GLASS
Bent Glass.
The number of molds required in a glass-bending establishment is large.
The bending is done in a kiln. Glass melts at 2,300° F.; the heat employed in bending is 1,800° F. No pyrometer would stand long in that heat, so the heat of the kiln is judged from the color of the flame and other indications. Smaller pieces of glass are put into the molds in the kilns with forks made for the purpose. The great molds used for bending large sheets of glass are mounted on cars, that may be rolled in and out of kilns. The glass is laid upon the top of the mold or cavity, and is bent by its own weight. As it is softened by the heat it sinks into the mold and so is bent. It may take an hour or two to bend the glass, which is then left in the kiln from 24 to 36 hours to anneal and cool. Glass of any kind or size is put into the kilns in its finished state; the great heat to which it is subjected does not disturb the polished surface. Despite every precaution more or less glass is broken in bending. Bent glass costs about 50 per cent more than the flat.
The use of bent glass is increasing, and there are 4 or 5 glass-bending establishments in the United States, of which one is in the East.
Colored Glass.
Sand, 65 parts; potash, 15 parts; soda, 5 parts; lime, 9 parts; molybdenite, 3 parts; sulphide of sodium, 2 parts, gave a dark reddish-brown glass. In thinner layers this glass appeared light brownish yellow. Flashed with opal, it became a smutty black brown.
Sand, 50 parts; potash, 15 parts; soda, 5 parts; lime, 9 parts; molybdenite, 1 part; sulphide of sodium, 2 parts, gave a yellow glass.
Sand, 10 parts; potash, 3.3 parts; soda, 0.27 parts; lime, 1.64 parts; molybdenite, 0.03 parts, gave a reddish-yellow glass with a fine tinge of red.
Sand, 100 parts; potash, 26 parts; soda, 108 parts; lime, 12 parts; sulphide of copper, 1.7 parts; sulphide of sodium, 2.3 parts, gave a dark-brown color, varying from sepia to sienna. In thick layers it was no longer transparent, but still clear and unclouded. When heated this glass became smutty black brown and clouded.
A fine copper red was obtained from sand, 10 parts; potash, 3 parts; lime, 1.2 parts; soda, 0.25 parts; sulphide of copper, 7.5 parts; sulphide of sodium, 10.5 parts; borax, 9.5 parts.
Attempts to color with sulphides of antimony and bismuth failed. But the addition of 7 per cent of sulphide of nickel to an ordinary batch gave a glass of fine amethyst color.
Coloring Electric-light Bulbs And Globes.
Rose-tint Glass.
Cutting, Drilling, Grinding, And Shaping Glass:
To Cut Glass.
The same principle may be employed to cut bottles into vases, and to form all sorts of pretty things, such as jewelry boxes, picture panes, trays, small tablets, windows for a doll house, etc.
II.—Scratch the glass around the shape you desire with the corner of a file or graver; then, having bent a piece of wire into the same shape, heat it red hot and lay it upon the scratch and sink the glass into cold water just deep enough for the water to come almost on a level with its upper surface. It will rarely fail to break perfectly true.
To Cut Glass Under Water.
Drilling, Shaping, And Filing Glass.
To Make Holes In Thin Glass.
To Grind Glass.
Pohl asserts that if glass is polished with crocus (Paris red) it appears of a dark or a yellowish-brown tint. He contends that the crocus enters the pores of the glass, and, to prevent this, he uses zinc white with the most satisfactory results.
A Home-made Outfit For Grinding Glass.
To Drill Optical Glass.
Lubricants For Glass Drilling.
II.—Place a little alum in acetic acid, dip your drill into this and put a drop of it on the spot where the glass is to be pierced.
Gilding Glass.
When it is desired to gild glass for decorative purposes use a solution of gelatin in hot water, to which an equal quantity of alcohol has been added. The glass to be gilded is covered with this solution and the gold leaf put on while wet. A sheet of soft cotton must be pressed and smoothed over the leaf until the gelatin below is evenly distributed. This prevents spots in gilding. Careful apportionment of the gelatin is necessary. If too much be used, the gold may become spotted; if too little, the binding may be too weak to allow the gold to be polished. The glass should be cleaned thoroughly before gilding. After the gold leaf is put on the whole is allowed to dry for 10 or 20 minutes, when the luster of the gold can be raised by a cautious rubbing with cotton. Then another layer of gelatin is spread on with one stroke of a soft brush, and, if especially good work be required, a second layer of gold is put on and covered as before. In this case, however, the gelatin is used hot. After the gilding has become perfectly dry the letters or ornamentation are drawn and the surplus gold around the edges is taken off. The gilding does not become thoroughly fixed until after several months, and until then rough handling, washing, etc., should be avoided.
The best backing for glass gilding is asphaltum, with a little lampblack, this to be mixed up with elastic varnish; outside finishing varnish is the best, as the addition of this material gives durability.
Glass Manufacturing:
See also Ceramics.
The blue tint of the common poison bottle is got by the addition of black oxide of cobalt to the molten glass; the green tint of the actinic glass bottle is obtained in the same way by the addition of potassium bichromate, which is reduced to the basylous condition, and the amber tint is produced by the addition of impure manganese dioxide, a superior tint being produced by suphur in one form or another. The formulas for various kinds of bottle glass, which indicate the general composition of almost all glasses, are:
White Glass for Ordinary Molded Bottles.—
| Sand | 64 parts by weight |
| Lime | 6 parts by weight |
| Carbonate of sodium | 23 parts by weight |
| Nitrate of sodium | 5 parts by weight |
White Flint Glass Containing Lead.—
| Sand | 63 parts by weight |
| Lime | 5 parts by weight |
| Carbonate of sodium | 21 parts by weight |
| Nitrate of sodium | 3 parts by weight |
| Red lead | 8 parts by weight |
Ordinary Green Glass for Dispensing Bottles.—
| Sand | 63 parts by weight |
| Carbonate of sodium | 26 parts by weight |
| Lime | 11 parts by weight |
A mixture for producing a good green flint glass is much the same as that for the ordinary white flint glass, except that the lime, instead of being the purest, is ordinary slaked lime, and the sodium nitrate is omitted. Sand, lime, and sodium carbonate are the ordinary bases of glass, while the sodium nitrate is the decolorizing agent.
Glass Refractory to Heat.—Fine sand, 70 parts; potash, 30 parts; kaolin, 25 parts.
Transparent Ground Glass.—Take hold of the glass by one corner with an ordinary pair of fire tongs. Hold it in front of a clear fire, and heat to about 98° F., or just hot enough to be held comfortably in the hand. Then hold the glass horizontally, ground side uppermost, and pour in the center a little photographer’s dry-plate negative varnish. Tilt the glass so that the varnish spreads over it evenly, then drain back the surplus varnish into the bottle from one corner of the glass. Hold the glass in front of the fire again for a few minutes and the varnish will crystallize on its surface, making it transparent. The glass should not be made too hot before the varnish is put on, or the varnish will not run evenly. This method answers very well for self-made magic-lantern slides. Ground glass may be made temporarily transparent by wiping with a sponge dipped in paraffine or glycerine.
Water-tight Glass:
Water-tight Glass Roofs.
Tightening Agent For Acid Receptacles.
Pencils For Marking Glass:
See also Etching and Frosted Glass.
Crayons for Writing on Glass.—I.—The following is a good formula:
| Spermaceti | 4 parts |
| Tallow | 3 parts |
| Wax | 2 parts |
| Red lead | 6 parts |
| Potassium carbonate | 1 part |
Melt the spermaceti, tallow, and wax together over a slow fire, and when melted stir in, a little at a time, the potassium carbonate and red lead, previously well mixed. Continue the heat for 20 or 30 minutes, stirring constantly. Withdraw from the source of heat, and let cool down somewhat, under constant stirring, at the temperature of about 180° F.; before the mixture commences to set, pour off into molds and let cool. The latter may be made of bits of glass tubing of convenient diameter and length. After the mixture cools, drive the crayons out by means of a rod that closely fits the diameter of the tubes.
II.—Take sulphate of copper, 1 part, and whiting, 1 part. Reduce these to a fine powder and mix with water; next roll this paste into the shape of crayons and let dry. When it is desired to write on the glass use one of these crayons and wipe the traced designs. To make them reappear breathe on the glass.
III.—Melt together, spermaceti, 3 parts; talc, 3 parts, and wax, 2 parts. When melted stir in 6 parts of minium and 1 part of caustic potash. Continue heating for 30 minutes, then cast in suitable molds. When formed and ready to be put away dust them with talc powder, or roll each pencil in paraffine powder.
Prevention Of Fogging, Dimming, And Clouding.
I.—Place a few flat glass or porcelain dishes with calcium chloride in each window. This substance eagerly absorbs all moisture from the air. The contents of the dishes have to be renewed every 2 or 3 days, and the moist calcium chloride rigorously dried, whereupon it may be used over again.
II.—Apply to the inside face of the glass a thin layer of glycerine, which does not permit the vapor to deposit in fine drops and thus obstruct the light. Double glass may also be used. In this way the heat of the inside is not in direct contact with the cold outside.
III.—By means of the finger slightly moistened, apply a film of soap of any brand or kind to the mirror; then rub this off with a clean, dry cloth; the mirror will be as bright and clear as ever; breathing on it will not affect its clearness.
IV.—Window glass becomes dull during storage by reason of the presence of much alkali. This can be avoided by taking sand, 160 parts; calcined sodium sulphate, 75; powdered marble, 50; and coke, 4 to 5 parts. About 3 parts of the sodium sulphate may be replaced by an equal quantity of potash.
Frosted Glass.
I.—A frosted appearance may be given to glass by covering it with a mixture of
| Magnesium sulphate | 6 ounces |
| Dextrin | 2 ounces |
| Water | 20 ounces |
When this solution dries, the magnesium sulphate crystallizes in fine needles.
II.—Another formula directs a strong solution of sodium or magnesium sulphate, applied warm, and afterwards coated with a thin solution of acacia.
III.—A more permanent “frost” may be put on the glass by painting with white lead and oil, either smooth or in stipple effect. The use of lead acetate with oil gives a more pleasing effect, perhaps, than the plain white lead.
IV.—If still greater permanency is desired, the glass may be ground by rubbing with some gritty substance. {375}
V.—For a temporary frosting, dip a piece of flat marble into glass cutter’s sharp sand, moistened with water; rub over the glass, dipping frequently in sand and water. If the frosting is required very fine, finish off with emery and water. Mix together a strong, hot solution of Epsom salt and a clear solution of gum arabic; apply warm. Or use a strong solution of sodium sulphate, warm, and when cool, wash with gum water. Or daub the glass with a lump of glazier’s putty, carefully and uniformly, until the surface is equally covered. This is an excellent imitation of ground glass, and is not disturbed by rain or damp.
VI.—This imitates ground glass:
| Sandarac | 2 1/2 ounces |
| Mastic | 1/2 ounce |
| Ether | 24 ounces |
| Benzine | 16 to 18 ounces |
VII.—Take white lead ground in a mixture of 3/4 varnish and 1/4 oil of turpentine, to which burnt white vitriol and white sugar of lead are added for drier. The paint must be prepared exceedingly thin and applied to the glass evenly, using a broad brush. If the windows require a new coat, the old one is first removed by the use of a strong lye, or else apply a mixture of hydrochloric acid, 2 parts; vitriol, 2 parts; copper sulphate, 1 part; and gum arabic 1 part, by means of a brush. The production of this imitation frosting entails little expense and is of special advantage when a temporary use of the glass is desired.
VIII.—A little Epsom salt (sulphate of magnesia) stirred in beer with a small dose of dextrin and applied on the panes by means of a sponge or a brush permits of obtaining mat panes.
Hoarfrost Glass.
The surface is first ground either by sand-blast or the ordinary method, and is then covered with a sort of varnish. On being dried either in the sun or by artificial heat, the varnish contracts strongly, taking with it the particles of glass to which it adheres; and as the contraction takes places along definite lines, the pattern given by the removal of the particles of glass resembles very closely the branching crystals of frostwork. A single coat gives a small, delicate effect, while a thick film, formed by putting on 2, 3 or more coats, contracts so strongly as to produce a large and bold design. By using colored glass, a pattern in half-tint may be made on the colored ground, and after decorating white glass, the back may be silvered or gilded.
Engraving, Matting, And Frosting.
To Render Window Panes Opaque.
II.—Paint the panes with a solution of
| Dextrin | 200 parts by weight |
| Zinc vitriol | 800 parts by weight |
| Bitter salt | 300 parts by weight |
| In water | 2,000 parts by weight |
III.—For deadening panes already set in frames the following is suitable: Dissolve 1 part of wax in 10 parts of oil of turpentine, adding 1 part of varnish and 1 part of siccative. With this mixture coat the panes on the outside and dab, while still wet, with a pad of cotton wadding. If desired small quantities of Paris blue, madder lake, etc., may be added to the wax solution.
IV.—For deadening window panes in factories and workshops: To beeswax dissolved in oil of turpentine, add some dryer and varnish to obtain a quicker drying and hardening. After the window pane has been coated with this mixture on the outside, it is dabbed uniformly with a pad of wadding. The wax may be tinted with glazing colors.
Frosted Mirrors.
II.—The following mixture, when applied to a mirror and left to dry, will form in many shapes, all radiating from a focus, this focus forming anywhere on the glass, and when all dry tends to form a most pleasing object to the eye.
| Sour ale | 4 ounces |
| Magnesium sulphate | 1 ounce |
Put on the mirror with a small, clean sponge and let dry. It is now ready for the artist, and he may choose his own colors and subject.
Crystalline Coatings Or Frostwork On Glass Or Paper.
As the water slowly evaporates during this short time, handsome crystalline patterns, closely resembling frostwork, will develop gradually on the glass panes, which adhere so firmly to the glass or the paper (if well-sized glazed paper had been used) that they will not rub off easily. They can be permanently fixed by a subsequent coat of alcoholic shellac solution.
Especially handsome effects are produced with colored glass panes thus treated, and in the case of reflected light by colored paper.
For testing crystals as regards their optical behavior, among others their behavior to polarized light, it is sufficient to pour a solution of collodion wool (soluble peroxide lime for the preparation of collodion) over the surface of glass with the crystalline designs, and to pull off the dry collodion film carefully. If this is done cautiously it is not difficult to lift the whole crystalline group from the glass plate and to incorporate it with the glass-like, thin collodion film.
Removing Window Frost.
Here are fourteen methods of preventing frost on windows, arranged in the order of their efficacy: 1, Flame of an alcohol lamp; 2, sulphuric acid; 3, aqua ammonia; 4, glycerine; 5, aqua regia; 6, hydrochloric acid; 7, benzine; 8, hydriodic acid; 9, boric acid; 10, alcohol; 11, nitric acid; 12, cobalt nitrate; 13, infusion of nutgalls; 14, tincture of ferrous sulphate. By the use of an alcohol lamp (which, of course, has to be handled with great care) the results are immediate, and the effect more nearly permanent than by any other methods. The sulphuric acid application is made with a cotton cloth swab, care being taken not to allow any dripping, and so with all other acids. The effect of the aqua ammonia is almost instantaneous, but the window is frosted again in a short time. With the glycerine there are very good results—but slight stains on the window which may be easily removed.
The instructions for glycerine are: Dissolve 2 ounces of glycerine in 1 quart of 62 per cent alcohol containing, to improve the odor, some oil of amber. When the mixture clarifies it is rubbed over the inner surface of the glass. This, it is claimed, not only prevents the formation of frost, but also prevents sweating.
To Prevent Dimming Of Eyeglasses, Etc.
Writing On Glass:
See also Etching and Inks.
Composition For Writing On Glass.
Ink For Writing On Glass.—
| Shellac | 20 parts |
| Alcohol | 150 parts |
| Borax | 35 parts |
| Water | 250 parts |
| Water-soluble dye sufficient to color. | |
Dissolve the shellac in the alcohol, the borax in the water, and pour the shellac {377} solution slowly into that of the borax. Then add the coloring matter previously dissolved in a little water.
GLASS AND GLASSWARE CEMENT: See Adhesives and Amalgams.
GLASS CLEANERS: See Cleaning Preparations and Methods.
GLASS, COPPERING, GILDING, AND PLATING: See Plating.
GLASS ETCHING: See Etching.
GLASS, HOW TO AFFIX SIGN-LETTERS ON: See Adhesives under Sign-Letter Cements.
GLASS, FASTENING METALS ON: See Adhesives.
GLASS LETTERING: See Lettering.
GLASS LUBRICANTS: See Lubricants.
GLASS, PERCENTAGE OF LIGHT ABSORBED BY: See Light.
GLASS POLISHES: See Polishes.
GLASS, SILVERING OF: See Mirrors.
GLASS SOLDERS: See Solders.
GLASS, SOLUBLE, AS A CEMENT: See Adhesives.
GLASS, TO AFFIX PAPER ON: See Adhesives, under Water-Glass Cements.
GLASS, TO SILVER: See Silver.