PAPER
Paper Pads
| I.— | Glue | 3 1/2 ounces |
|---|---|---|
| Glycerine | 8 ounces | |
| Water, a sufficient quantity. | ||
Pour upon the glue more than enough water to cover it and let stand for several hours, then decant the greater portion of the water; apply heat until the glue is dissolved, and add the glycerine. If the mixture is too thick, add more water.
| II.— | Glue | 6 ounces |
|---|---|---|
| Alum | 30 grains | |
| Acetic acid | 1/2 ounce | |
| Alcohol | 1 1/2 ounces | |
| Water | 6 1/2 ounces |
Mix all but the alcohol, digest on a water bath till the glue is dissolved, allow to cool, and add the alcohol.
Papier Maché.
Wet paper pulp, dry paper, 1 ounce; water, 3 ounces; 4 ounces (avoirdupois); dry plaster Paris, 8 ounces (avoirdupois); hot glue, 1/2 gill, or 4 1/2 tablespoonfuls.
While the paper pulp is being prepared, melt some best Irish glue in the glue pot and make it of the same thickness and general consistency as that used by cabinet makers. On taking the paper pulp from the water squeeze it gently, but do not try to dry it. Put in a bowl, add about 3 tablespoonfuls of the hot glue, and stir the mass up into a soft and very sticky paste. Add the plaster of Paris and mix thoroughly. By the time about 3 ounces of the plaster have been used, the mass is so dry and thick that it can hardly be worked. Add the remainder of the glue, work it up again until it becomes sticky once more, and then add the remainder of the plaster. Squeeze it vigorously through the fingers to thoroughly mix the mass, and work it until free from lumps, finely kneaded and sticky enough to adhere to the surface of a planed board. If it is too dry to stick fast add a few drops of either glue or water, and work it up again. When the paper pulp is poor and the maché is inclined to be lumpy, lay the mass upon a smooth board, take a hammer and pound it hard to grind it up fine.
If the papier maché is not sticky enough to adhere firmly to whatever it is rubbed upon, it is a failure, and requires more glue. In using it the mass should be kept in a lump and used as soon as possible after making. Keep the surface of the lump moist by means of a wet cloth laid over it, for if you do not, the surface will dry rapidly. If it is to be kept overnight, or longer, wrap it up in several thicknesses of wet cotton cloth, and put under an inverted bowl. If it is desired to keep a lump for a week, to use daily, add a few drops of glycerine when making, so that it will dry more slowly.
The papier maché made according to this formula has the following qualities: When tested by rubbing between the thumb and finger, it was sticky and covered the thumb with a fine coating. (Had it left the thumb clean, it would have been because it contained too much water.) When rubbed upon a pane of glass it sticks tightly and dries hard in 3 hours without cracking, and can only be removed with a knife. When spread in a layer as thin as writing paper it dries in half an hour. A mass actually used dried hard enough to coat with wax in 18 hours, and, without cracking, became as hard as wood; yet a similar quantity wrapped in a wet cloth and placed under an inverted bowl kept soft and fit for use for an entire week.
Parchment Paper.
II.—Plunge unsized paper for a few seconds into sulphuric acid diluted with half to a quarter its bulk of water (this solution being of the same temperature as the air), and afterwards wash with weak ammonia.
Razor Paper.
II.—From emery and quartz (both in impalpable powder), and paper pulp (estimated in the dry state), equal parts, made into sheets of the thickness of drawing paper, by the ordinary process. For use, a piece is pasted on the strop and moistened with a little oil.
Safety Paper.
Tracing Paper.
Strengthened Filter Paper.
Blotting Paper.
Carbon Paper.
The pigments used are fine soot or ivory black, indigo carmine, ultramarine, and Paris blue, or mixtures of them. The pigment is intimately mixed with grain soap, and then rubbed on to thin but strong paper with a stiff brush. Fatty oils, such as linseed or castor oil, may be used, but the grain soap is preferable. Graphite is frequently used for black copying paper. It is rubbed into the paper with a cotton pad until a uniform light-gray color results. All superfluous graphite is then carefully brushed off.
It is sometimes desired to make a copying paper which will produce at the same time a positive copy, which is not required to be reproduced, and a negative or reversed copy from which a number of direct copies can be taken. Such paper is covered on one side with a manifolding composition, and on the other with a simple copying composition, and is used between 2 sheets of paper with the manifolding side undermost.
The manifolding composition is made by mixing 5 ounces of printers’ ink with 40 of spirits of turpentine, and then mixing it with a fused mixture of 40 ounces of tallow and 5 ounces of stearine. When the mass is homogeneous, 30 ounces of the finest powdered protoxide of iron, first mixed with 15 ounces of pyrogallic {504} acid and 5 ounces of gallic acid, are stirred in till a perfect mixture is obtained. This mass will give at least 50 copies on damp paper in the ordinary way. The copying composition for the other side of the prepared paper consists of the following ingredients:
| Printers’ ink | 5 parts |
| Spirits of turpentine | 40 parts |
| Fused tallow | 30 parts |
| Fused wax | 3 parts |
| Fused rosin | 2 parts |
| Soot | 20 parts |
It goes without saying that rollers or stones or other hard materials may be used for the purpose under consideration as well as paper. The manifolding mass may be made blue with indigotin, red with magenta, or violet with methyl violet, adding 30 ounces of the chosen dye to the above quantities of pigment. If, however, they are used, the oxide of iron and gallic acids must be replaced by 20 ounces of carbonate of magnesia.
Celloidin Paper.
Cloth Paper.
Drawing Paper.
| Gum arabic | 2 parts |
| Ammonia iron citrate | 3 parts |
| Tartaric acid | 2 parts |
| Distilled water | 20 parts |
After still adding 4 parts of solution of ammonia with a solution of
| Potassium ferricyanide | 2.5 parts |
| Distilled water | 10.0 parts |
allow the mixture to stand in the dark half an hour. Apply the preparation on the paper by means of a soft brush, in artificial light, and dry in the dark. Next, expose the paper to light until it appears dark violet, place in water for 10 seconds, air a short time, wash with water, and finally dip in a solution of
| Eau de javelle | 50 parts |
| Distilled water | 1,000 parts |
until it turns dark blue.
Filter Paper.
Fireproof Papers.
II.—For paper, either printed or unprinted, bills of exchange, deeds, books, etc., the following solution is recommended: Ammonium sulphate, 8 parts; boracic acid, 3 parts; sodium borate, 1.7 parts; water, 10,000 parts. The solution is heated to 122° F., and may be used when the paper is manufactured. As soon as the paper leaves the machine it is passed through this solution, then rolled over a warm cylinder and dried. If printed or in sheets, it is simply immersed in the solution, at a temperature of 122° F., and spread out to dry, finally pressed to restore the luster.
Hydrographic Paper.
I.—A mixture of nut galls, 4 parts, and calcined sulphate of iron, 1 part (both perfectly dry and reduced to very fine powder), is rubbed over the surface of the paper, and is then forced into its pores by powerful pressure, after which the loose portion is brushed off. The writing shows black when a pen dipped in water is used.
II.—A mixture of persulphate of iron and ferrocyanide of potassium may be employed as in formula I. This writes blue.
Iridescent Paper.
Lithographic Paper.
II.—Give the paper 3 coats of thin size, 1 coat of good white starch, and 1 coat of a solution of gamboge in water, the whole to be applied cold, with a sponge, and each coat to be allowed to dry before the other is applied. The solutions should be freshly made.
Lithographic paper is written on with lithographic ink. The writing is transferred simply by moistening the back of the paper, placing it evenly on the stone, and then applying pressure. A reversed copy is obtained, which, when printed from, yields corrected copies resembling the original writing or drawing. In this way the necessity of executing the writing or drawing in a reversed direction is obviated.
Marbling Paper For Books.
Provide a wooden trough 2 inches deep and the length and width of any desired sheet; boil in a brass or copper pan a quantity of linseed and water until a thick mucilage is formed; strain it into a trough, and let cool; then grind on a marble slab any of the following colors in small beer:
For Blue.—Prussian blue or indigo.
Red.—Rose pink, vermilion, or drop lake.
Yellow.—King’s yellow, yellow ocher, etc.
White.—Flake white.
Black.—Burnt ivory or lampblack.
Brown.—Umber, burnt; terra di sienna, burnt.
Black mixed with yellow or red also makes brown.
Green.—Blue and yellow mixed.
Orange.—Red and yellow mixed.
Purple.—Red and blue mixed.
For each color have two cups, one for the color after grinding, the other to mix it with ox gall, which must be used to thin the colors at discretion. If too much gall is used, the colors will spread. When they keep their place on the surface of the trough, when moved with a quill, they are fit for use. All things in readiness, the colors are successively sprinkled on the surface of the mucilage in the trough with a brush, and are waved or drawn about with a quill or a stick, according to taste. When the design is just formed, the book, tied tightly between cutting boards of the same size, is lightly pressed with its edge on the surface of the liquid pattern, and then withdrawn and dried. The covers may be marbled in the same way, only letting the liquid colors run over them. In marbling paper the sides of the paper are gently applied to the colors in the trough. The film of color in the trough may be as thin as possible, and if any remains after the marbling it may be taken off by applying paper to it before you prepare for marbling again. To diversify the effects, colors are often mixed with a little sweet oil before sprinkling them on, by which means a light halo or circle appears around each spot.
Waterproof Papers.
I.—Wall papers may be easily rendered washable, either before or after they are hung, by preparing them in the following manner: Dissolve 2 parts of borax and 2 parts of shellac in 24 parts of water, and strain through a fine cloth. With a brush or a sponge apply this to the surface of the paper, and when it is dry, polish it to a nigh gloss with a soft brush. Thus treated the paper may be washed without fear of removing the colors or even smearing or blurring them.
II.—This is recommended for drawing paper. Any kind of paper is lightly primed with glue or a suitable binder, to which a finely powdered inorganic body, such as zinc white, chalk, lime, or heavy spar, as well as the desired coloring matter for the paper, are added. Next the paper thus treated is coated with soluble glass—silicate of potash or of soda—to which small amounts of magnesia have been admixed, or else it is dipped into this mixture, and dried for about 10 days in a temperature of 77° F. Paper thus prepared can be written or drawn upon with lead pencil, chalk, colored crayons, charcoal, India ink, and lithographic crayon, and the writing or drawing may be washed off 20 or more times, entirely or partly, without changing the paper materially. It offers the convenience that anything may be readily and quickly removed with a moist sponge and immediately corrected, since the washed places can be worked on again at once.
Wax Paper.
II.—For the production of waxed or ceresine paper, saturate ordinary paper with equal parts of stearine and tallow or ceresine. If it is desired to apply a business stamp on the paper before saturation and after stamping, it should be dried well for 24 hours, so as to prevent the aniline color from spreading.
Wrapping Paper For Silverware.
Varnished Paper.
Impregnation Of Papers With Zapon Varnish.
The zaponizing may be carried out by dipping the papers in zapon or by coating them with it by means of a brush or pencil. Sometimes the purpose may also be reached by dripping or sprinkling it on, but in the majority of cases a painting of the sheets will be the simplest method.
Zapon in a liquid state is highly inflammable, for which reason during the application until the evaporation of the solvent, open flames and fires should be kept away from the vicinity. When the drying is finished, which usually takes a few hours where both sides are coated, the zaponized paper does not so easily ignite at an open flame any more or at least not more readily than non-impregnated paper. For coating with and especially for dipping in zapon, a contrivance which effects a convenient suspension and dripping off with collection of the excess is of advantage.
The zapon should be thinned according to the material to be treated. Feebly sized papers are coated with ordinary, i. e., undiluted zapon. For dipping purposes, the zapon should be mixed with a diluent, if the paper is hard and well sized. The weaker the sizing, the more careful should be the selection of the zapon.
Zapon to be used for coating purposes should be particularly thick, so that it can be thinned as desired. Unsized papers require an undiluted coating.
The thick variety also furnishes an excellent adhesive agent as cement for wood, glass, porcelain, and metals which is insoluble in cold and hot water, and binds very firmly. Metallic surfaces coated with zapon do not oxidize or alter their appearance, since the coating is like glass and only forms a very thin but firmly adhering film, which, if applied on pliable sheet metal, does not crack on bending.
For the preparation of zapon the following directions are given: Pour 20 parts of acetone over 2 parts of colorless celluloid waste—obtainable at the celluloid factories—and let stand several days in a closed vessel, shaking frequently, until the whole has dissolved into a clear, thick mass. Next admix 78 parts of amyl acetate and completely clarify the zapon varnish by allowing to settle forweeks.
Slate Parchment.
Paper Floor Covering.
Metallic Paper.
This paper, made by transferring, pasting, or painting a coating of metal on ordinary paper, retains a comparatively dull and dead appearance even after glazing or polishing with the burnisher or agate. Galvanized or electroplated metal paper, on the other hand, in which the metal has penetrated into the most minute pores of the paper, possesses an extraordinarily brilliant polish, fully equal to that of a piece of compact polished metal. It is much more extensively used than the kind first mentioned.
The following solutions are recommended for making “galvanized” metal paper:
I.—For silver paper: Twenty parts argento-cyanide of potassium; 13 parts cyanide of potassium; 980 parts water.
II.—For gold paper: Four parts auro-cyanide of potassium; 9 parts cyanide of potassium; 900 parts water.
Moth Paper.—
| Naphthalene | 4 ounces |
| Paraffine wax | 8 ounces |
Melt together and while warm paint unsized paper and pack away with the goods.
Lead Paper.
Aluminum Paper.
PAPER (ANTI-RUST) FOR NEEDLES: See Rust Preventives.
PAPER CEMENTS: See Adhesives.
PAPER DISINFECTANT: See Disinfectants.
PAPER, FIREPROOF: See Fireproofing.
PAPER, FROSTED: See Glass (Frosted).
PAPER ON GLASS, TO AFFIX: See Adhesives, under Water-Glass Cements.
PAPERS, IGNITING: See Pyrotechnics.
PAPER ON METALLIC SURFACES, PASTING: See Adhesives.
PAPER AS PROTECTION FOR IRON AND STEEL: See Rust Preventives.
PAPERHANGERS’ PASTES: See Adhesives.
PAPER, PHOTOGRAPHIC: See Photography.
PAPER VARNISHES: See Varnishes.
PAPER WATERPROOFING: See Waterproofing.
PAPIER MACHÉ: See Paper.