishing pathological differences of croup, pseudo-diphtheria, and diphtheria. A croupous inflammation means destruction of epithelium, which gives rise to a fibrinous exudation upon the surface, while the cellular tissue remains intact. The only difference between it and the pseudo-diphtheritic inflammation is looked for in the larger number of emigrated white blood-cells. The superficial deposit consists, to a great part, of them and the fibrinous exudation. When there are but few leucocytes the deposit is a network of fibrillæ (croup). When there are many, the masses are more solid and voluminous (pseudo-diphtheritis). When, however, the tissue is changed into a hard substance resembling coagulated fibrin, when the exudation does not exist on the surface, but takes place into the mucous membrane, the process is diphtheria. Zahn also establishes three varieties—viz. 1st, such as result from a peculiar degeneration of pavement epithelium; 2d, such as originate in the solidification of a muco-fibrinous, and, 3d, of a fibrino-purulent, exudation. Each of these varieties may contain colonies of micrococci, but these organisms are neither essential nor are they constantly found.
35 Man. prat. des mal. de l'enfance, 1877, p. 81.
The diphtheritic process does not merely consist of the membranous changes in the pharynx and air-passages. Its fatal cases have afforded marked evidence of the implication of most of the organs. Reimer's 17 cases give the following post-mortem results: the lungs were hyperæmic in 8 cases, twice the seat of pneumonia, and three times of embolic infarctions; in addition, emphysema in 12, oedema in 6, atelectasis in 7, subpleural ecchymoses in 7, pericardial ones in 4. The heart-muscle had undergone fatty degeneration in 6, and was the seat of ecchymoses of the size of a pin's head in 3. In addition to frequent hyperæmic conditions of the abdominal viscera, emboli of the liver in 3 (with capillary hemorrhages of the peritoneal covering in 1), emboli of the spleen in 5, desquamative nephritis in 7 (in 6 of which there were colonies of micrococci in the uriniferous tubules), cellular hyperplasia of the cervical and mediastinal glands in 14 (complicated in 6 with capillary hemorrhages in the glandular tissue). The blood was frequently normal, very often watery and dark, at times leucocythæmic. Thus the disease exerts its influence everywhere.
Rindfleisch defines diphtheritic inflammation as that form of inflammation which produces a coagulating necrosis in the tissues by the immigration of schizomycetæ. The coagulating necrosis differs from the usual form of necrosis in this, that the change from life to death is accompanied with the coagulation of fluid albuminoids. This process takes place mainly in the interior of cells and other parts of tissues, and therein differs from the coagulation of fibrin. In the cells there is taking place a peculiar homogenization of protoplasm; at the same time the nuclei disappear, and are changed into irregular masses liable to cohere and form membranous conglomerates, which owe their peculiar wax color to the invasion of a solid albuminoid endowed with a strong tendency to refract the light. Coagulating necrosis is found in circumscribed localities, and gives rise, in the neighborhood, to a marked amount of inflammation and suppuration, which leads to the expulsion of the necrotic part, with more or less loss of substance—either mild or phagedenic ulceration.
Leyden describes a gray degeneration of the muscular tissue which he believes to be truly inflammatory, and Unruh has lately published an account of some cases in which myocarditis occurred. In Leyden's cases, the muscular nuclei were increased, became atrophied, and underwent fatty degeneration, giving rise thereby to extravasations, softening, dilatation and debility of the heart, with general debility, collapse, and—probably by reflex action on other branches of the pneumogastric—vomiting. Micrococci he found neither in the heart nor in the kidneys.
In the heart, particularly on the right side, numerous thrombi are frequently found in various stages of development; its muscular tissue is often in a state of fatty degeneration or the seat of parenchymatous inflammation and hemorrhages. Bridges first called attention to the occurrence of endocarditis in diphtheria.36 This complication, which, however, occurs more frequently with rheumatism, puerperal fever, diphtheria of wounds, pyæmia, and old valvular affections than in the course of an acute diphtheria, does not, as found in the latter affection, consist simply of a fatty degeneration and subsequent ulceration, but is considered a genuine diphtheritic process (Virchow), affecting the mitral valve more frequently than the tricuspid or pulmonary valves. It begins with hyperæmia and the exudation of plasma in the cellular elements, so that they appear larger and darker. The granulations which form are frail and easily destroyed, so that ulcers form on which fibrin is deposited, and whence it is conveyed as emboli into the terminal arteries (Cohnheim) of the spleen, nerves, brain, and eye. Infarctions may also occur in the valveless veins of these organs, giving rise rather to small multiple abscesses than to large purulent collections. Suppuration but rarely takes place in the heart; the granular mass found there resists the action of æther and alcohol, and spreads throughout the cardiac parenchyma, so that perforation of the septum and of the right auricle and aorta has been observed.
36 Med. Times and Gaz., ii. p. 204.
Bouchut and Labadie-Lagrave, out of 15 cases of diphtheria, met in 14 with a plastic endocarditis, which became the source of emboli. Thus, there were infarctions of the lungs, at times in their centre colorless, at other times in a state of purulent degeneration; superficial thrombi of the small veins of the heart, subcutaneous connective tissue, pia mater, brain, and liver; and in addition, moderate leucocytosis.
The lungs exhibit (post-mortem) all sorts of inflammatory and congestive conditions, with their consequences, as oedema, catarrh, broncho-pneumonia, atelectasis, emphysema, ecchymoses, and large infarctions.
The spleen (and occasionally the liver) is frequently large, congested, and friable, and studded with infarctions to a greater or less extent.
The kidneys are either simply congested or the seat of nephritis or infarctions. The same forms of inflammation which accompany scarlatina—to wit, the desquamative and the diffuse—are here observed. The diffuse form is not of so frequent occurrence as in scarlatina, but is sometimes extensive and dangerous.
The muscles occasionally exhibit ecchymoses, and are at times the seat of parenchymatous inflammation, gray degeneration, and atrophy.
The lymphatic glands are frequently inflamed and swollen, either hard or doughy, oedematous or congested. Large abscesses are rare. It is more especially the gland tissue, and less the connective tissue of the glands, which takes part in the pathological process. The periglandular tissue very soon becomes involved, however. Necrotic foci have been described by Bizzozero. When the entire surface of the mucous membrane of the mouth and of the air-passages, from the nose to the trachea, is the seat of the disease, there is an impregnation of the mucous membrane, from the epithelial surface to the submucous tissue, of the entire tongue, borders of the lips, and frequently of the lips and cheeks, as well as of the tonsils, the lower portion of the nasal cavities and the upper, and especially the anterior, portion of the larynx. The fossæ Morgagni and the posterior aspect of the soft palate are more frequently affected in the same way than the anterior aspect. Small isolated spots are found on the tonsils and occasionally on the posterior wall of the pharynx. The so-called croupous form—that is to say, the one in which the membranes deposited may either be removed in large patches or lie macerated in the profuse secretion of subjacent mucous glands—is found partly in the nasal cavities, on the posterior surface of the soft palate, and also in the trachea and its subdivisions.
The character of the mucous membrane varies with the locality. Its different elements, as the epithelium, the basement membrane, the connective tissue mingled with elastic fibres, the blood-vessels, the nerves from the cerebro-spinal and sympathetic systems, and the papillæ and ducts of numberless glands, all influence the pathological process going on upon the surface. Their distribution in the oral cavity and the respiratory organs is a very interesting study, and in a table already published,37 I have exhibited it in a condensed tabular form.
37 Treatise on Diphtheria, p. 126.
Where elastic tissue predominates, diphtheritic impregnation is slow to take place, and recovery is also slow when the tissue has finally submitted. Pavement epithelium yields the easiest foothold to diphtheritic membrane. Thus it is that the tonsils, not from their prominent situation alone, favor the reception and development of the infection. But the elastic and connective fibres when once affected are apt to harbor the disease a long time. Still, there is another reason why the diphtheritic process should favor the tonsils. For Th. Höhr has demonstrated that their epithelium exhibits interruptions in its continuity. Through them round cells may emigrate. Wherever the epithelial covering of the integuments (skin or mucous membrane) is intact and unbroken, diphtheria takes hold with difficulty. But where a defect is established, large or small, diphtheritic formations will be apt to take place according to the size of the abrasion. This is one of the modes of the formation of small diphtheritic deposits on the tonsils, which it has been the tendency of many, both practitioners and authors, to honor with special names.
Ciliated epithelium is not so liable to be affected. It occupies a higher rank in the scale of animal formations, has a more complex function and a greater power of resistance. The presence of a large number of mucous glands impedes, as a rule, by the presence of the normal secretion, an extensive destructive action upon the tissues. The secreted mucus assists in removing epithelial masses, and even fibrinous exudations, from the surface. Thus it is that the deposits in the respiratory portion of the nasal cavities are frequently cast off through the nostrils, and in a similar manner the membranes that have formed in the trachea are ejected in a semi-solid condition through the opening made by tracheotomy. The large number of mucous glands in the larynx and trachea is unquestionably the reason why the lymphatic vessels of the mucous membrane are not influenced by the overlying loosened masses, and will not absorb; hence laryngeal and tracheal diphtheria, when not complicated, have decidedly a local character, and are usually devoid of constitutional symptoms. For the same reason the usual form of tonsillar diphtheria is a mild disease. On the other hand, the large number and size of the lymphatic ducts of the Schneiderian mucous membrane, as well as their direct communication with the lymphatic glands of the neck, accounts for the dangerous character of nasal diphtheria.
Diphtheria of the intestinal canal is characterized by fibrinous deposits on the surface and in the tissues of the intestine, with subsequent granular degeneration. It is mostly preceded by a catarrhal process. The same condition is found in the urinary organs.
There are but few autopsies of cases which have died of, or during, diphtheritic paralysis. In some instances there was considerable thickening of the spinal nerves at the junction of the posterior and anterior roots, with hemorrhages. The superficial connective tissue in these places exhibited a diphtheritic exudation (Buhl). There was in the sheath of the nerves of the cerebral and spinal meninges and in the gray substance of the cord voluminous nuclear infiltration; in one case there were extensive hemorrhages in the spinal meninges, with nuclear proliferation in the gray substance of the cord (Oertel). Disseminated meningitis with perineuritis of the neighboring roots, characterized by infiltration of nuclei between the nerve-fibrillæ was found by Pierret; and degeneration of the palatine nerves and fatty degeneration of the palatine muscles by Charcot and Vulpian. Dejerine, in five autopsies, records an atrophy of the anterior roots secondary to a myelitic degeneration of the ganglia of the anterior horns. E. Gaucher found the same in the case of a boy who died with paralysis of the muscles of deglutition, of the extremities, and of the trunk. In a child of two years with paralysis of the palate and extremities the autopsy was negative. In two cases Dejerine reports finding changes in the intramuscular nerves, such as liquefaction of myelin and loss of axis cylinders.
Thus, Buhl, Charcot, Vulpian, and Dejerine are unanimous about an affection of the peripheric nerves and muscles. Oertel, Dejerine, and Gaucher believe in a disease of the spinal cord. It is true that a disease of the gray substance would fully explain the symptoms of the bad cases, but what we know of poliomyelitis anterior, with which this affection would be identical, precludes the idea of the rapid and almost certain complete recovery. Therefore, in most cases, diphtheritic paralysis consists of a trophic affection of the motor system, almost always seated peripherally in the nerves and muscles, seldom, if ever, in the centres. This affection must be compared, in most of its relations, with the degenerative processes taking place in the muscular tissue after typhoid fever, or in the renal epithelium after infectious diseases, both of which give rise to serious results, with usually a favorable termination.
DIAGNOSIS.—The characteristic sign of diphtheria is either the membrane or the gray infiltration, with more or less injection of the surrounding parts. In regard to this greater or less injection, I will say that pharyngeal congestion, when it is uniform, may or may not point to imminent diphtheria. When it is local, confined to one side mainly, it is either traumatic or diphtheritic. White spots which are easily washed away, or which can be removed with a brush, or squeezed out of the follicles of the tonsils, into which a probe can be introduced sometimes to the depth of one-half inch, soon announce their true character—viz. either a simple catarrhal secretion or suppuration. Even though the superficial deposit contain oidium or leptothrix in considerable numbers, it can easily be removed; I have only known the totally inexperienced to mistake muguet (thrush) for diphtheria. In the larynx muguet is, moreover, very rare indeed, and always circumscribed. It is sometimes seen on the true vocal cords. The gray discoloration of superficial follicular ulcerations, as observed in the ordinary form of stomatitis follicularis, can hardly fail to be recognized. Such patches are very numerous in the fauces and on the lips and cheeks—never on the gums, except in ulcerous stomatitis (which is not follicular). They are accompanied, too, by vesicles containing more or less serum which have not yet ruptured. It must be remembered, however, that the mucous membrane, when deprived of its superficial covering, is liable during an epidemic of diphtheria to become infected, like every other wound. I have seen cases in which stomatitis and diphtheria existed side by side, the latter having invaded the surfaces exposed by the former. The examination of the entire throat is not always easy. Very young children vomit frequently and persistently before the whole surface is exposed to view, and not infrequently repeated examination with the spatula is absolutely necessary. In general, however, the slight attempts at vomiting suffice to cause a great part of the swollen posterior portion of the tonsils to become visible. I have heard that the pale surface of old hyperplastic tonsils has been mistaken for diphtheria; I merely mention the fact. When a discoloration happens to be the result of a deposited flake of mucus, a drink of water will remove it.
Fever is not always a prominent symptom; as a rule, simple diphtheria of the tonsils is accompanied by very little fever. Still, there are plenty of exceptions. But the differences of temperature are not more striking than in most other infectious diseases, whose either mild or severe invasion may offer an obstacle to immediate diagnosis. As the height of the fever does not absolutely determine, or even indicate, the character of the subsequent course of the disease, but little importance is to be attached to the temperature unless there be a very marked elevation. A sudden rise frequently occurs with lymphadenitis. High fever in the beginning may render the diagnosis difficult or may postpone it.
The absence of glandular swelling does not exclude the diagnosis of diphtheria, for when the tonsils are affected by the disease there is usually little or no swelling of the neighboring glands. Swelling of the glands enables us to locate the affection in a mucous membrane richly endowed with lymphatic vessels. It is very marked when the nose is affected. A few hours' duration of nasal diphtheria suffices for the development of a severe lymphadenitis, especially at the angles of the jaw. When the latter condition is found to exist, the throat should be examined with the idea of finding a membrane extending upward; nasal diphtheria is very liable to complicate an affection of the uvula and arches of the palate. The membrane cannot well be seen by looking through the nostrils; highly serviceable for this purpose is a very short, broad rhinoscope reaching upward to the bony structure of the nose. However, nasal diphtheria may frequently be diagnosticated some days before the membrane becomes visible, by the rapid development of lymphadenitis; this may be done even where the sweetish, musty odor of certain forms of diphtheria is absent. Still, nasal diphtheria may occur without much lymphadenitis; as, for instance, when the blood-vessels are very numerous and superficial, and thereby give rise to slight hemorrhages at the very beginning of the sickness. In such cases the lymphatic vessels are little, if at all, required to transmit the poison, the open blood-vessels replacing them in the function of absorbing. Naturally, there are cases in which an ocular examination cannot be satisfactorily made. In the journals we read of brilliant results of rhinoscopic and laryngoscopic examination; in practice we see but few. This holds good especially for the cases of dyspnoea accompanying laryngeal diphtheria, where the diagnosis may be doubtful when no membrane can be detected in the fauces; even if membrane be observed there, symptoms of suffocation may still arise from a laryngeal stenosis independent of membranous deposits in the larynx. If aphonia and difficulty of both inspiration and expiration be present at the same time, there is certainly membranous occlusion. If aphonia appear late, or even toward the very last, and only inspiration be impeded while expiration is comparatively free, there is an oedematous saturation of the ary-epiglottidean folds and of their copious submucous tissue, and consequently of the posterior attachment of the vocal cords. Although a general oedema glottidis in connection with diphtheria is of exceedingly rare occurrence, the above condition is not at all uncommon, and has forced me to tracheotomize many times; but, again, a comprehension of the true condition, where it occurred in not very severe cases, has on several occasions enabled me to avoid an operation. This local oedema may sometimes be detected by palpation in the region of the swollen posterior wall of the pharynx.
One of the diagnostic symptoms of membranous laryngitis, believed in and referred to by Krönlein, does not exist—viz. the swelling of the lymphatic glands, which in his opinion is pathognomonic. Not only is that not the case, but the absence or scarcity of lymphatics on the vocal cords and in their neighborhood renders the absence of glandular swellings a necessity, provided the latter do not depend on complicating diphtheria in other localities. In uncomplicated diphtheritic laryngitis I expect no lymphadenitis. The character of the laryngeal pseudo-membrane does not depend at all on the condition of the pharynx. The latter may have membranes of any description or consistency without permitting the diagnosis of the condition of the larynx. I lay stress on this fact because no less a writer than Krönlein believes that where there is but little or no membrane in the pharynx, that in the larynx is rather loose and movable.
One of the diagnostic symptoms of diphtheritic laryngitis, or membranous croup, is the relative absence of fever. Catarrhal laryngitis, or pseudo-croup, is a feverish disease. A sudden attack of croup with high temperature, provided there is no pharyngeal or other diphtheria present, yields a good prognosis; without much fever, a very doubtful one.
The diagnosis of diphtheritic paralysis offers very little difficulty in most cases. Its occurrence after an attack of diphtheria, its beginning in the fauces or in the muscles controlled by the ciliary nerves, the immunity of the sphincters, the gradual development, the irregularity of its progress, are good diagnostic points. Examination by the interrupted or continuous current is not conclusive. Very frequently in the beginning the response to the interrupted current is normal, sometimes deficient; to the continuous current, exaggerated. After some time the power of both to excite contraction is diminished. When we reflect on the numerous causes which may underlie diphtheritic paralysis, and that we have not to deal with one and the same anatomical change in all cases, it becomes apparent that no reliable conclusions can be based upon electrical examination.
PROGNOSIS.—In general, the prognosis in diphtheria is favorable when the affected surface is of small extent and where such parts are the seat of disease as have little communication with the lymphatic system. To the latter class belongs simple diphtheria of the tonsils. Marked glandular swelling, particularly if arising suddenly, is always an unfavorable sign, and calls for the utmost caution in prognosis, especially if the region of the angles of the jaw be speedily and markedly infiltrated. This, as we have seen, is particularly apt to occur with nasal diphtheria, whether developed primarily, (and then accompanied by a thin fetid discharge), or, as is more commonly the case, secondarily from an affection of the pharynx and palate which ascends into the posterior nares. With the appropriate local disinfection this form of the disease is neither so alarmingly dangerous as Oertel depicts it, nor so assuredly fatal as Roger but a few years ago taught in his clinique, or as Kohts appears to believe,38 yet it is ever grave. With energetic treatment many cases will, however, get well. Diphtheria of wounds, complicating diphtheria of the pharynx, is always an unfavorable sign; that of the mouth and angles of the mouth, associating itself with a previously existing diphtheria, having an indolent course, and producing more frequently a deep impregnation of the tissues than a thick deposit, causes a painful and serious condition. Diphtheria of the larynx, whether it be of primary origin or the result of extension from the fauces, is nearly always fatal. In severe epidemics the mortality is 95 per cent. Tracheotomy, too, saves but few of those who take the disease at such a time. In fifty consecutive tracheotomies from 1872 to 1874 I did not see one recovery. In the last few years I have seen few good results. In average epidemics tracheotomy will save 20 per cent. A pulse of 140 to 160, and high fever immediately after the operation, render the prognosis bad; so does absence of complete relief after the operation. An almost normal temperature the day after the operation is an agreeable symptom, but does not exclude a downward extension of the diphtheritic process, and hence cannot be looked upon as assuring a favorable prognosis. A marked elevation of temperature is apt to indicate a renewed attack of diphtheria or a rapidly-appearing pneumonia, and is an unfavorable symptom. A dry character of the respiratory murmur some time after tracheotomy indicates the approach of death within from twelve to twenty-four hours from descent of the membrane; so does cyanosis, whatever be its degree of intensity. Diphtheria of the trachea, which ascends to the larynx, is positively fatal. It has a rapid course, and tracheotomy only postpones the end for a little while, if at all. The general health and strength of the little sufferer have no influence whatever.
38 Gerhardt, Handb. d. Kinderkr., iii., 2, p. 20, 1878.
Thick, solid deposits need not of themselves render the prognosis so unfavorable as do septic and gangrenous forms. Even in the nose they are not of as serious import as the thin, putrid discharge. I have seen recovery ensue in cases where I was obliged to bore through the occluded nasal cavities with probes and scoops. Fetid, putrid discharges are unfavorable, but in no wise fatal; conscientious disinfection accomplishes a great deal. Slight epistaxis indicates the possibility of rapid absorption through the blood-vessels; but here, too, the final result depends on whether the disinfection be equally rapid and thorough. The same holds true for the sweetish, fetid odor of the breath, whether of the nose or mouth, which, on the one hand, demonstrates the significance of the disease, while, on the other hand, it indicates the possibility of infection by inhalation.
The height of the fever is not in proportion to the danger in any individual case; some have a favorable, some an unfavorable termination, without fever of any account. Simple catarrh of the pharynx and larynx frequently begins with a sudden and marked rise of temperature; diphtheria in the same parts but rarely. There are cases, however, in which the height of the fever and the deposited membranes are in inverse proportion to each other. In these cases the fever may subside rapidly, owing to a speedy elimination of the poison. Young children only are in danger of death from convulsions or a rapid tissue-degeneration due to hyperpyrexia. If the temperature rise suddenly after some days of sickness, either a complication or a fatal termination is to be apprehended. Yet, there are as many deaths in cases with comparatively low as with very high temperatures. Whether collapse has resulted rapidly or slowly, the patient dies often with low temperature. Thus, a rapid elevation is hardly a more unfavorable sign than a rapid fall. The pulse, too, may be very variable. True, a small, rapid, and irregular pulse is always unfavorable, because it indicates a weakening of the cardiac function; yet as long as it retains an approximately normal relation to the frequency of respiration a rapid pulse gives no cause for alarm. Moreover, the pulse is not always rapid when the strength gives way. It occasionally becomes slower, and sometimes very slow, and may then become a dangerous symptom.
Every complication adds to the danger. Bronchitis and pneumonia are not infrequent, yet I have seen cases of laryngeal diphtheria recover in which I had suspected pneumonia before performing tracheotomy, and was enabled to diagnosticate it after operating. Albuminuria in the early part of a diphtheritic attack with high fever is of little significance; nephritis, later in the course of the disease, partakes of the character of scarlatinous nephritis; cases of acute diffuse renal disease are fortunately infrequent, and the remainder are very submissive to treatment. The cases of diphtheria complicated with endocarditis in my practice have ended fatally. An early affection of the sensorium, not dependent on pressure upon the jugulars by greatly swollen glands, is an unfavorable symptom. Purpura, with profuse hemorrhages and a livid hue of the skin, is ominous; icteric discoloration, together with marked glandular and periglandular tumefaction, is absolutely fatal.
Most cases of diphtheria of the pharynx and of the tonsils have a favorable termination, yet a positive prognosis can in no case be given with certainty. Still, even in malignant epidemics the mortality is not very great, for even though there be a large number of severe cases in any one epidemic, yet it is greatly overbalanced by the number of moderately severe and mild ones. True, not a few cases end fatally in several days, owing to the high fever, or to septic absorption, or nephritis, or croup, but the majority of cases end in recovery in one or two weeks. Yet diphtheria does not always take so regular a course; not infrequently, after the pulse has become stronger, the appetite improved, and the pharynx cleared, and the patient is apparently on the high road to recovery, another attack occurs accompanied by fever, as before, and a rapid formation of membrane. Occasionally two or three such relapses may occur in the course of three, four, or five weeks; not to speak of the fact that those who have once suffered from diphtheria are more susceptible to the action of the poison than those who never suffered before.
TREATMENT.—Every case should be treated on general principles; thus, it is not possible to lay down a routine treatment for every individual case. High fever should be reduced by sponging and bathing, quinia, and sodium salicylate; collapse speedily treated, and severe reflex symptoms, as vomiting, etc., checked at once. Whether to employ for this purpose ether, wine, cognac, champagne, or coffee must be decided by the physician in individual cases. The administration of the remedy, whether by mouth, by injection into the bowels, or subcutaneously, as I have employed cognac, ether, alcohol, and camphor dissolved in ether or alcohol, in some cases with decided and rapid success, must depend on the condition of the organs and on the urgency of the case. However, all the above remedies are frequently of no service, because administered too late and in too small doses. If I have ever had cause to feel contented with the results of treatment in diphtheria, it is owing to the fact that I lost no time. No medicines, however, must be resorted to which are apt to derange the digestion of the patient; alcoholic stimulants must be given in fair dilution only, for that reason. The nourishment of the patient is a matter of very great importance. On general principles it is true that care must be taken in regard to food administered to febrile patients, but we must bear in mind that, when the lymphatic vessels are kept empty and no new and proper material is introduced into them, the absorption of locally-existing poisonous substances is proportionately increased. Hungry lymph-vessels are the organism's fiercest enemies.
I dwell particularly on the foregoing remarks for the reason that in diphtheria, unlike certain diseases having a typical course and those of a simple inflammatory character, expectant treatment should not be indulged in. Oertel's advice, that when neither high fever nor complications are present we should quietly wait, and "act only when new and most alarming symptoms present themselves," is decidedly perilous. A mild invasion does not assure a mild course. Never has a "possibly superfluous" tonic or stimulant done harm in diphtheria, but many a case has a sad termination because of a sudden change in the character of the disease, putting the bright hopes of the physician to shame. Only the philosopher may be a passive spectator; the physician must be a guardian. When I again read, in the work of the same meritorious author, "that when in exceptional cases, in children and young people, death is imminent, not from suffocating symptoms in the larynx and trachea, but from septic disease and blood-poisoning, it is necessary to resort to powerful stimulants," it strikes me that he is frequently too dilatory with his remedies, and, furthermore, that his experience concerning the terrible septic form of diphtheria which is so frequently met with in some epidemics must have been very limited at the time he was writing. In New York, during the past twenty-five years, for every death from diphtheritic laryngeal stenosis (membranous croup) there have been three from diphtheritic sepsis or from exhaustion.39
39 We have to improve somewhat on the plan of Thomas Wilson, though his general instructions be good (as laid down in his Tentamen medicum inaugurale de cynanche maliqna, Edinb., 1790, p. 24): "Cum hactenus nullum inventum est remedium quod contagionem in corpus receptam suffocare possit; cum medicamenta pleraque quæ putredinem corrigere dicuntur, corpus ejusque functiones manifesto roborant; et denique cum hunc morbum comitantur virium prostratio, et, etiam ab initio, summa functionum debilitas, qualis evacuantia omnigena prohibet, indicationem curandi unicam, scil. debilitatis effectibus obviam ire, proponam. Hinc corporis conditioni obviam itur præcipue tonica et stimulantia administrando." (As no remedy has yet been found which can extinguish the contagion after it has been received into the body; as most medicines which have the reputation of correcting putrefaction are roborants for the body and its functions; and, lastly, as this disease is attended with great prostration and such debility of functions as to preclude the use of all sorts of evacuants,—I propose but this one indication for treatment—viz. to meet the effects of debility. This is fulfilled by the administration mainly of tonics and stimulants.)
In regard to the dose of stimulants, it is a fact that there is more danger in diphtheria from giving too little than too much. When the pulse barely begins to be small and frequent they must be administered at once. A three-year-old child can comfortably take thirty to one hundred and fifty grammes (fl. oz. j-v) of cognac, or one to five grammes of carbonate of ammonium, or a gramme of musk or camphor (gr. xv) and more, in twenty-four hours. In the septic form especially the intoxicating action of alcohol is out of the question; the pulse becomes stronger and slower, and the patient enjoys rest. In those cases in which the pulse is slow, together with a weak heart's action, the dose can hardly be too large. The fear of a bold administration of stimulants will vanish, as does that of the use of large doses of opium in peritonitis, of quinia in pneumonia, or of iodide of potassium in meningitis or syphilis. I know that cases of young children with general sepsis commenced immediately to improve when their one hundred grammes (fl. oz. iij) of brandy were increased to four times that amount in a day.
The remarks I have made in reference to the general treatment of diphtheria naturally render superfluous a discussion of the value of abstraction of blood. To be sure, it could only be a question of local bleeding. For nobody would dare to resort to jugular venesection, as our predecessors did in the last century. It may be safely asserted of the latter that it has no influence on the process, but frequently increases the local swelling and makes the patient more anæmic. There is no case in which a resort to it would not be criminal. I can distinctly recall the time when bleeding and calomel formed the groundwork of the treatment. Until the year 1862 the death-rate in Rupert, Vermont, from diphtheria was 90 per cent., according to the reports of the local physicians, and particularly of my pupil, Dr. Guild, who at that time finished his studies in New York and commenced practising. When, in the same epidemic, bleeding and calomel were replaced by stimulants and iron, with the chlorate of potassium, 90 per cent. recovered.
That attention must be paid to the general condition mainly during a retarded convalescence from previous sickness is self-evident. Any complications, too, must be subjected to early treatment. Diarrhoea must be mentioned among these; it reduces the patient's strength very quickly; likewise, the early appearing nephritis, which may suddenly end life.
In this connection I must allude to the great danger of self-infection, which may occur in every variety of cases, severe or mild. The poison is diffused by expiration and expectoration. Though care may have been taken to disinfect the linen, towels, handkerchiefs, the bedstead and bedding, chairs and wall-papers, and carpets and curtains, even the clothing of the attendants will be infected. While the patient is getting well he will be infected again, and have a more serious relapse; and a third one, and succumb. I have met with such cases often, and with some which went from one attack into another, and would certainly have perished but for their removal to a distant part of the town. Where there are vacant rooms the indication is to change rooms every few days and to thoroughly disinfect (with sulphurous acid) that which has been used and infected.
One important axiom must be borne in mind—namely, that prevention is easier than cure. I do not refer simply to the removal of the healthy members of the family beyond the danger of infection or to the isolation of the patient. If the latter becomes necessary, the first indication is his removal to the top floor of the house. There are, in addition, however, certain prophylactic measures which will prove valuable in the hands of every good physician. It is necessary under all circumstances that the mouth and pharynx of every child be constantly kept in a healthy condition. Eruptions of the scalp must be treated at once, and glandular swellings of the neck caused to disappear. Some cases of laryngeal diphtheria have been traced directly to the presence of suppurating bronchial glands, with or without perforation.40 The same rule applies to nasal and pharyngeal catarrhs, the treatment of which should be commenced in warm seasons, when general or local remedies yield better results. Enlarged tonsils should be resected, or, where that can not be done, scraped out with Simon's spoon, at a time when no diphtheritic epidemic is raging. It is important that this take place at a time when, even though sporadic cases of diphtheria occur, the danger of infection is not great; for during the height of an epidemic every wound will give rise to general or local infection. This holds good for any part of the body as well as of the mouth. I avoid, therefore, an operation at such a time, provided it can be postponed.
40 Weigert, in Virch. Arch., vol. lxxvii., p. 294, 1879.
Prevention, after all, is not the business of the physician only, but just as much that of the individual or the complex of individuals—viz. the town, the state, and the nation. Those sick with diphtheria must be isolated, though the case appear ever so mild, and, if possible, the other children must be sent out of the house altogether. If that be impossible, let them remain outside the house, in the open air, as long as feasible, with open bedroom windows during the night, in the most distant part of the house, and let their throats, and those of their nurses, be examined every day. The watching eye of a father or mother will discover deviations from the norm, so that the physician can be notified. Let the temperatures of the well children be taken once a day, toward evening. Ten minutes of a mother's time are well paid by the discovery of a slight anomaly which may require the attention of the physician. Happily, there are now many mothers who keep and value a self-registering thermometer as an important addition to their household articles. The attendant upon a case of diphtheria must not get in contact with the rest of the family, particularly the children, after his visiting and handling the patient, for the poison may be carried, though the carrier remain well or apparently well. Unnecessary petting of the patient on the part of the well ought to be avoided, and kissing must be forbidden; the bed-clothing and linen should be changed often and disinfected, the air of the sick-chamber should be cool and often changed, and if possible the chamber itself should be changed every few days.
The well or apparently well children of a family that has diphtheria at home must not go to school nor to church. The former necessity is beginning to be recognized by the authorities and teachers, and also, in consequence of partially enforced habit, by parents; the latter will be resisted longer. Schools ought to be closed entirely when a number of cases have occurred. Even when the school-children have not been affected to a great extent, but an epidemic of diphtheria has commenced in earnest, it will be better to close the schools for a time. If that be not advisable, the teacher ought to be taught to examine throats, and directed to examine every child's throat each morning, and to send home every one with even suspicious appearances.
In times of an epidemic every public place, theatre, ball-room, dining-hall, or tavern ought to be subjected to supervision. Where there is a large conflux of people there are certainly many who carry the disease with them. Disinfection must be enforced by the authorities at regular intervals. Public vehicles must be treated in the same manner. That it should be so when a case of small-pox has happened to be carried in them appears quite natural. Hardly a livery-stable keeper would be found who would not be anxious to destroy the possibility of infection in any of his coaches. He must learn that diphtheria is, or may be, as dangerous a passenger as variola. And what is valid in the case of a poor hack is more so in that of railroad-cars, whether emigrant or Pullman. They ought to be thoroughly disinfected in times of an epidemic, at regular intervals, for the highroads of travel have always been those of epidemic diseases, and railroad officers and their families have often been the first victims of the imported scourge. Can that be accomplished? Will not railroad companies resist a plan of regular disinfection because of its expensiveness? Will there not be an outcry against this as despotic and as a violation of the rights of the citizen? Certainly there will be. But so there was also when municipal authorities began to compel parents to keep their children at home when they had contagious diseases in the family, and when a small-pox patient was arrested because of endangering the passengers in a public vehicle. In such cases it is not society that tyrannizes the individual; it is the individual that endangers society. And society begins at last, even in America, to believe in the rights of the commonwealth, and not in the rights of the democratic person only. The establishment of State and National Boards of Health proves that the narrow-hearted theories of the strict constructionists have not only disappeared from our politics, but also from the conscience and intellect of society.
The sick room must be kept cool, the windows kept open—more or less—by night as well as by day, the floor frequently washed, the linen soaked at once, the excrements removed. Dead bodies ought to be kept moist, for infectious material, chemical or otherwise, will spread more easily when dry. Attendants must not talk unnecessarily over the mouth or diphtheritic wounds of the patient, and will do well to carry a little dry loose cotton—to be changed often—in each of the nostrils, for it aids in protecting those who are necessarily exposed to infection.41
41 Wernich, in F. Cohn's Beitr., iii., 1859, p. 115.
A very important mode of prevention consists in disinfection. The experiments of Schotte and Gaertner, and of Sternberg, prove the inefficiency of small doses of most of the disinfectants in common use. The popular idea, sometimes even shared by physicians, that the faint odor of chloride of lime or of carbolic acid in a sick room or in a foul privy is evidence that the place is disinfected, is entirely erroneous. Particularly in regard to the latter agent, it may be stated at once that its employment for disinfecting purposes on a large scale is impracticable, both on account of the expensiveness of the pure acid and the enormous quantities required to produce the desired effect. For in regard to its efficiency it does not rank very high in comparison with a great many other articles, as may be seen from a table of the disinfectant properties of different chemicals published by Miquel in the Semaine Médicale.
For practical purposes I know of no better or simpler rules for disinfection than those published by the National Board of Health. In its Bulletin No. 10, of September 6, 1879, the following instructions for disinfection were published: Deodorizers, or substances which destroy smells, are not necessarily disinfectants, and disinfectants do not necessarily have an odor.
"Disinfection cannot compensate for want of cleanliness nor of ventilation.
"I. Disinfectants to be employed:
"1. Roll-sulphur (brimstone) for fumigation.
"2. Sulphate of iron (copperas) dissolved in water in the proportion of one and a half pounds to the gallon; for soil, sewers, etc.
"3. Sulphate of zinc and common salt, dissolved together in water in the proportion of four ounces sulphate and two ounces salt to the gallon; for clothing, bed-linen, etc."
Carbolic acid is not included in the above list, for the following reasons: It is very difficult to determine the quality of the commercial article, and the purchaser can never be certain of securing it of proper strength; it is expensive when of good quality, and experience has shown that it must be employed in comparatively large quantities to be of any use; it is liable by its strong odor to give a false sense of security.
"II. How to use disinfectants:
"1. In the sick-room.—The most available agents are fresh air and cleanliness. The clothing, towels, bed-linen, etc. should, on removal from the patient and before they are taken from the room, be placed in a pail or tub of the zinc solution, boiling hot if possible.
"All discharges should either be received in vessels containing copperas solution, or, when this is impracticable, should be immediately covered with copperas solution. All vessels used about the patient should be cleansed with the same solution.
"Unnecessary furniture—especially that which is stuffed—carpets and hangings, should, when possible, be removed from the room at the outset; otherwise they should remain for subsequent fumigation and treatment.
"2. Fumigation with sulphur is the only practical method for disinfecting the house. For this purpose the rooms to be disinfected must be vacated. Heavy clothing, blankets, bedding, and other articles which cannot be treated with zinc solution should be opened and exposed during fumigation, as directed below. Close the rooms as tightly as possible, place the sulphur in iron pans supported upon bricks placed in wash-tubs containing a little water, set it on fire by hot coals or with the aid of a spoonful of alcohol, and allow the room to remain closed for twenty-four hours. For a room about ten feet square at least two pounds of sulphur should be used; for larger rooms proportionately increased quantities.
"3. Premises.—Cellars, yards, stables, gutters, privies, cesspools, water-closets, drains, sewers, etc. should be frequently and liberally treated with copperas solution. The copperas solution is easily prepared by hanging a basket containing about sixty pounds of copperas in a barrel of water.
"4. Body- and bed-clothing, etc.—It is best to burn all articles which have been in contact with persons sick with contagious or infectious diseases. Articles too valuable to be destroyed should be treated as follows:
"A. Cotton, linen, flannel, blankets, etc. should be treated with the boiling-hot zinc solution; introduce piece by piece; secure thorough wetting, and boil for at least half an hour.
"B. Heavy woollen clothing, silks, furs, stuffed bed-covers, beds, and other articles which cannot be treated with the zinc solution, should be hung in the room during fumigation, their surfaces thoroughly exposed and pockets turned inside out. Afterward, they should be hung in the open air, beaten, and shaken. Pillows, beds, stuffed mattresses, upholstered furniture, etc. should be cut open, the contents spread out, and thoroughly fumigated. Carpets are best fumigated on the floor, but should afterward be removed to the open air and thoroughly beaten.
"5. Corpses should be thoroughly washed with a zinc solution of double strength; should then be wrapped in a sheet wet with the zinc solution, and buried at once. Metallic, metal-lined, or air-tight coffins should be used when possible; certainly when the body is to be transported for any considerable distance.
"It might have been added here that no public funeral must be permitted."
In this connection I have to speak of a remedy which I class among the prophylactic agents—namely, the chlorate of potassium or the chlorate of sodium. I cannot say that I rely on either of these remedies as curative agents in diphtheria, and yet I employ them in almost every case. The reason lies in the fact that the chlorate is useful in most cases of stomatitis, and thereby acts as a preventive.
There are very few cases of diphtheria which do not exhibit larger surfaces of either pharyngitis or stomatitis than of diphtheritic membrane. There are also a number of cases of stomatitis and pharyngitis, during every epidemic of diphtheria, which must be referred to the epidemic, sometimes as kindred diseases, and sometimes as introductory stages only, which, however, do not, or do not in the beginning, show the characteristic symptoms of the disease.
When, in 1860,42 I wrote my first paper on diphtheria, I based it upon two hundred genuine cases, and at the same time enumerated one hundred and eighty-five cases of pharyngitis, which I considered to be brought on by epidemic influences, but which, the membrane being absent, could not be classified as bonâ fide cases of diphtheria.
42 Amer. Med. Times, Aug. 11th and 18th.
Such cases of pharyngitis and stomatitis, no matter whether influenced by an epidemic or not, furnish the indication for the use of chlorate of potassium. They will usually get well with this treatment alone. The cases of genuine diphtheria, complicated with a great deal of stomatitis and pharyngitis, also indicate the use of chlorate of potassium; not, however, as a remedy for the diphtheria, but as a remedy for the accompanying catarrhal condition in the neighborhood of the diphtheritic exudation. For it is a fact that, as long as the parts in the neighborhood of the diphtheritic exudation are in a healthy condition, there is but little danger of the disease spreading over the surface. Whenever the neighboring surface is affected with catarrh or inflammation, or injured so that the epithelium gets loose or thrown off, the diphtheritic exudation will spread within a very short time. Thus chlorate of potassium or sodium, the latter of which is more soluble and more easily digested than the former, will act as a preventive rather than as a curative remedy. Therefore it is that common cases of pharyngeal diphtheria will recover under this treatment alone; and these are the cases which have given its reputation to chlorate of potassium as a remedy for diphtheria.
The dose of chlorate of potassium for a child two or three years old should not be larger than half a drachm (2 grammes) in twenty-four hours. A baby of one year or less should not take more than one scruple (1.25 grammes) a day. The dose for an adult should not be more than a drachm and a half, or at most two drachms (6 or 8 grammes), in the course of twenty-four hours.
The effect of the chlorate of potassium is partly a general and partly a local one. The general effect may be obtained by the use of occasional larger doses, but it is better not to strain the eliminating powers of the system. The local effect, however, cannot be obtained with occasional doses, but only by doses so frequently repeated that the remedy is in almost constant contact with the diseased surface. Thus, the doses, to produce the local effect, should be very small, but frequently administered. It is better that the daily quantity of twenty grains should be given in fifty or sixty doses than in eight or ten; that is, the solution should be weak, and a drachm or half a drachm of such solution can be given every hour or every half hour or every fifteen or twenty minutes, care being taken that no water or other drink is given soon after the remedy has been administered, for obvious reasons.
I have referred to these facts with so much emphasis because of late an attempt has been made to introduce chlorate of potassium as the main remedy in bad cases of diphtheria, and, what is worse, in large doses (Seeligmüller, Sachse, L. Weigert, C. Küster, Edlefsen.)
Large doses of chlorate of potassium (2 drachms daily to an adult I claim to be a large dose, particularly when its use is persisted in for many days in succession) are dangerous. In several of my writings I have given instances of its fatal effects.43 I have seen fatal cases since, and scores have been published in different journals. The first effects of a moderately large dose are gastric and, more especially, renal irritation; the latter it was which I experienced when I took half an ounce twenty-five years ago. Fountain of Davenport, Iowa, experienced the same before more serious symptoms developed, of which he died.44 The symptoms are those of acute diffuse nephritis, with suppression of urine, or scanty secretion of a little black blood, and uræmia deepening toward death in fatal cases. My earlier cases I considered as primary diffuse nephritis, and I have even been inclined to attribute the frequent appearance of chronic nephritis, amongst all classes and ages, in part to the influence of the chlorates, which have become a popular domestic remedy and are found in every household. But the experimental researches of Marchand45 and others prove that, at least in many instances, the extensive destruction of blood-cells is the first and immediate result of the introduction into the circulation of the chlorate, and that the visceral changes are due to embolic processes.
43 C. Gerhardt's Handbuch der Kinderkrankheiten, vol. ii., 1876; Med. Record, March, 1879; Treatise on Diphtheria, 1880.
44 Stillé, Therap. and Mat. Med., 2d ed., 1874, p. 922.
45 Sitzungsber. d. Naturforsch. Ges. h. u. Halle, Feb. 8, 1879, and Virch. Arch., vol. lxxvii.
Special Treatment.—The first axiom in the treatment of diphtheria is that there is no specific; the second, that in no other disease the individualizing powers of the physician are tested more severely.
The treatment is both internal and external. The local remedies are either such as dissolve the mucous membrane, or such as thoroughly modify the mucous membrane from which the pseudo-membrane has been removed, or real antiseptics, with the power of destroying either chemical or parasitic poisons.
The number of remedies recommended in diphtheria is immense. No other proof of its dangerous nature is needed. In the following I shall review those which I consider it worth while either to reject or to recommend.
Steam is used partly to soften the membranes, but principally to increase the secretion from the mucous membrane, and thereby throw off the superjacent membrane. This can be done to advantage only where there is a natural tendency to it; that is, where there are a great many muciparous follicles under a cylindrical or fimbriated epithelium. This is the condition on part of the pharynx, but not on the tonsils; and in a small portion of the larynx, in the trachea and bronchi, but not on the vocal cords. Wherever there is pavement epithelium on the normal surface, and where the membrane is imbedded into the tissue, steam can hardly be expected to do good. In the other cases it will. Thus, the locality of the diphtheritic process determines to a great extent whether steam is indicated or not. If it be used, the necessity of a full supply of atmospheric air must not be disregarded. Steam, with an overheated room and without pure air, is liable to be as injurious as steam in pure air is beneficial in a number of cases.
There can be no better proof for the necessity of individualizing, and the impossibility of treating all cases alike, than the fact that many will do well under steam treatment, and others are certainly injured by it. I have repeatedly had the joy of seeing children with croup become less cyanotic after their removal from an atmosphere of vapor, and I can readily see that pure atmospheric air would be more agreeable and wholesome to a child with stenosis of the larynx than an atmosphere laden with steam. Of course this remark does not apply to cases of pseudo-croup and bronchitis, which are generally benefited by a warm, moist atmosphere. Those, however, who deem it judicious to employ steam as a vehicle for carbolic acid, salicylic acid, chloride of sodium, chlorate of potassium, or lime, had best resort to the atomizer for applying these remedies. It can be used without trouble; most children are sufficiently intelligent to allow the spray to be directed upon the fauces and larynx every ten or fifteen minutes in case of necessity. When it is deemed advisable to administer steam, I warn against the use of gas stoves. They require a great deal more oxygen than an alcohol lamp, which ought to be preferred when a stove or slaking lime or hot iron or bricks immersed in water are not available.
Water may be made serviceable in different ways. Its effect on the skin, when taken in large quantities, under normal or abnormal circumstances, is a matter of daily experience. Copious perspiration is its immediate result. The very same effect is produced on the mucous membranes. In diphtheria, besides professional hydropathists, I know of but one46 who favors the plentiful use of water, 100-200 grammes (3-6 ounces) every hour or oftener, either by itself or mixed with an alcoholic beverage.
46 C. Rauchfuss, in C. Gerhardt's Handb. d. Kinderkr., iii. 2, 1878.
Severe inflammatory symptoms, such as redness of the throat, great pain, swelling of the glands, require cold applications, either an ice-bag or ice-cold cloths well pressed out and frequently changed. They must, however, be placed where they can do most good—in laryngeal diphtheria around the neck, in pharyngeal diphtheria with glandular swelling over the affected part. In the latter, therefore, the flannel cloth which covers the whole of the application must be tied over the head, and not behind. When ice-bags are used, care is to be taken lest they should be too large; if so, they will not affect the desired spot at all. Small pieces of ice frequently swallowed are greatly relished by the patient; water-ices in small quantities will render the same service; ice-cream, in half-teaspoon or teaspoon doses every five or ten minutes, adds to the necessary nutriment. When the fever is high and the surface hot, sponging with tepid or cold water, or water and alcohol, will mitigate both. For the cold bath or the cold partial pack (trunk and upper part of the thighs) the general indications hold good. As a rule, I favor the latter, for many cases have such a tendency to debility and collapse that sometimes the circulation of the surface of the body is badly interfered with by cold bathing. Therefore, a contraindication to cold bathing must be found at once in cold feet, either before or after a bath. When, unfortunately, the feet do not recover their normal temperature in a very short time, they ought to be warmed artificially, and the cold bath not repeated. In such cases the cold pack, however, is still indicated. A linen or cotton cloth, large enough to cover the trunk and half of the thighs, is dipped in cold water, well pressed out, and the body of the patient wrapped tightly in it. The arms remain outside; the whole body is then wrapped up in a blanket; the feet may be warmed meanwhile when necessary, and the cold pack repeated as often as required to reduce the temperature—viz. once every five minutes, every half hour, every hour.
The contraindications to the use of cold have in part been alluded to. Very young infants bear it but to a limited extent. The beginning of recovery contraindicates it, unless for some local cause; for instance, an inflamed gland. The extensive use of cold water or ice is also forbidden when there is no fever, where there is perhaps an abnormally low temperature, where we have to deal with the septic or gangrenous form of diphtheria, where the vitality is low and the mucous membranes pale or even cyanotic. In such cases, on the contrary, while unlimited internal stimulation is required, the hot bath, or hot pack and hot injections into the bowel, will be found beneficial.
Lime-water, glycerine, lactic acid, pepsin, neurin, papayotin, chinolin, and pilocarpine are all solvents of pseudo-membrane, but whether there is sufficient time and opportunity to produce a curative effect by every one of them is a question open for discussion. Of lime-water and glycerine I have employed a mixture of equal parts in considerably more than a hundred cases after the completion of tracheotomy, directing the remedy through an atomizer into and below the canula, but cannot say that the descent of the membrane into the trachea or bronchi was prevented by it. Lime-water may be used in the nose and throat as an injection, spray, or gargle, but its solvent effect is greatly diminished by the action of the carbonic acid of the breath on the lime. I have no doubt that if water alone was used with the same persistence as lime-water, its effects would be nearly the same. Still, what little effect the minute dose of lime (1:800) in the lime-water may have may just as well be utilized. What I object to is the omission of more powerful agents. If lime is to be used, slaking lime frequently in the presence of the patient is attended with vastly more benefit, inasmuch as by that proceeding a large amount of powdered lime is projected into the air of the room and the mouth and respiratory organs.
Lactic acid also, in from ten to twenty-five parts of water, has yielded no better results in my hands. Those cases of tracheotomy which I afterward treated with lactic acid spray terminated no better than such as were treated with lime-water and glycerine. Of the solvent effect of pepsin I have not been able to convince myself so as to recommend it. The accounts of neurin have not encouraged me to try it at all. Chinolin (tartrate) has been used locally by O. Seifert,47 Müller, and others. It is said to remove the membranes and relieve the fever. For a gargle it is dissolved in five hundred parts of water, or it is mixed with ten parts of water and alcohol each, and applied by means of a sponge. To relieve the burning sensation ice is swallowed afterward. The local applications of alcohol have the same drawback. There are but few patients who do not suffer intensely from its local contact.
47 Berl. klin. Woch., Nos. 36, 37, 1883.
Papayotin has been recommended by Rossbach for the purpose of dissolving membranes in a one-half per cent. solution. It peptonizes albuminoids, and macerates meat, intestinal worms, and croup membranes in both neutral and feebly alkaline solution. In concentrated solutions it has a caustic effect. It is recommended, not as an anti-diphtheritic, but merely as a solvent remedy.48 Whatever reliance may have been placed upon it has, however, been jeopardized by Rossbach's remarks49 on the variability of the preparations in the market. Not only are the specimens very unequal, but each of them is variable, easily spoiled, and particularly affected by moisture.
48 Berl. klin. Woch., March 10, 1881.
49 Transactions of the Congress for Int. Medicine, 1883, p. 162.
Muriate of pilocarpine was recommended for this purpose three years ago. It was praised by Juttmann as a specific, and has failed. The quackish recommendations of the drug have, indeed, earned for it a certain amount of distrust which it does not deserve in all cases. It is expected to increase the secretion of the mucous membranes to such an extent as to float the pseudo-membranes. It sometimes succeeds in so doing, but only in those cases in which the membrane is deposited upon the mucous membranes. When the tissue is impregnated the drug fails. It also fails in septic cases, and mostly for the reason that it diminishes and paralyzes the heart's action. It ought, therefore, never to be given unaccompanied with large amounts of stimulants. Where the patient is strong, and the heart healthy, it may be tried; I know that a few cases of moderate laryngeal diphtheria improved with pilocarpine, steam, and turpentine inhalations. The dose is 1/30 grain, dissolved in water, every hour.
Turpentine inhalations were recommended by C. Edel.50 Fifteen drops of oil of turpentine are inhaled from a common inhalation apparatus, which is placed at a distance of three inches from the mouth of the patient, for a period of ten minutes every hour. He claims recoveries in from twelve to forty-eight hours. I allow the patient to remain in his bed, and keep water boiling constantly on an alcohol lamp, on the stove, or over the gas. A tablespoonful of turpentine, more or less, is poured on the water, care being taken that nothing is spilled in the fire. Thus the room is constantly filled with a penetrating odor of turpentine, which is not at all disagreeable, even when in great concentration. The effects are very satisfactory indeed. Where circumstances allowed or required it I have raised a tent over the bed, large enough not to give inconvenience to the patient and to admit either the whole apparatus or the tube containing the mixed vapor of water and turpentine.
50 Med. Rev., Jan. 19, 1878.
Ammonium chloride may sometimes be used to advantage for its softening and liquefying effects. Its internal administration in bronchial and tracheo-laryngeal catarrh is so old that it has several times been obsolete. Of late, more stimulant effects have been attributed to it than it actually possesses. But its liquefying action, in cases where the secretion of mucus is defective and expectoration scanty and viscid, is undoubted. Thus it proves valuable in many cases of simple catarrh, both when administered internally and inhaled. The latter mode I have often resorted to, and believe that its macerating influence has been of service to me in cases of laryngeal diphtheria. Half a teaspoonful of the pure salt is spread on the stove or burned over alcohol or gas. It evaporates immediately, and fills the room or the tent with a white cloud, which, when dense, excites coughing. But it does not irritate to any uncomfortable degree, and the process may be repeated in an interval of an hour or more.
Not all cases of diphtheria are septic or gangrenous, nor are all the cases occurring during an epidemic of the same type. Some have the well-pronounced character of a local disease, either on the tonsils or in the larynx. The cases of sporadic croup met with in the intervals between epidemics present few constitutional symptoms, and assume more the nature of an active inflammatory disease—very much like the sporadic cases of fibrinous tracheo-bronchitis. These are the cases in which mercury deserves to have friends, apologists, and even eulogists. Calomel, 0.5-0.75 gramme (gr. viij-xij), divided into thirty or forty doses, of which one is taken every half hour, is apt to produce a constitutional effect very soon. Such doses, with minute doses, a milligramme or more (gr. 1/60), of tartar emetic, or ten or twenty times that amount of oxysulphuret of antimony, have served me well in fibrinous tracheo-bronchitis. But the mucous membrane of the trachea and bronchi is more apt to submit to such liquefying and macerating treatment than the vocal cords. The latter have no muciparous glands like the former, in which they are very copious. And while the tracheal membrane, even though recent, is apt to be thrown out of a tracheal incision at once, the pseudo-membrane of the vocal cords takes from six days to sixteen or more for complete removal. Still, a certain effect may even here be accomplished, for maceration does not depend only on the local secretion of the muciparous glands, but on the total secretion of the surface, which will be in constant contact with the whole respiratory tract. Thus, either on theoretical principles or on the ground of actual experience, men of learning and judgment have used mercury in such cases as I detailed above, with a certain confidence.
If ever mercury is expected to do any good in cases of suffocation by membrane, it must be made to act promptly. That is what the blue ointment does not. In its place I recommend the oleate, of which ten or twelve drops may be rubbed into the skin along the inside of the forearms or thighs (or anywhere when their surface becomes irritated) every hour or two hours. Or broken doses will be useful, such as given above, or hypodermic injections of corrosive sublimate in ½ or 1 per cent. solution in distilled water, four or five drops from four to six times a day, or more, either by itself or in combination with the extensive use of the oleate, or with calomel internally. Lately, the cyanide of mercury has been recommended very strongly. I hardly believe that it will work more wonders than any other equally soluble preparation. Within the past few years the internal administration of bichloride of mercury has been resorted to more frequently and with greater success than ever before. My own recent experience with it has been encouraging, and so has that of some of my friends. Wm. Pepper51 gave 1/32 grain of corrosive sublimate every two hours in a bad form of diphtheritic croup, with favorable result. But in this very bad case, desperate though it was—child of five years, resp. 70, pulse 160—large membranes, "evidently from the larynx," had been expelled before the treatment was commenced on the seventh day of the disease. The remedy ought to be given in solution of 1:5000, and in good doses. A baby a year old may take one-half grain every day for many days in succession, with very little if any intestinal disorder and with no stomatitis.52 A solution of the corrosive chloride of mercury in water is frequently employed of late as a disinfectant. It acts as such in a dilution of 1:20,000. As healthy mucous membranes bear quite well a proportion of 1:2000-3000, any strength between these extremes maybe utilized. A grain of the sublimate in a pint or more of water, with a drachm of table-salt, will be found both mild and efficient. As a gargle or nasal injection it will be found equally good. But it has appeared to me that frequent applications give rise to a copious mucous discharge; hourly injections into a diphtheritic vagina became quite obnoxious by such over-secretion, which ceased at once when the injections were discontinued. Thus, when it is desirable not only to disinfect but also to cleanse the diseased surface, the injections with corrosive sublimate appear to yield a result inferior to less irritating applications.
51 Trans. Am. Med. Ass., 1881.
52 Med. Record, May 24, 1884.
Chloride of iron is undoubtedly a valuable remedy in diphtheria, but in its administration it must by no means be forgotten that small doses at long intervals are out of the question. I have not the least doubt but that the failure of the remedy may be attributed in most cases to the fact that the doses were too small and administered too seldom. A dose of from five to fifteen drops, properly diluted, every fifteen minutes, half hour, or hour is indispensable for a proper estimation of its effects. Gargles are not of much service, for the simple reason that they do not come into sufficient contact with the affected parts, and reach at the utmost to the anterior pillars of the soft palate. A direct application of the remedy to the mucous membrane of the pharynx may also be desisted from, thereby avoiding any irritation, the internal administration at short intervals causing the pharynx to be sufficiently influenced by local contact with the remedy. It must, of course, not be expected that the chloride will remove the membrane, but it can frequently be seen to reduce the hyperæmia and swelling and prevent the reproduction of exuded material. The chloride of iron exerts a decided influence on the vital contractility of the blood-vessels. This increased contractility certainly assists in diminishing the rapidity of absorption of putrid fluids through the blood-vessels, which constitutes the principal source of danger from the disease.
It cannot yet be positively asserted that the chloride of iron exerts a direct effect on the lymphatic vessels. Naturally, this was claimed when the remedy was recommended, in the treatment of diphtheria, on account of its therapeutic effects in erysipelas, with the accompanying inflammation of the lymphatic vessels of the skin. Although we know of no direct compression of the lymphatic vessels due to the action of the chloride, yet it may be assumed that perhaps the compression of the blood-vessels exerts a similar influence upon the neighboring lymphatics. In consequence of this there would be an impediment to the absorption and further development of poisonous substances in the lymph. The chloride, like the sulphate of iron, is a tolerably powerful disinfecting agent. If this observation be correct, it may go very far toward explaining the action of the chloride of iron in septic diseases, which are accompanied by an exalted activity of the lymphatic vessels and an increase of the white blood-corpuscles. Furthermore, Saase has endeavored to show that the ferrous salts possess the power of converting oxygen into ozone. They share this power with the blood-globules exclusively, and could hence, to a certain degree, supply a deficiency of the latter. Pokrowsky, too, has shown that iron increases the process of oxidation in the body by demonstrating that in health there is an elevation of temperature and an increase of the percentage of urea in the urine during its administration. In anæmic persons, to whom iron has been given for the purpose of increasing the amount of blood, the above phenomena may be observed before this object is accomplished. Thus iron appears to replace the blood-corpuscles to a certain extent. Now, in infectious disorders of the blood, where the red globules are perpetually menaced with destruction, it seems plausible that the preparations of iron should exert an antiseptic action.
Finally, it has been found that of all the preparations of iron the chloride possesses the greatest power of stimulating the nervous system. Possibly this effect may be traced to an increase of the arterial pressure in the nerve-centres. It has been said that this effect has been vividly illustrated in certain forms of chlorosis. If this be true, iron would be all the more indicated in diphtheria, since it would act as a prophylactic against a series of nervous phenomena that so frequently present themselves, both during and subsequently to the diphtheritic process. Thus it is that for many years the muriate of iron has constituted the main element, with me, of internal medication in most cases of diphtheria, both of the mild and the most dangerous septic type. A common formula is, for a child of two years,
| Rx. | Tinct. Ferri Chloridi | drachm ij; |
| Potass. Chlorat. | gr. xx; | |
| Aquæ | fl. oz. v; | |
| Glycerin. Pur. | fl. oz. j. M. |
S. A teaspoonful every fifteen, twenty, or thirty minutes.
Carbolic acid exerts a powerful influence on the vitality of all living elements, and hence also on rapidly proliferating epithelium, which constitutes a part of the diphtheritic membrane. It is of great advantage for local use. Its local effect, undiluted or diluted with equal or larger parts of glycerine or alcohol, in shrinking and removing membranes, is sometimes very useful; in mild solutions in water (½, 1, or 2 per cent.) it is very efficient in nasal injections or for external applications or mouth-washes. Rothe's prescription for external use is carbolic acid and alcohol each 2 parts, water 10, tincture of iodine 1. Its internal administration to the extent of five to twenty grains daily, given largely diluted, in small and frequent doses, is of less positive value.
Salicylic acid, in a solution of 1:30-50, is caustic. A milder solution, 1:200-300 relieves or removes foul odor from the nose or throat, but it does not detach membranes or shorten the duration of the disease, apparently. Internally, it acts no longer as a disinfectant, but is changed into a salicylate and is an antipyretic. It is then better to replace it by the sodium salicylate. With its administration (for a child of 2 years 3 grains every hour until 20 or 25 grains are taken) it ought not to be forgotten that serious brain troubles, collapse, and irregular and paralytic breathing, as well as gastric and intestinal disturbances, may follow its use. It ought not to be given without careful watching and the simultaneous free use of alcoholic stimulants.
Binz found, as the result of experiments with solutions of pure quinia varying from one part in a hundred to one in a thousand, that the latter sufficed to prevent the development of bacteria in fluids capable of undergoing putrefaction; but even estimated thus, a patient with eighteen pounds of blood would require one hundred and thirty-eight grains of quinia circulating therein in order to satisfy the conditions of Binz's experiment. If Binz considers two grammes (half a drachm) of quinia per day sufficient for an individual weighing one hundred and twenty pounds, his calculation is founded on experiments with dogs, in which septicæmia was avoided by the injection of quinia. It is also necessary to bear in mind that Binz makes a distinction with regard to the preparations of quinia employed. He warns against the use of the bisulphate as being the most inactive. No matter which preparations are used—I prefer the muriate—I have come to look upon quinia as of no great service in reducing the temperature in infectious fevers. The main indication for its use can only be found in inflammatory fevers. When it is given, however, salicylate of sodium may be added for a short time to obtain a speedier effect.
On the part of bromine Wm. H. Thompson claims the following advantages: 1. When applied locally, it promptly arrests fetor by arresting directly the gangrenous process, and thus lessens risk from absorption. 2. It acts as an anti-putrefactive likewise in the fluids of the body generally—i.e. blood, interstitial circulation, and secretions—owing to its high rate of diffusibility, equal to that of sodium chloride itself. 3. It locally destroys the communicable property of the discharges, shown by the immunity of attendants from any sore throat when it is used, and from its checking the spread of the disease in the locality. He orders two solutions to be used: the first of equal parts of Lawrence Smith's solutio bromini and of glycerine, applied with a hair pencil to the membrane, as gently as possible. Sometimes he uses the solution full strength. The brush should be washed at once in water, and does not last more than one day, owing to the action of the bromine on the hair. If, however, the membrane be very extensive and the parts much swollen or difficult to reach, he resorts instead to douching with a Davidson syringe, using half a drachm to one drachm of the solution to a pint of warm water. By beginning gently with the stream directed against the buccal mucous membrane, the child soon becomes accustomed to the current and allows it then to play against the deeper parts.
Internally he orders from six to twelve drops of the solution in a half ounce of sweetened water, every hour, two, or three hours, according to the urgency of the case, and continuously.
The most convenient way of making Smith's solution is: Take two ounces of a saturated solution of potassium bromide in water; add to this, very slowly, in a bottle and with constant shaking, one ounce of bromine. It is better to add a part, and then let it stand a while before adding the rest; then fill up gradually, and with constant shaking with water, until it measures four ounces.
Ozone has been used as an anti-fermentative in inhalation during three or five minutes every hour or two, by Jochheim.
Boric (boracic) acid, in saturated (1:25) or milder solutions, has some antiseptic effect. It is mild, and not very injurious when swallowed by necessity or mistake. In diphtheritic conjunctivitis it is valued highly, and in nasal injections I have found it very useful. It is less repugnant than most other substances administered in that way.
Sodium benzoate cannot be relied on either as an anti-diphtheritic nor as an anti-febrile. The doses which were recommended were two scruples or a drachm daily for a child a year old.
Sulphur has been used locally. It gives rise to coughing and vomiting.
Cubebs have been given in incredible doses, two drachms of the powder to a child a year old. The drug disorders the stomach and kidneys.
Local Treatment.—The mechanical removal of the membranes is not permissible unless they are almost detached. It is best to avoid their being cast off, unless partly loosened membranes in the larynx or trachea afford an indication for an emetic. Scratching and eroding the mucous membrane of the neighborhood give rise to new deposits. Even after spontaneous elimination of a membrane a new one may be formed within a few hours.
To cauterize a diphtheritic membrane or infiltration I consider wrong, unless I shall be able to do so thoroughly and to limit the action of the caustic to the diseased surface. Therefore potassa or chromic acid cannot be utilized, because of the impossibility of limiting their effect. Nitrate of silver and mineral acids can be restricted in their effects, but these are not sufficiently thorough, particularly as but few patients will consent to have the remedy applied properly. When I do cauterize, I prefer a mixture of equal parts of carbolic acid and glycerine or the undiluted acid. The membrane crumbles and falls off in pieces. Force must never be used. Where it would be required in the case of obstinate children mild washes must be employed instead of the caustic. Besides, the internal medication detailed above meets every indication. When there is a slight swelling of the lymphatic glands, cold water or ice applications are usually all that is needed. The latter should be made according to general indications. The glandular and peri-glandular swellings are less the result of an actual filling up with foreign matter than of secondary irritation. Ice has a happy effect in such cases, both on internal administration, in the form of frequent small quantities of ice-water, ice-pills, ice cream, and iced medicaments, and also externally by ice-cold cloths or india-rubber bags filled with ice.
In general, the treatment of the swelled glands must be both based on its causes and adapted to the present condition. The adenitis and peri-adenitis is of secondary nature, the irritation being in the mouth, pharynx, and nares. In these localities is where the main treatment is required. The sooner the primary affection is removed or relieved or rendered innocuous, the better it is for the secondary complaint. Frequent doses of chlorate of potassium or sodium, or biborate of sodium in mild doses frequently repeated, according to the principles laid down in another part of this article, mouth-washes, gargles, nasal injections with water, salt water, or solutions of disinfecting substances, are not only indicated, but highly successful. When the case is recent, cold applications are required, but no washes. When it is of older date, stimulant embrocations are in order. Iodine ointments are absorbed but slowly; mercurial plasters do good in some cases; iodide of potassium dissolved in glycerine (1:3-4), frequently applied, iodine in oleic acid (1:8-12), iodoform in collodion or flexible collodion (1:12-15) applied twice daily, the latter frequently with very good result, are beneficial. Copious suppuration is very rare. Cases in which a free incision meets with an abscess ready to heal are very uncommon. But numerous small abscesses with gangrenous walls and pus mixed with a sero-sanguinolent or sero-purulent liquid, are more frequently found. In such cases a probe introduced into the lancet wound enters easily into the broken-down tissue in every direction, to a distance even of three to six centimetres, (several inches), according to the size of the tumefaction. I have seen fatal hemorrhages from such gangrenous destructions; therefore the treatment must be both timely and energetic. The incision must not be delayed too long. When the skin assumes a purplish hue or is simply discolored, it is time to incise and to apply concentrated or nearly concentrated carbolic acid to the interior, unless the neighborhood of very important blood-vessels or nerves yields a contraindication to concentrated applications. In that case a milder preparation is advisable, but the application should be repeated often, until the suppuration becomes more normal. Then mild disinfectant injections into what has now become a cavity will be found satisfactory, particularly when meanwhile the general condition of the patient has been improved.
Treatment of Nasal Diphtheria.—Especially during the prevalence of an epidemic of diphtheria must we be careful not to allow a nasal catarrh to have its own way; we must likewise guard against considering the thin and flocculent discharge in infected cases as a mucous secretion. Whatever be the origin of nasal diphtheria, whether primary or the result of a similar affection in the throat, local treatment should at once be instituted, and if this be done the great majority of cases will terminate favorably. The danger in this form of disease consists in an excessive absorption of putrid substances and in the breathing of contaminated air. The interior of the nasal cavities must be thoroughly cleaned and disinfected. If this be commenced early, the original seat of the affection may be reached, and the disinfectant process will, as a rule, have good results. It is not necessary to select very energetic disinfectants; a solution of twelve to twenty-five centigrammes (two to four grains) of carbolic acid in thirty grammes (an ounce) of water is at once mild and effective, and hardly gives rise to more discomfort than lukewarm water. Nasal injections must be made very frequently, until each time the stream of fluid has a free exit through the other nostril or through the mouth. They must be made at least every hour, and even oftener if necessary; at the same time it is advisable to be careful that the fluid does not enter the Eustachian tube. This can be prevented, to a certain extent, by compelling the patient to keep the mouth open during the procedure. I have seldom seen evil or even disagreeable results from the administration of nasal injections in diphtheria. It is likely that the mucous membrane of the pharynx is swollen as far as the openings of the Eustachian tubes to such a degree as to render the entrance of fluids into the latter improbable. The hardness of hearing, which is of so frequent occurrence in the course of a severe catarrh or of a diphtheritic attack, seems to indicate that the mucous membrane of that part is in a state of swelling. An ordinary syringe will suffice. However, when administered by parents or nurses the blunt nozzle of an ear syringe is preferable. Occasionally here, as in local applications to the mouth and pharynx, the atomizer may be used to advantage, but the tube must be properly introduced into the nostrils. There are cases of nasal diphtheria, however, which are far more troublesome to manage than the foregoing would seem to indicate. I have seen cases in which the nasal cavities, from the anterior to the posterior nares, were filled and completely occluded by a dense, solid membranous mass. I was then compelled to bore a passage with a silver probe, to gradually introduce a larger-sized one, and then to apply the pure carbolic acid, in order to remove the densest and thickest masses, and finally was able to make injections; even in such cases I have had the gratification of being able to give a favorable prognosis. The dangerous secondary swelling of the glands will often subside after a steady employment of disinfectant injections for from twelve to twenty-four hours. It will be found that children frequently do not object to this method of treatment; I have even met with some who, after convincing themselves of the relief afforded thereby, asked for an injection. When we are about to bring each injection to a close it is well to press together the nasal cavities for an instant with the fingers. By this procedure the fluid is forced backward to the pharynx, and is swallowed or ejected through the mouth, and thus washes the pharynx and mouth at the same time. Frequently, however, this latter object is obtained with every injection; for, the palate being swelled, oedematous, and paretic, the fluid is not prevented from reaching the pharynx, even in the average case. In regard to the choice of a disinfecting agent, I have but a few words to say. I believe that no one of them has important qualifications above the others. I avoid those which stain or which produce firm coagula. For the latter reason I do not use the subsulphate and perchloride of iron; for the former, the permanganate of potassium. I employ, as a rule, carbolic acid in solution, of the strength above mentioned. Where there is but a slightly fetid odor I have frequently employed lime-water or water with glycerine, or a solution (1:100, 1:50) of chloride of sodium, or of bicarbonate of soda or of borax, or a saturated solution of boric acid. Disinfecting agents and antiseptics, whether carbolic acid, salicylic acid, or iron, are of no service when administered internally only, unless the seat and cause of the septic infection be attended to previously. Under the local employment of antiseptics, as described, or by simply washing out with water or salt water, most cases recover; without them, death will result. Of late, in many cases, the local applications, injections, etc. of the corrosive chloride of mercury in water (1:5000-10,000) has proved very effective. It has this advantage over carbolic acid, that the swallowing of the former is not so dangerous. This much, after all, my experience has assured me of, that there is a certain number of cases which terminate fatally; but it is likewise true that the mortality need not be excessively great. I cannot grant that it is hard to carry out the exact and apparently barbarous treatment necessary for a favorable result, for it is certainly more barbarous to sacrifice than to save life.
It is a positive fact that when children suffering from nasal diphtheria, with its peculiarly septic character, are permitted to sleep much—and they are apt to be drowsy under the influence of the poison—they will certainly die. To allow them to sleep is to allow them to die.
The first symptom of improvement is often a rapid diminution of the glandular swelling wherever it exists. It is not present in all cases, but chiefly in those in which a bloody serum was discharged in an early period of the disease. In these the blood-vessels appear to be very vulnerable, superficial, and apt to absorb; these are also the most dangerous cases, and require the greatest attention and care, and also prompt disinfection.
Treatment of Laryngeal Diphtheria.—The severest form of diphtheria is that located in the larynx, constituting membranous croup. Its general treatment, whether the disease has originated primarily in the larynx or trachea or has been communicated from the pharynx, does not differ from that laid down for diphtheria in general. Naturally the larynx calls for special treatment on account of the symptoms of suffocation which result from its stenosis. The main indication of removing viscid mucus or partly-detached membranes is best met by the administration of an emetic. Such is their only indication in my experience. The selection of the emetic, when indicated, is of great importance. Antimonials ought to be avoided because of their depressing and purgative effect. Ipecacuanha is but rarely effective. The sulphates of zinc and copper, and particularly the latter, deserve preference. Turpeth mineral acts promptly and satisfactorily. When no emesis can be obtained the prognosis is decidedly bad. Recourse must then be had to tracheotomy, the good results of which are however only too often delusive and transient.
When, after the operation, there is scarcely any relief, and particularly when the case takes a very rapid course, it is probably one of ascending croup which commenced in the trachea. Mechanical relief by pushing down a hen's feather or a bundle of them, and turning it about and twisting, must be tried. It is a much better instrument than pincers of all sorts and shapes. But what relief will be accomplished is but of very short duration. When fever sets in within a few hours it means very much more frequently pneumonia than diphtheritic fever. It is apt to be soon complicated by that disproportion between pulse and respiration so characteristic of inflammatory diseases. Then quinia in larger doses, 0.25 or 0.5 (grs. iv-viij) every two, four, eight hours, at the same time doses of sodium salicylate 0.25-0.40 (grs. iv-vj) every hour or two hours until the temperature goes down, and small doses of digitalis where the heart requires it, must be given at once. Procrastination is dangerous; the patients want careful watching; many of them die within two days after the operation.
Diphtheritic conjunctivitis requires great attention and permits of no loss of time. Cold applications to the affected eye must be made constantly. Pieces of linen or lint kept on ice (better than in ice-water) of little more than the size of the eye, must be changed every minute or two day and night. The danger to the cornea is so imminent that constant watchfulness is required. Boric acid in concentrated solution should be dropped into the eye once every hour. Care must be taken that the well eye shall not get infected; for that purpose it is best to cover it with lint and collodion, or with lint or cotton held in place by adhesive plaster.
Cutaneous diphtheria requires the destruction of the membrane or of the infected surface by carbolic acid, either concentrated or somewhat diluted with glycerine, or the application of the actual cautery. After that the use of ice or iced cloths, or diluted carbolic acid, is indicated. As soon as the surface is no longer diphtheritic the local and general treatment is to be continued on general principles.
Diphtheritic paralysis is invariably complicated by anæmia and debility, and the diet and medical treatment must be regulated accordingly. However, neither overfeeding nor a sameness of diet are to be permitted, for not rarely the muscular coat of the stomach suffers with the rest of the muscular tissue, and the secretion of gastric juice is very deficient in anæmic individuals. While, therefore, iron is indicated, we must not neglect to pay particular attention to nutrition and digestion, and to aid the latter with pepsin and moderate amounts of muriatic acid, well diluted. Quinia in small doses and stimulants are appropriate whenever there is no contraindication to their employment. The treatment of the paralysis itself will naturally depend on the diagnosis of the condition present in each individual case, which we have seen to differ considerably. This alone can explain why various modes of treatment, the electric current among others, after being recommended by some authors, are branded by others. Where we have to deal with those rare changes in the brain and spinal cord, the utmost care is necessary in order not to make the condition still worse; and in such cases there would be a contraindication to the use of the faradic current, though this would not hold true with regard to the use of the galvanic current in short sittings. Besides, central paralyses are by no means so frequent as peripheral ones. In most cases there is not the slightest elevation of temperature during the course of the paralytic phenomena. I lay great stress upon this point, for I am aware that many cases of central congestion and even of inflammation exhibit but very insignificant elevations of temperature. But, as the diagnosis will depend on a positive knowledge of whether there have been changes of temperature, I rely on the rectal temperature only, for many a myelitis runs its course with no greater elevation above the normal than one-half or one degree. In all cases in which the temperature is normal or subnormal, I do not hesitate for a moment to employ the faradic or the galvanic current. In addition to the internal administration of iron I advise by all means the employment of strychnia. When there is no necessity for haste, we may give moderate doses, gradually increasing them, and using iron in combination. When there is danger in delay, recourse ought to be had to subcutaneous injections of the sulphate of strychnia, once or twice daily. They are mainly indicated in paralysis of the muscles of deglutition and of respiration. Of course, where the former are affected it is necessary to nourish the patient artificially, partly perhaps by nutrient enemata, but principally by means of the stomach-tube. In using the latter it is unnecessary to introduce it into the stomach, as it only requires to be passed a few inches below the affected parts, when the oesophagus will usually be found able to undertake the further disposal of the food. In these cases strychnia should be injected subcutaneously in the neck, once or twice daily. In a similar manner it should be injected in the region of the chest, diaphragm, or neck in paralysis of the respiratory muscles or of the glottis. In paralysis of the muscles of accommodation (in which Scheby-Buch claims to have seen the process cut short by the use of the Calabar bean, considered as inert by Hassner) they may be given in the forehead or temples.
Frictions dry and alcoholic, hot bathing, friction with hot water, kneading of the affected parts, will be found beneficial and pleasant.