FOOTNOTES:

[59] Sir John Hawkins, Life of Samuel Johnson, London. 1787.

[60] A Letter from Henry Woodward, ... to Dr Hill ... London, 1752.

[61] Loc. cit.

[62] Short Account of the Life, Writings and Character of the late Sir John Hill, M.D., Edinburgh, 1779.

[63] Fitzgerald, Life of Garrick, London, 1868.

[64] Isaac Disraeli, The Calamities and Quarrels of Authors, London, 1865.

[65] London, 1848.

[66] Biographica Dramatica, 1812.

[67] See also Lucine sine concubitu. A Letter addressed to the Royal Society, London, 1750. A Dissertation on Royal Societies, London, 1750.

[68] Short Account of the Life, Writings and Character of the late Sir John Hill, M.D., Edinburgh 1779.

[69] See Bates, The Naturalist on the River Amazons. Edited by Ed. Clodd; London, 1892, p. 80.

[70] Short Life, loc. cit.

[71] Loc. cit.

[72] Biographica Dramatica.

[73] Dict. Nat. Biog.

[74] His second wife, the Hon. Henrietta Jones, sister of Charles Viscount Ranelagh. She published "An Address to the Public setting forth the Consequencies of the late Sir John Hill's acquaintance with the Earl of Bute," 1788.

[75] Historical Account of Kew to 1841, Kew Bulletin, 1891.

[76] Further information relating to Hill's public Life will be found in the following works. Arthur Murphy, The Life of David Garrick, London, 1801; A narrative of the affair between Mr Brown and the Inspector, London, 1752; The Covent Garden Journal, 1752; Frederick Lawrence, Life of Fielding, London, 1855.

[77] Ed. by Dallinger, London, 1891.

[78] Outlines of a System of Vegetable Generation, London, 1758.

[79] By Lindforss in 1896.

[80] The British Herbal; an History of Plants, and Trees, natives of Britain, cultivated for use, or raised for Beauty, London, 1756.

[81] Historical and Biographical Sketches of the Progress of Botany in England, London, 1790.

[82] The Gardeners New Kalendar ... The System of Linnaeus also explained, London, 1758.

[83] Flora Britanica sive Synopsis methodica stirpium Britanicarum post tertiam editionem synopseos Raianae ... nunc primum ad C. Linnaei methodum disposita, London, 1760 (some copies are dated 1759).

[84] Loc. cit.

[85] The Vegetable System Or, the Internal Structure and The Life of Plants; Their Parts and Nourishment Explained; Their Classes, Orders, Genera, and Species, Ascertained and Described.... London, 1759-1775.

[86] London, 1758.

[87] An Address to the Public ... loc. cit.

[88] See Helleborine Hill v. Epipactis Adans. G. Claridge Druce, Journal of Botany, xlvi. 1908.

[89] Babington's Manual of British Botany, ed. by Groves, London. Hayward's Botanist's Pocket Book, ed. by Druce, London, 1909.

[90] John Nichols, Literary Anecdotes, 1812.

[91] Boswell's Life of Johnson, ed. by Fitzgerald, London, 1897.

[92] Ibid.; Life of Garrick, loc. cit.

[93] Edinburgh, 1779, loc. cit.

[94] Loc. cit.

[95] Loc. cit.


[ROBERT BROWN]

1773-1858

By J. B. FARMER

Position of Botany before Brown—narrative—diary—naturalist to the Flinders expedition—travels in Australia—his method in the field—Essay and Prodromus on the vegetation of New Holland—the Proteaceae and Asclepiadaceae—Brown's digressions—his tenacity and caution—impregnation—views on the morphology of the Gymnosperms in the memoir on Kingia—foundation of ovular morphology—cell nucleus discussed—the simple microscope—"Brownian movement" investigated—summary of other work—Bryophytes—interest in fossil plants—personal characteristics—Asa Gray's story—the Banksian collections—the British Museum and Linnean Society—contemporary appreciation—his outstanding merits.

Someone has affirmed that no man is greater than the age in which he lives. A cryptic utterance, savouring perhaps of a certain dash of impressionism, and not altogether false as it is assuredly not wholly true. If, however, we endeavour dispassionately to appraise the performance of the world's great (though perhaps we should exclude the few greatest) men we shall probably discover that the implied limitation is justified, at least in part, by history and experience. The fact is that hardly anyone can really penetrate far into nature's secret places without losing his way. The virgin lands of knowledge that lie beyond the area of contemporary possession are first invaded by those who can breach the barriers that oppose advance, for genius, by its wider outlook enables those who are endowed with it to recognise the weaker spots in these barriers, and thus to lead the attack. But the new territory, even after it is won, is ever surrounded by unknown regions, still waiting to be overrun when, but not until, the conditions for further expansion shall have been fulfilled.

Plate XI

[back]

ROBERT BROWN (circa 1856)

At the beginning of the nineteenth century the time was ripe for such an addition of new territory to the regions of Botany already occupied at that period. In England, at any rate, the work inaugurated by Ray and others had become overshadowed by the authority of Linnaeus, and even on the Continent the effective advance of the science was for various reasons almost stayed. It is true that in France the Jussieus had started advance on fruitful lines, and others like De Candolle were endeavouring to feel their way through the maze of dimly comprehended relationships, but their efforts were obscured by the growing and fatal facilities for piling up mere catalogues of plants without the clues necessary to direct their energies into more profitable channels. As regards the flowering plants, there was, it is true, a groping after a partially perceived natural system, but the lower ranks of the vegetable kingdom formed, so far as scientific purposes were concerned, a terra incognita, and the attempts to elucidate the morphology of these groups in the light of the angiosperms were, as we now can see clearly enough, plainly foredoomed to failure.

Facts were distorted and observations misinterpreted in ways that now seem to us almost to smack of sheer perversity, but we must not forget that the methods which in later years have proved so effective had not then been recognised; Hofmeister, with his marvellous genius, had not as yet arisen to shew the way through the maze of the lower forms.

But what does strike one as astonishing, or might do so if the circumstance were not still so common, is the evidence of the difficulty men experienced in really seeing things as they were, and of distinguishing the fundamentally important from the trivial or even irrelevant.

As always, what was needed was the man who could fix his gaze on facts, who would spare no pains to find out what was true, and thus succeed in discovering a sure base to serve as a vantage ground for further advance. Von Mohl was one of these, and earlier in the century there was the man, the subject of this lecture, who by his single-hearted search after truth, and the extraordinary ardour and ability with which he prosecuted his investigations will always occupy a high position in the history of Botany.

Robert Brown came of a stock which refused to bow the knee to authority, though his forbears did not, any more than himself, hesitate to impress the weight of it on others. His father was a non-juring clergyman of Montrose, and was in consequence obliged to leave the official ecclesiastical fold. But he carried a congregation with him, and not desiring to set up novel forms of church government, managed to get himself consecrated bishop of the new flock. As bishop, priest and deacon, tres in uno juncti, he ministered to his Edinburgh church, and his episcopal staff may still be seen in the rooms of the Linnean Society. His son Robert, who was born in 1773, inherited both his father's independence and also his dominant character. And, indeed, the great influence he wielded in the botanical world was due in no small degree to his strong personality, reinforced as it was by his high scientific attainments.

He began at an early age to evince a love of botany and to give proof of the strong critical faculty which enabled him so successfully to solve the problems he attacked, and so materially to advance our science. He added to his mental attainments a wonderfully methodical habit, and the diary of his earlier years reveals him to us not only as a hard-working student but as one meticulously accurate in detail.

In 1795 he was appointed Surgeon mate to the Fifeshire Regiment of Fencibles, and his letter of appointment signed by the Colonel, James Durham, is preserved in the Natural History Museum. His regiment was quartered in Ireland, and he made good use of his time, collecting all the plants he could get hold of, including mosses and liverworts, of which he amassed a considerable collection. Indeed, it is said that he owed his first acquaintance with Sir Joseph Banks to his discovery in Ireland of the rare moss Glyphomitrium Daviesii. This recognition by Sir Joseph proved the turning-point of his life. The six years or so that he spent in the Fencibles were turned to good account, and in looking to his own record of his life during those years one realises how thoroughly he earned the success that crowned his work in after life. There is much humour—perhaps of an unconscious kind, though I am not very sure that it was so very unconscious—in his carefully kept diary. Here is an extract, dated Feb. 7, 1800.

Before breakfast began the German auxiliary verbs.

Committed to memory a genus in Cullen's Synopsis. Described Polytrichum aloides—to be compared with Mr Menzies' P. rubellum.

Began the description of Osmunda pellucida.

Hospital usual time.

Took exactly the same walk as on the 4th. Blasia pusilla Lin., Weissia recurvirostra Hedw.? Dicranum varium Hedw., Polytrichum nanum, Polytrichum urnigerum, Phascum subulatum, Dicranum glaucum, absque fruct.

At dinner about 3 pints of port., remained in the mess room till about 9 or 10 o'clock—slept in my chair till nearly 3 in the morning.

Feb. 8, before breakfast finished the auxiliary verb Seyn, to be, in Wendeborn's German Grammar....

He did not, however, spend all his evenings in this fashion, but whether it was a glass of water, a pint of porter, or what not, it is all gravely set down, together with the work he succeeded in accomplishing. Instances of his thoroughness are not wanting. He says in one place he had read Nicholson's Chemistry, ch. vi., on the balance, "to be again perused, my defective knowledge of the mechanical powers rendering part of it unintelligible."

He was fond of reading in bed, but his light literature on these occasions included such works as Adam Smith, Blackstone's Commentaries, and a German Grammar.

His botanical acquirements were already attracting notice, and in 1798, being detached for recruiting service, he took the opportunity of a visit to London to utilise the splendid collections in the possession of Sir Joseph Banks, and he was also in the same year elected an Associate of the Linnean Society. Soon after his return to Ireland he received a letter from Sir Joseph offering him the nomination as Naturalist to the Investigator, which was to be commanded by Captain Flinders. He at once decided to go, writing, as he tells us, by return of post.

Few men who have, at so early an age, enjoyed the opportunity of a voyage of discovery were so well equipped for the work as was Robert Brown. Blessed with a good constitution, which was also seaworthy, he possessed many physical advantages, but in addition to them he had trained himself as an accurate and accomplished botanist. He spent what time he could spare in London in acquainting himself with all that he could find of the New Holland Flora, and in this connection he had full access to the invaluable Banksian collections.

He was fortunate in having with him on the expedition as draughtsman Ferdinand Bauer, whose beautiful drawings are the admiration of all who know them.

The Investigator sailed from Portsmouth in 1801, and on landing at King George's Sound the first collections, amounting to about 500 plants, were made within three weeks. Three days at Lucky Bay yielded 100 species not met with in the previous locality. At Port Jackson the Investigator was condemned as unseaworthy, and Captain Flinders determined to return to England to obtain another ship in which to prosecute the expedition. The ship, however, was wrecked in Torres Straits, Brown's duplicate specimens, as well as the live plants on board, being lost, whilst Captain Flinders was held prisoner by the French at Port Louis. Meantime Brown and Bauer continued their travels in Australia, visiting Van Dieman's land as well. Brown subsequently returned to England, oddly enough in the old Investigator, in 1805 with a magnificent collection of plants some 4000 in number.

He did not merely collect, but he studied his collections on the spot—a method that may be strongly commended to young men who go out as botanists at the present time. His plan was to keep a working herbarium of all the plants gathered by him, as he went along, and he wrote up the descriptions in great part during his actual expeditions. In this way many problems formulated themselves which he was able either to investigate on the spot, or else to lay up additional material for further investigation at leisure. Thus the methodical ways of dealing with the plants collected in earlier years at home stood him in good stead at a time when the opportunities of a lifetime were crowding upon him.

On his return to England he was appointed librarian to the Linnean Society (1805), an office which he held till 1822, and he at once set about to utilise the vast resources which were now at his command.

He contributed to the narrative of The Flinders Expedition an account of the vegetation of New Holland. The essay is a remarkable one, not only for the masterly descriptions of the principal genera and orders which it contains, and the critical remarks which are scattered through the pages, but also for the geographical and statistical methods of treatment which he introduced. Many of the orders are new, and Brown shews his striking perception of affinity not only in his general discussion of the subject as a whole, but also in the definitions of the new orders and genera which he founded. This soundness of judgment is shewn on a still larger scale in his more definitely systematic works such as the Prodromus, but one may regard it generally as an astonishing tribute to his sagacity that very few of the groups founded by him have needed serious revision, even when further discoveries made it possible for later botanists to fill up the lacunae inevitable during those earlier days.

In the year 1810 there appeared the first volume of his great work, the Prodromus Florae Novae Hollandiae. It is a misfortune that only one volume was ever published, although the work was advanced in MS. It has been said that a criticism of the author's Latinity at the hands of a reviewer was the cause of the stoppage of the publication, but there seems to be no real foundation for the story. Possibly the expense, coupled with the small return, may at any rate partly account for it. Be this as it may, Brown recalled from his bookseller all the unsold copies, and in the copy preserved at the Natural History Museum there is a list of the volumes actually sold written by Brown himself, and from a financial point of view the enterprise clearly proved itself to be an expensive experiment. The volume as published is a remarkable work, containing some 450 pages, including 464 genera, nearly one-third of which are here described for the first time and the number of species amounts to about 2000, some three-quarters of which were new to science. Add to this the fact that the flora as a whole is very unlike that of the northern hemisphere, also that the work was accomplished with such amazing rapidity (largely owing to his particular methods already alluded to), and one cannot withhold admiration at the energy and the learning of its author. It is a wonderful tribute to his wisdom that his descriptions and arrangements should have so stood the test of 100 years, during which time vast strides in our knowledge of the Australian and other floras have been made. But the lapse of time has resulted in scarcely any but trifling modifications of the general results as he left them. The Prodromus is well worth study, for in its pages one constantly meets with hints of observations which have borne fruit in later years. Some of them, indeed, e.g. his observations on Cycads, were expanded by himself into larger treatises in which much light has been thrown on morphological and taxonomic relationships previously but imperfectly understood.

The year before the publication of the Prodromus, Brown communicated to the Linnean Society an excellent and learned memoir on the Proteaceae. In this paper we encounter an instance of that whimsical introduction of observations exceedingly valuable in themselves, but mainly irrelevant to the matter in hand, which is a characteristic feature of many of his works. Perhaps it was due to the intense keenness with which he always followed up problems that interested him, so that, like Mr Dick's weakness for King Charles' head, they had to find a place in whatever else he was writing about. Thus his treatise on the Proteaceae starts off with advice to study the flower in the young, instead of only in its adult condition, and this is driven home by an excellent disquisition on the structure of the androecium and gynaeceum of Asclepiads, a subject which occupied his mind for some years and formed the basis for separate papers at subsequent periods. Only when he has discussed the morphology of the Asclepiad flower does he plunge, abruptly, into the questions relating directly to the Proteaceae.

Later on in the same year (1809) he read a masterly paper on the Asclepiadaceae which was subsequently printed in the Memoirs of the Wernerian Natural History Society. This Natural Order was here separated by him from the Apocynaceae, from which it had not previously been distinguished, and a correct account of the relations of the remarkable androecium, so characteristic of the Asclepiad flower, was given. Twenty-two years later (in 1831) he again returned to the Asclepiads and described and discussed the mode of pollination and fertilisation in this Order and also in that of the Orchids.

It was characteristic of Brown that he clung with great tenacity to any problem that had once excited his interest. He made himself fully acquainted with the work of his contemporaries and predecessors, and at the same time he constantly attacked it by reiterated first-hand investigations, testing hypotheses and theories by the light of direct observation. He was very cautious, and thus, although he traced the pollen tubes from the pollen grain into the ovary and into the micropyle (foramen) of the ovule, he still leaves it an open question whether, in all cases, anything of a material nature passes from the pollen to the interior of the ovule, which may thus be held responsible for the formation of an embryo.

He cites the observations of Amici and of Du Petit Thouars, and then states he does not feel he is as far advanced as these observers. But in the succeeding pages he traces the tube, of which he says, "the production is a vital action excited in the grain by the application of an external stimulus." We see here a clear perception of the facts of germination and of the operation of what we now call chemiotaxis, for he goes on to add "The appropriate and most powerful stimulus to this action is no doubt contact, at the proper period, with the secretion or surface of the stigma of the same species. Many facts, however, and among others the existence of hybrid plants, prove that this is not the only stimulus capable of producing the effect; and in Orchideae I have found that the action in the pollen of one species may be excited by the stigma of another belonging to a very different tribe." It is hard to believe that these lines were written so long as 80 years ago. Brown goes on to describe the change that follows impregnation, and the gradual appearance of the embryo. And we must remember that all these observations were made by one who relied almost exclusively on the simple microscope and the simplest—I had almost said barbaric—technique.

He expresses himself in very reserved terms as to the nature of the "immediate agent derived from the male organ, or the manner of its application to the ovulum in the production of that series of changes constituting fecundation." But he puts forward the opinion that a more attentive examination of the process in Orchids and Asclepiads is more likely to be fruitful of results than most other families.

He returns again to this matter of fecundation in the following year, studying several orchids, but especially Bonatea, for the purpose. He is somewhat shaken as to the validity of his former inferences, and concludes that the "mucous cords" (i.e. strings of pollen tubes) are perhaps derived from pollen "not, however, by mere elongation of the original pollen tubes, but by an increase in their number, in a manner which I do not attempt to explain." In this later paper he also hazards the suggestion that in Ophrys, as impregnation is frequently accomplished without the aid of insects, "... it may be conjectured that the remarkable forms of the flowers in this genus are intended to deter, not to attract, insects." Also he suggests that the insect forms in orchidaceous flowers resemble those of the insects belonging to the native country of the plants. This is a clear foreshadowing of what is now called protective mimicry—and the former suggestion is not at any rate wholly without modern supporters, though Brown's share in its origin seems not to be generally recognised.

The keen desire to get to the bottom of a problem, which was so outstanding a feature of Brown's whole mental attitude, unquestionably explains why he was led to make so many important discoveries in such widely different directions. His first hand knowledge of the structure of a vast number of plants gave a soundness and depth to his morphological investigations that must arouse the admiration of everyone who is acquainted with them. He was never satisfied with perfunctory attempts to solve a problem, but, as we have already seen, in the example of his studies on Asclepiads and Orchids, he would return again and again to the matter till he had satisfied himself of the accuracy of his work. It is a pity that all of the present day botanists do not follow more closely in his steps in this respect. Publication of a paper seems to some to be a matter of greater importance than the advance of knowledge by the scientific and scholarly solution of a problem. Such was not Brown's view, and he practised wise delay in publication—nonumque prematur in annum, a maxim so strongly advocated by the Latin poet, was really put into practice by him as it also was by some of his contemporaries. Dryander, Solander and others have left, as Brown has done, rich stores of MS. behind them, which have never passed through the press.

The habit of long and continuous reflection on fundamental problems, which was so marked a feature of Brown's character, was perhaps responsible for the curious manner in which some of his most valuable and suggestive contributions to science, and especially to morphology, were given to the world, a habit to which I have already adverted.

We know he had been for many years interested in the ovule, and he made a number of important discoveries respecting it. Closely bound up with this topic were his studies on the Cycads and Conifers. He observed the plurality of embryos in the seeds of these plants, and, indeed, makes a reference to the phenomenon of polyembryony in the Prodromus, in which, as in most of his systematic works, morphological observations of the highest value are scattered, though embodied in very compressed phrases, amongst the descriptions of species. But every now and then when writing on one subject he seems to be carried away with the rush of his ideas on general questions. Thus in a memoir on the genus Kingia he entitles the paper, possibly to save his face after he had written it, "Character and Description of Kingia; a new genus of plants found on the south-west coast of New Holland. With observations on the Structure of its unimpregnated Ovulum, and on the female flower of Cycadeae and Coniferae."

This paper is, perhaps, one of the most important of his works, for it was there that, having briefly dismissed the genus Kingia, he "let himself go" on the ovule, and then in a masterly dissertation, puts forward his view on the gymnospermic nature of the Cycads and Conifers.

He summarises what was known at that time as to the structure of the ovule, acutely criticising the views of the various authors he cites. He emphasises the need of studying the development in order successfully to interpret the mature structure. He insists on the origin of the seed coats from the integuments, on the orientation of the embryo within the amnios (embryo sac), and on the distinction between the true albumen which is contained in this "amnios" and the albumen "formed by a deposition of granular matter in the cells of the nucleus" (nucellus), i.e. the perisperm, and he goes on to suggest that in some of these cases the "Membrane of the amnios seems to be persistent, forming even in the ripe seed a proper coat for the embryo.... This is the probable explanation of the structure of true Nympheaceae" ... here he seems to have overlooked the rudimentary endosperm which is really present. Finally he sums up an admirable account of the whole matter as follows:—"The albumen, properly so-called, may be formed either by a disposition or secretion of granular matter in the utriculi of the amnios, or in those of the nucleus itself, or lastly that two substances having these distinct origins and very different textures may coexist in the ripe seed as is probably the case in Scitamineae."

He then goes on at once to argue that the apex of the nucleus is the point of the ovulum where impregnation takes place, and adds that "all doubt would be removed if cases could be produced where the ovarium was either altogether wanting or so imperfectly formed that the ovulum itself became directly exposed to the action of the pollen or its fovilla." This leads him at once to enunciate his view of the gymnospermy of Cycads, Conifers and Gnetaceae. He reviews very fully the opinions that had been expressed by others as to the real structure of the female organ, especially of Pinus, and he mentions the fact that he himself in the botany of the Flinders' voyage had previously held the view that a minute perianth was present in the Pine, a view which, as he says, "On reconsidering the subject in connection with what I had ascertained respecting the vegetable ovulum" he had now abandoned.

The morphology of the male sporophyll of Cycas, however, presents a great difficulty, and Brown, less fortunate here, discusses a number of what seemed to him possible explanations. The recognition of Sporangia was remote, and the effort to homologise the numerous pollen sacs either to grains of pollen which, bursting, liberated fovilla, or to male flowers, or to explain them in other ways, was not very successful. The fact is this was a piece of morphology for which the age was not ready. We must recollect that the comparative morphology of the ovule (in the wide sense) was not attempted. Brown's main contribution to the understanding of this structure consisted in the empirical accuracy with which he elucidated the actual structure—he made no attempt to frame a comparative morphology, for the simple reason that in the condition of knowledge at the time no such comparative morphology was possible or even dreamed of.

Two other remarkable discoveries now demand our attention, and both are instructive as shewing the keenness with which his highly trained powers of observation followed up the clues which his brilliant intellect had enabled him to descry. It was while engaged on a study of the Orchids and Asclepiads that he was led to recognise the existence of the cell nucleus. He worked almost exclusively with what we should call a dissecting microscope. One of his instruments is preserved in the Natural History Museum, and it is well to examine it and reflect on how much may be discerned even with a very primitive instrument if only a good brain lies behind the retina. The "microscope" contains a number of simple lenses of various powers, the highest about 1/32" F.L. It is easy with such an instrument to see the nucleus in the epidermal cells when one knows it is there, but to have discovered it, and at a time when the technique of staining, &c., was simply non-existent, was a triumph of genius. Brown, of course, could not fully appreciate the great importance of his discovery, but he quite realised that he was dealing with no isolated or trivial fact, and, with characteristic industry and enterprise, he searched many other plants to find out whether his newly recognised nucleus was general or not; he found it to be so, and we all know how the discovery began at once to bear fruit.

A second observation to which I would refer was also of wide interest, and it was not made merely by chance. Brown was anxious to penetrate if possible into the secrets of fertilisation. He seems to have been pretty sure that something more than the mere "aura" of older writers was concerned in the matter, and while looking into the evidence for the existence or transmission of material substance, he observed that in the fovilla of the pollen there were vast crowds of minute particles which were in a continual state of dancing motion. He hoped that it might be possible to identify these bodies along their track into the ovule, and so to settle the more urgent questions as to the mode of fertilisation. He states that he made his observations with a simple microscope, the focal length of the lens of which was 1/32". Later on he used a much more powerful pocket microscope made by Dollond with power up to 1/70" F.L. He got Dollond to check the results with a compound achromatic microscope, and estimated the size of the particles to be 1/20,000 to 1/30,000". Brown was fully aware that he was not the first observer who had seen these moving particles. They had been already noticed by Needham and by Gleichen, but these writers had paid no special attention to them. Brown's great merit in this matter lies in the admirable way in which he conducted the investigation. At first he thought he had lighted upon something which was essentially a peculiarity of the male elements; then, extending his observations, he had to expand his first idea and admit the "active molecules" to represent a state or condition of living matter generally. As he still further widened the sphere of his investigations, he proved that the same movements occurred in dead tissues, and further that inorganic bodies also exhibited the phenomenon. Later on he found that the movements depended on the minuteness of the particles. He excluded the effect of evaporation, currents and other disturbing influences, and, indeed, the whole investigation shews him to us in the character of an accomplished experimenter as well as a brilliant observer. The complete explanation of these "active molecules," which are in the state generally described as "Brownian movement," still constitutes an unsolved problem, and one finds that it even now continues to occupy the attention of the physicist.

Any attempt adequately to review the whole of Brown's life work is impossible within the limits necessarily imposed by the conditions of a lecture, and I make no pretence to completeness, but will endeavour rather to indicate what appear to be the more important of his many other contributions to science.

His catalogues of the plants collected by those associated with various expeditions, his Kew lists (which were published under Aiton's name) are well known to students of systematic Botany, but his fine monograph on Rafflesia, containing, as it does, many observations of general interest will well repay perusal even after these many years. His studies on Cephalotus, on Caulophyllum (with its remarkable seed formation), as well as his considerable memoir on the Proteaceae, shew him as a naturalist imbued with keen insight and possessed of extraordinarily sound judgment.

But Brown did not confine his attention to phanerogams, but, as might have been anticipated from the studies of his earlier years, pursued his investigations into the little explored field of the cryptogams.

We have seen that as a young man he had been greatly attracted to the study of mosses. Later on he contributed two important papers on these plants to the Linnean Society, one in 1809, in which he described two new genera, one of them Dawsonia, the other Leptostomum, both from Australasia. The introductory remarks in which he discusses the character of the moss capsule, are interesting as shewing how hopelessly impossible it was at that time to arrive at a scientific understanding of its structure, so long as everything was tested by the touchstone of the flowering plants. Ten years afterwards he reverted to the same subject, describing the new genus Lyellia from Nepaul, and comparing it, as was his wont, with allied genera, e.g. Polytrichum, Buxbaumia and many others, with the view of elucidating the significance of its structure. The spores, however, are still spoken of as seeds. The male plant is generally regarded as the barren plant. It is not easy to reconcile the existence of male flowers with the view of Beauvois which Brown seemed still to consider as not disproved, viz. that the seeds and pollen were both contained in the capsule.

Mosses were not the only cryptograms to which he turned his attention. He described a new species of Azolla (A. pinnata) from Port Jackson, and the plant was illustrated by the excellent drawings of Bauer. But here, too, the time was not yet ripe for a morphological understanding of the structure. The megasporangium was thought to be the male flower, the microsporangia being interpreted as capsules containing several seeds (the glochidia). The explanation of the supposed male flower presented difficulties, but he states that the lower cell (i.e. the megaspore) was once found filled with a powder replacing the turbid fluid ordinarily occurring there, and the powder was supposed in some way to be ejected and thence to be conveyed to the female organ.

Ferns also claimed his attention, and among his other contributions he founded the genus Woodsia, calling attention to the character of the involucrum (indusium), which separated it from the other polypodia with which the species had previously been associated.

Brown had always taken a keen interest in fossil plants, although, so far as I am aware, he only wrote one paper on the subject. This one, however, was of considerable importance, for its subject was the Brownian cone of Lepidodendron, called by him Triplosporite, though its true affinities were correctly gauged.

Although, as I have said, Brown was less successful when grappling with cryptogams, he is always worth reading on any subject, and in his own special province, that of the flowering plants, I know of no one amongst the older writers from whom one may learn so much. This is due not only to the genius and erudition which he brought to bear on every problem he attacked, but also to the example he affords of scientific method in handling his subject. In his respect for accuracy, in his cautious attitude, as well as in the single-minded honesty of purpose he everywhere exhibits, he has set an example not only for his own but for all future time.

His personal character made a deep impression on his contemporaries. To his friends he was very faithful, and the unanimous tribute of affectionate (though respectful) admiration affords full proof of this. Like many other strong characters, however, he seems also to have been able at times to shew a rougher side of his nature. He was not generous with his specimens, nor was he always ready to part with information. Asa Gray tells a story of how he encountered this trait of Brown's character. Gray was visiting this country and, of course, made the great botanist's acquaintance. One day Brown told him that he knew of a character by which Rhexia (a genus in which Gray was at that time interested) could be distinguished from some nearly allied ones, and that this character had escaped the notice of De Candolle and others. But Gray could not get it out of him, and it was not till the following week that Brown was induced to part with his secret!

It is interesting to observe the impression the elder botanist made on Gray, and to note the growing admiration with which the younger man speaks of him in the very readable diary he kept of his London visit. It was the same, however, with all. The more intimate the acquaintance the more profound the respect, and sometimes the love, that Brown's personality inspired.

Brown was a keen business man, and well lived up to the traditions of the land of his birth. He gave a remarkable proof of his canniness in the successful outcome of his bargaining with the trustees of the British Museum. Sir Joseph Banks by his will had left him not only his house, but also a life user of the Banksian collections, after which they were to go to the Museum. In 1827 Brown entered into a hard agreement with the trustees to transfer the collections at once to the Museum, he being appointed "under-librarian" at an adequate salary, with a well safeguarded position. He used commonly to take 11 weeks' holiday—a length of vacation which served to differentiate him rather clearly (and to his own advantage) from his colleagues. He successfully countered all official moves designed to encroach on the terms of his agreement whereby his freedom might be curtailed, and his conditions of service be brought more into line with those that obtained elsewhere in the Museum.

He maintained through his life intimate relations with the Linnean Society. He acted during his earlier life as Librarian to the Society, an office which he resigned in 1822. Two years previously he had succeeded to the house in Soho Square which had been left to him by Sir Joseph Banks, and as it was larger than his own requirements demanded, an arrangement was made by which the Linnean Society moved into the vacant rooms, where it remained for a number of years. Brown subsequently became President of the Society (in 1849).

Robert Brown was deservedly acclaimed by his contemporaries as the first botanist of his age, and honours fell to his share even in his earlier years. He was elected a Fellow of the Royal Society in 1811, and twenty-eight years afterwards was awarded the Copley Medal. He was approached in 1819 in connection with the Chair of Botany in Edinburgh, but decided not to sever his intimate connection with Sir Joseph Banks. Abroad he was probably more widely known than in this country, for when on a visit to Prussia the King sent a special carriage to meet him, and decorated him with the Order Pour la Mérite. In England, on the other hand, though held in the highest esteem by his scientific confrères, he shared the obscurity that was the common lot of many of the savants of that age. He was, however, awarded a civil pension, although not without question on the part of certain members of the House of Commons.

He lived to a ripe age, passing away in the year 1858, the 85th of his age. To the last he retained his interest in his life work, and on June 3, a week before he died, he signed a certificate in favour of an Associate of the Linnean Society.

Robert Brown, as we have seen, penetrated more deeply than most of his contemporaries into the secrets of nature, and he enriched the science to which he devoted his long life by discoveries of fundamental importance. But he, no more than others, was able to anticipate, with all his insight, the recognition of the broader bonds of coherence which link up the plant kingdom as a whole. That was only made possible when the researches of Hofmeister, the great Tübingen Professor, had been made known to the world. But it is no reproach to his memory or to his reputation that he should have fallen into error when attempting to elucidate the critical stages in the life history of cryptogams. The historical interest attaching to his mistakes lies in their inevitableness at the time when he was actively working.

It would be as ungracious as it would be futile to attempt to rob the great botanist of the meed of praise which by all that is right belongs to him, because he could not escape from the influence of limiting factors. His supreme merit rests in his wonderful elucidation of the morphology and inter-relationships of the higher plants, and if we judge him by his achievements in this field we shall hardly disagree with v. Humboldt in according to him the title of Facile Botanicorum princeps, Britanniae gloria et ornamentum.


[SIR WILLIAM HOOKER]

1785-1865

By F. O. BOWER

Early pursuits—appointed to Glasgow—Garden administration—teaching methods—appointed Director of Kew—state of Botany—vigorous development of Kew—serial publications—floristic work—descriptive work on Ferns—his record.

"Poeta nascitur non fit." A poet is born, not made. If this be true of poets, much more is it true of botanists. The man who takes up botany merely as a means of making a livelihood, rarely possesses that true spirit of the naturalist which is essential for the highest success in the Science. It is the boys who are touched with the love of organic Nature from their earliest years, who grub about hedgerows and woods, and by a sort of second sight appear to know instinctively, as personal friends, the things of the open country, who provide the material from which our little band of workers may best be recruited.

Such a boy was Sir William Hooker, the subject of this lecture. He was born in 1785, at Norwich. There is no detailed history of his boyhood, but it is known that in his school days he interested himself in entomology, in drawing, and in reading books of natural history, a rather unusual thing at the time of the Napoleonic wars! In 1805, when he was at the age of 20, he discovered a species new to Britain, in Buxbaumia aphylla, and his correspondence about it with Dawson Turner shows that he was already well versed not only in the flowering plants, but also in the Mosses, Hepaticae, Lichens, and fresh-water Algae of Norfolk, his native county. Three years later Sir James Smith dedicated to him the new genus Hookeria, styling him as "a most assiduous and intelligent botanist, already well known by his interesting discovery of Buxbaumia aphylla, as well as by his scientific drawings of Fuci for Mr Turner's work: and likely to be far more distinguished by his illustrations of the difficult genus Jungermannia, to which he has given particular attention" (Trans. Linn. Soc. ix. 275). Clearly young Hooker was a convinced naturalist in his early years, and that by inner impulse rather than by the mere force of circumstances.

Plate XII

[back]

WILLIAM JACKSON HOOKER (1834)

Not that the circumstances of his early years were in any way against his scientific tastes. He inherited a competence at the early age of four, and so was saved the mere struggle of bread-winning. His father was personally interested in gardening, while from his mother's side he inherited a taste for drawing. Moreover, he was early thrown into relations with some of the leading naturalists of his time, chiefly it appears by his own initiative, and doubtless he owed much in those opening years to the advice and stimulus of such men as Dawson Turner, and Sir James Smith. Elected to the Linnean Society in 1806, he became acquainted in the same year with Sir Joseph Banks, Robert Brown, and other leading naturalists. Thus when other young men would be feeling for their first footing, he at the age of 21 had already penetrated into the innermost circle of the Science of the country. For a period of sixty years he held there a place unique in its activity. He shared with Augustin Pyrame De Candolle and with Robert Brown the position of greatest prominence among systematists, during the time which Sachs has described as that of "the Development of the Natural System under the Dogma of Constancy of Species." The interval between the death of Linnaeus and the publication of the Origin of Species can show no greater triumvirate of botanists than these, working each in his own way, but simultaneously.

The active life of Sir William Hooker divides itself naturally into two main periods, during which he held two of the most responsible official posts in the country, viz. the Regius Chair of Botany in Glasgow and the Directorship of the Royal Gardens at Kew. We may pass over with but brief notice the years from 1806 to 1820, which preceded his attainment of professorial rank. Notwithstanding that notable work was done by him in those years, the period was essentially preparatory and provisional, and can hardly be reckoned as an integral part of his official life. He was in point of fact an enthusiastic amateur, one of that class which has always been a brilliant ornament of the Botany of this country, and has contributed to its best work. He travelled, making successive tours in Scotland and the Isles, no slight undertaking in those days (1807, 1808). In 1809 he made his celebrated voyage to Iceland, described in his Journal, published in 1811. But his collections from Iceland were entirely lost by fire on the return voyage. His son remarks that the loss to science was probably greatest in respect of the Cryptogamic collections; this naturally followed from the fact that already he had taken a prominent place as a student of the lower forms, and the field for their study was more open than among the flowering plants of the island. It was among the Cryptogams that Sir William found the theme of his first great work, the British Jungermanniae, published in 1816. Nearly a century after its appearance it still stands notable not only for the beauty of the analytical plates, but as a foundation for reference. It must still be consulted by all who work critically upon the group, subdivided today, but comprehended then in the single genus Jungermannia. During this period he also produced the Musci Exotici, with figures of 176 new species from various quarters of the globe. Thus up to 1820 his chief successes lay in the sphere of Cryptogamic Botany.

Naturally so ardent a botanist desired to widen his experience by travel. But circumstances checked the projects which he successively formed to visit Ceylon and Java, South Africa, and Brazil. In 1814 he went to France, and became acquainted with the leading botanists of Paris. He proceeded to Switzerland and Lombardy, returning in 1815, in which year he married the eldest daughter of his friend Mr Dawson Turner. Meanwhile, at his father-in-law's suggestion he had embarked in a business for which he was not specially fitted by experience or by inclination. It did not prove a success, and as the years drew on, having a young family dependent upon him, he began to look out for some botanical appointment which should at once satisfy his personal tastes, and be remunerative. The chair in Glasgow becoming vacant in 1820 by the transfer of Dr Graham to Edinburgh, he received the appointment from the Crown, largely through the influence of Sir Joseph Banks. He entered upon its duties never having lectured before to a class of students, nor even heard such lectures, but otherwise equipped for their performance in a way that would bear comparison with any of the professors of his time.

Glasgow was in 1820 at an interesting juncture in its botanical history. Though the science of botany had been taught for a whole century in the University, a separate chair had been founded by the Crown only two years before. Moreover, though there had been for a long period a "Physic Garden" in the grounds of the old College, this had proved insufficient, and its position within the growing town unsuitable. Accordingly, in part by grant from the Crown, partly from the funds of the University, but largely by the subscriptions of enthusiastic citizens a Botanic Garden had been founded under Royal Charter in 1817, and opened to the public in 1819. The first blush of novelty had not worn off this new enterprise when a man, already in a leading position, whose successful achievements had shown his quality, acquainted with many of the leading botanists of Europe, and with youth and unbounded energy at his disposal entered upon the scene, and began that course of organisation of Public Botanic Gardens which he continued to the day of his death.

There was nothing to prevent the Glasgow establishment from rapidly taking a leading position. Largely as the result of Hooker's influence and initiative, and assisted greatly no doubt by the zeal with which the movement was supported by individual citizens, and aided by the position of Glasgow as a great commercial centre, contributions to the garden began to come in from every quarter of the globe. Taking the number of species represented as a measure, the growth of the living collections was rapid beyond precedent. In 1821 the number of species living in the garden was about 9000: in 1825 it is quoted at 12,000, while the increase in number from that period onwards was about 300 to 500 per annum. Of these a large number were new species, not previously described or figured. This work Hooker carried out, and the publication of his results widened still further the desire of the officials of other gardens to effect exchanges. In 1828, after it had been in existence but ten years, the Glasgow garden was corresponding as an equal with 12 British and Irish, 21 European, and 5 Tropical gardens, while it had established relations with upwards of 300 private gardens. In 1825 Sir William Hooker published a list of the living plants in pamphlet form, with a plan of the garden, copies of which are still extant. But the following years, from 1825 to 1840 were the most notable in its history as a scientific institution. It is recorded in the minute books that scientific visitors almost invariably expressed the opinion that the garden would not suffer by comparison with any other similar establishment in Europe. It can hardly have come as a surprise to those who had witnessed his work in Glasgow that when a Director had to be appointed to the Royal Gardens at Kew, the post was offered to Hooker. He accepted the appointment and left Glasgow in 1841.

His conduct of the Glasgow professorship from 1820 to 1841 was a success from the first, notwithstanding his entire want of prior experience of such duties. Sir Joseph Hooker, in his speech at the opening of the New Botanical Buildings in Glasgow University, in 1901 pointed out how he "had resources that enabled him to overcome all obstacles: familiarity with his subject, devotion to its study, energy, eloquence, a commanding presence, with urbanity of manners, and above all the art of making the student love the science he taught." Not only students in medicine, for whom the course was primarily designed, attended the lectures, but private citizens, and even officers from the barracks.

Sir Joseph describes his father's course as opening with a few introductory lectures on the history of botany, and the general character of plant-life. As a rule the first half of each hour was occupied with lecturing on organography, morphology, and classification, and the second half with the analysis in the class-room of specimens supplied to the pupils, the most studious of whom took these home for further examination. An interesting event in these half-hours was the professor calling upon such students as volunteered for being examined, to demonstrate the structure of a plant or fruit placed in the hands of the whole class for this purpose. The lectures were illustrated by blackboard drawings, probably these were a special feature in the hands of so experienced an artist as he, and also by large coloured drawings, chiefly of medicinal plants, which were hung on the walls. Another feature, which happily still survives, was the collection of lithographed illustrations of the organs of plants, a copy of which was placed before every two students. The first edition of these drawings appears to have been by his own hand. But in 1837 a thin quarto volume of Botanical Illustrations was produced, "being a series of above a thousand figures, selected from the best sources, designed to explain the terms employed in a course of Lectures on Botany." The plates were executed by Walter Fitch, who was originally a pattern-drawer in a calico-printing establishment, and entered the service of Sir William in 1834. This great botanical artist continued to assist Sir William till the death of the latter, and himself died at Kew in 1892. A number of copies of this early work of Fitch remain to the present day in the Botanical Department in Glasgow.

Other branches, however, besides Descriptive Organography were taken up. Naturally the plants of medicinal value figured largely in the course, which was primarily for medical students. Illustrative specimens, of which Sir William gathered a large collection, were handed round for inspection. These, together with other objects of economic interest finally made their way to Kew, and were embodied in the great collections of the Kew Museums. The branch of anatomy of the plant-tissues was not neglected. Of this he wrote at the time of taking up the duties of the chair, "it is a subject to which I have never attended, and authors are so much at variance as to their opinions, and on the facts too, that I really do not know whom to follow." He continues with a remark which is singularly like what one might have heard in the early seventies, just before the revival of the laboratory study of plants in this country. He remarked that "Mirbel has seen what nobody else can: so nobody contradicts him, though many won't believe him." I can hardly doubt that physiology of plants will also have figured in the course, first because Sir William was himself a successful gardener, but secondly because we have in the Botanical Department in Glasgow the syllabus of the lectures of Professor Hamilton who taught botany in the University in the latter end of the 18th century. In this course physiology took a surprisingly large place, and we can hardly believe that it would have dropped out of Sir William's course altogether. But of this there is no definite record.

Another feature of the teaching of Sir William was the practical illustration of botany in the field, by means of excursions. Of these Sir Joseph tells us there were habitually three in each summer session, two of them on Saturdays, to favourable points in the neighbourhood of Glasgow; but the third, which took place about the end of June, was a larger undertaking. With a party of some thirty students, and occasional scientific visitors from elsewhere, he started for the Western Highlands, usually the Breadalbane range. In those days, before railways, and often with indifferent roads, this was no light affair, and in some cases it involved camping. I do not know whether this was the beginning of those class excursions which have been so marked a feature in the botanical work of the Scottish Universities, but it is to be remembered that his immediate successor in the Glasgow chair was Dr Hutton Balfour, who in later years confirmed and extended the practice, and it has been kept up continuously in the Scottish universities ever since. It was to meet the requirements of such work in the field that Sir William prepared and published the Flora Scotica. The first edition appeared before his second year's class had assembled in 1821. The first Part related to the Phanerogams only, arranged according to the Linnaean system. The second, which seems to have been almost as much a new book as a second edition, contained the Phanerogams arranged according to the natural system, just then coming into general use. It also embodied the Cryptogams, in the working up of which he had the assistance of Lindley and of Greville. The total number of species described was 1784, of which 902 were Cryptogams.

And thus was initiated that profuse and rapid course of publication which characterised the period of office of Sir William Hooker in Glasgow. The duties of the chair were comparatively light, and only in his later years did he extend them voluntarily into the winter months. He worked year in year out, early and late, at his writing, and rarely left home. The 21 years of his professorship were perhaps the most prolific period of his literary production. It was brought to a close in 1841, by his appointment to the directorship of the Royal Gardens at Kew, which had in March 1840 been transferred from the Crown, under the Lord Steward's Department, to the Commissioners of Woods and Forests. Sir William had been for some time desirous of changing the scene of his activities from the relatively remote city of Glasgow to some more central point, and the opening at Kew not only satisfied this wish, but also put him in command of the establishment in which he saw, even in its then undeveloped state, the possibility of expansion into a botanical centre worthy of the nation.

In the spring of 1841 Sir William removed to Kew, taking with him his library, his private museum and herbarium. This was the first of those incidents of denudation of the botanical department in Glasgow, the direct result of the system that held its place in the Scottish Universities till the Act of 1889. Till that date the chair was "farmed" by the professor. Almost all the illustrative collections and books of reference were his private property. Whenever, as has repeatedly been the case in Glasgow, the occupant of the chair was promoted elsewhere, he naturally took his property with him, and the University was denuded, almost to blank walls. Fortunately that is so no longer. But in the present case the collections were removed, and finally formed the basis of the great museums, and of the herbarium of Kew.

At the time of Sir William's appointment Kew itself was in a very unsatisfactory state. The acreage of the garden was small compared with what it now is. The houses were old, and of patterns which have long become obsolete. Only two of them are now standing, viz. the Aroid house near the great gates, and the old Orangery, now used as a museum for timbers. There was no library, and no herbarium. In fact Kew in 1841 was simply an appanage to a palace, where a more than usually extensive collection of living plants were grown. In the course of the negotiations which led up to the transfer to the Department of Woods and Forests it had even been suggested that the collections themselves should be parted with. It was to such an establishment, with everything to make, and little indeed to make it from, that Sir William Hooker came at the age of 55. He had, however, unbounded enthusiasm, and confidence in the public spirit, and in himself: and what was still more to the point, the experience gained in the smaller field of Glasgow, in building up the garden there, combined with a knowledge of plants which was almost unrivalled, and acquaintance with the leading botanists and horticulturalists of Europe. It was then no matter for surprise that he should accept the position, even though the initial salary was small, and no official house was provided.

As the date of Sir William's appointment may be said to be the birth-day of the new development of Kew, it will be well to pause a moment and consider the position of botanical affairs in Europe at that time. The glamour of the Linnaean period had faded, and the Natural System of Classification of Plants initiated by De Jussieu had fully established its position, and had been worked into detail, taking its most elaborate form in the Prodromus Systematis Naturalis of Augustin Pyrame De Candolle. That great luminary of Geneva died in this very year of 1841, leaving his work, initiated but far indeed from completion, in the hands of his son Alphonse. In England, Robert Brown was in the full plenitude of his powers, and in possession of the Banksian herbarium was evolving out of its rich materials new principles of classification, and fresh morphological comparisons. In fact morphology was at this time being differentiated from mere systematic as a separate discipline. Nothing contributed more effectively to this than the publication of Die Botanik als inductive Wissenschaft, by Schleiden, the first edition of which appeared in 1842: for in it development and embryology were for the first time indicated as the foundation of all insight into morphology. But notwithstanding the great advances of this period in tracing natural affinities, and in the pursuit of morphological comparison, branches which would seem to provide the true basis for some theory of Descent, the Dogma of Constancy of Species still reigned. It was to continue yet for 20 years, and the most active part of the life of the first Director of Kew was spent under its influence.

Meanwhile great advances had been made also in the knowledge of the mature framework of cell-membrane in plants. Anatomy initiated in Great Britain in the publications of Hooke, Grew, and Malpighi, had developed in the hands of many "phytotomists," the series culminating in the work of Von Mohl. But it was chiefly the mere skeleton which was the subject of their interest. Eight years previously, it is true (1833), Robert Brown had described and figured the nucleus of the cell, and approached even the focal point of its interest, viz. in its relation to reproduction. But the demonstration of the cytoplasm in which it was embedded was yet to come. In fact, the knowledge of structure omitted as yet any details of that body which we now hold to be the "physical basis of life."

The period immediately succeeding 1841, was, however, a time pregnant with new developments. The study of protoplasm soon engaged the attention of Von Mohl. Apical growth was investigated by Naegeli and Leitgeb. The discovery of the sexuality of ferns, and the completion of the life-story by Bischoff, Naegeli, and Suminski led up to the great generalisation of Hofmeister. And thus the years following 1841 witnessed the initiation of morphology in its modern development. On the other hand, Lyell's Principles of Geology had appeared and obtained wide acceptance. Darwin himself was freshly back from the Voyage of the "Beagle," while Sir Joseph Hooker, then a young medical man, was at that very time away with Ross on his Antarctic voyage, and shortly afterwards started on his great journey to the Himalaya. These three great figures, the fore-runner of Evolution, the author of the Origin of Species, and Darwin's first adherent among biologists, were thus in their various ways working towards that generalisation which was so soon to revolutionise the science of which Kew was to become the official British centre. Well may we then regard this date, and the event which it carried with it, as a nodal point in the history of botany not only in this country, but also in the world at large.

The urgent necessity for such an official centre as Kew now is was patent in the interests of the British Empire. The need of it had already been clearly before the minds of the Parliamentary Commission, appointed a few years before, with Dr Lindley as chairman, to report upon the question of the retaining of the Botanic Gardens at Kew. The report contained the following passage which, while it formulates an ideal then to be aimed at, summarises in great measure the activities of the present establishment at Kew. "The wealthiest and most civilised country in Europe offers the only European example of the want of one of the first proofs of wealth and civilisation. There are many gardens in the British colonies and dependencies, as Calcutta, Bombay, Saharunpore, the Mauritius, Sydney, and Trinidad, costing many thousands a year: their utility is much diminished by the want of some system under which they can be regulated and controlled. There is no unity of purpose among them; their objects are unsettled, and their powers wasted from not receiving a proper direction: they afford no aid to each other, and it is to be feared, but little to the countries where they are established: and yet they are capable of conferring very important benefits on commerce, and of conducing essentially to colonial prosperity. A National Botanic Garden would be the centre around which all these lesser establishments should be arranged: they should all be placed under the control of the chief of that garden, acting with him, and through him with each other, recording constantly their proceedings, explaining their wants, receiving supplies, and aiding the mother country in everything useful in the vegetable kingdom: medicine, commerce, agriculture, horticulture, and many branches of manufacture would derive considerable advantage from the establishment of such a system.... From a garden of this kind Government could always obtain authentic and official information upon points connected with the establishment of new Colonies: it would afford the plants required on these occasions, without its being necessary, as now, to apply to the officers of private establishments for advice and help.... Such a garden would be the great source of new and valuable plants to be introduced and dispersed through this country, and a powerful means of increasing the pleasures of those who already possess gardens: while, what is far more important, it would undoubtedly become an efficient instrument in refining the taste, increasing the knowledge, and augmenting the rational pleasures of that important class of society, to provide for whose instruction is so great and wise an object of the present administration."

Such were the surrounding conditions, and such the aims of Sir William Hooker when he took up the duties of Director of the Royal Gardens. He was, however, given no specific instructions on entering office. He therefore determined to follow the suggestions of Dr Lindley's Report, and in the carrying of them out he had powerful support, both official and other. The original area of the Garden, apart from the Pleasure Grounds and the Deer Park, was small; when first taken over from the Lord Steward's Department by the Commissioners of Woods and Forests, it extended only to about 18 acres, and the Chief Commissioner, Lord Duncannon, was strongly opposed to their enlargement, or to further expenditure upon them. It required methods of diplomacy, as well as determination and energy, not always to be found among scientific men, to carry into effect the scheme laid down in the Report, and success came only slowly. In 1842 additional ground was taken in from the Pleasure Grounds, so as to afford an entrance from Kew Green, now the principal gate of the Garden. In 1843 there were added 48 acres of Arboretum, including the site of the Great Palm House. This was commenced in 1844 and was followed in 1846 by the Orchid House. In 1848 the old storehouse for fruit (close to the fruit garden of the old Palace, now the site of the Herbaceous Ground), was converted into a Museum of Economic Botany, the first of its kind to be established. It was in part furnished by the collections which Sir William had brought with him from Glasgow. It now stands as Museum No. II. In 1850 the Water-Lily House was built, and in 1855 the long house for Succulents. Meanwhile, in 1853, an official house had been found for the Director, while another Crown house adjoining Kew Green was handed over for the growing herbarium and library. These, which were in the main if not indeed altogether the private property of the Director, had up to this time been housed in his private residence. Now they found more convenient accommodation, where they would be more accessible for reference, in a building belonging to the establishment. In 1857 the Museum No. I. was opened. For long the collections had exceeded the space in the older Economic Museum (No. II.). This was, however, retained for the specimens belonging to the Monocotyledons and Cryptogams, while those of the Dicotyledons were arranged in the new and spacious building of No. I. In 1861 a reading-room and lecture-room for gardeners was opened, and in 1862 the central portion of the great range of the Temperate House was completed from plans approved in 1859. The wings which now complete the original design were added many years afterwards. In 1863 the old Orangery was disused as a plant-house, and diverted to the purpose of a Museum for Timbers, chiefly of colonial origin. It is now known as Museum No. III. The above may serve as a summary of the more important material additions to the Kew establishment, made during the life of Sir William Hooker. It will be clear that his activity must have been unceasing, in working towards the ideal sketched in the report of Dr Lindley. His efforts never abated till his death in 1865, in the 81st year of his age. The establishment of Kew has developed further as years went on. But as he left it, the essentials were already present which should constitute a great Imperial Garden. Truly Sir William Hooker may be said to have been the maker of Kew, if regard be taken merely of the material establishment.

In no less degree may he be held to have been the maker of Kew in respect of its scientific collections, its methods, and its achievements. To these his own untiring activity contributed the driving force, while his wide knowledge, and ready apprehension of fact gave the broad foundation necessary for successful action. But as the period of development of Kew in these respects was but the culmination of the work already initiated in Glasgow, it will be well to review Sir William Hooker's scientific achievements over the whole of his professional career, including the Glasgow period together with his later years at Kew.

Taking first the living collections, he had already shown at Glasgow, where the opportunities were more limited than at Kew, a singular success in securing additions to the plants under cultivation. This is now reflected more clearly in the lists which were published from time to time than in any actual specimens still living after the vicissitudes of cultivation of 70 years; though it is not improbable that some of our older specimens date from his period of office. The current floristic serials, many of them produced and even personally illustrated by himself, also form a record of the novelties from time to time secured. This rapid growth of the Glasgow garden has already been noted, and the large number of the plants introduced under his influence. It only required the same methods to be put in practice in the larger sphere of action of the metropolis to ensure a similar, though a far greater result at Kew. Moreover, the official position which he there held as Director, gave an increasing obligation to meet his wishes on the part of foreign and colonial gardens, and other sources of supply. Notable among the many other living collections that resulted was the series of Ferns, already a subject of his detailed study while at Glasgow. In its maintenance and increase he was ably assisted by the Curator, Mr John Smith, himself no small a contributor to the systematic treatment of the Ferns. Hooker's aim was, however, not to forward the interests of any special group of plants, but to make the collections as representative as possible. This is clearly reflected in the various character of the plant-houses successively built at his instigation, and remaining still to testify to the catholicity of his views.

In the days at Glasgow, Sir William had already made his private museum ancillary to the living collections, in his endeavour to demonstrate the characters of the vegetable world. This line of demonstration he further developed after his removal to Kew, and the results, together with later additions, but with methods little changed, are to be seen in the splendid museums of the Gardens at the present time. The specimens were from the first mainly illustrative of Economic Botany, such as are of service to the merchant, the manufacturer, the dyer, the chemist and druggist, and the physician: or to artificers in wood and in textiles. But the interests of the scientific botanist were not forgotten, while a special feature from the first was the portrait gallery of the leaders in the subject. Thus the museums which he initiated, and were indeed the first Museums of Economic Botany ever formed, are now not the least interesting and certainly among the most instructive features of Kew.

But the centre of the Garden for reference and for detailed study is now the herbarium and library, housed in the large building near to the entrance from Kew Green. To those familiar with that magnificent mine of accumulated learning as it now stands, it may be a surprise to hear that it has grown in the course of less than 60 years out of the private collections of Sir William Hooker, and of his friend Bentham. The story of it may be gathered from the sketch of the Life and Labours of the First Director, published by Sir Joseph Hooker in the Annals of Botany in 1903, a work to which I have been largely indebted for the materials for this lecture. The Hookerian herbarium and library were already extensive before it was removed from Glasgow. When the new Director of Kew took up his appointment, neither books nor a herbarium were provided for him: but he was well equipped with those of his own. They were at first lodged in his private house, till in 1853 he moved into the official residence. But the latter did not afford the accommodation for them which the Government had guaranteed. They were therefore placed in a building adjacent to the Botanic Garden. It was further agreed, on condition that the herbarium and library should be accessible to botanists, that he should be provided with a scientific herbarium Curator. Four years afterwards the Royal Gardens came into possession, by gift, of the very extensive library and herbarium of G. Bentham, Esq., which was second only to Hooker's own in extent, methodical arrangement, and nomenclature; and it was placed in the same building. The two collections in considerable degree overlapped, being derived from the same sources. But one great difference between them was that Bentham confined his herbarium to flowering plants, while Hooker's rapidly grew to be the richest in the world in both flowering and flowerless plants. Finally after his death it was acquired by purchase for the State in 1866, together with about 1000 volumes from his library, and a unique collection of botanical drawings, maps, MSS., portraits of botanists, and letters from botanical correspondents, which amounted to about 27,000. These were the prime foundations of the great herbarium and library now at Kew. Great additions have since been made by purchase and by gift, and the building has been repeatedly extended to receive the growing mass of material. But for all time the character and individuality of the collections will remain stamped by the personality of those two great benefactors, Bentham and the first Hooker.

Sufficient has now been said to indicate that Hooker's work was that of a pioneer, in providing the material foundation necessary for the further study of the science, not only in this country, but also in the furthest lands of the Empire. He supplied a coordinating centre for botanical organisation in Britain, and for that service he has earned the lasting gratitude of botanists. It remains to review his own published works, and base upon them some estimate of his more direct influence upon the progress of the science. We shall see that in this also his work was largely of that nature which affords a basis for future development. It was carried out almost entirely under pre-Darwinian conditions. He was pre-eminently a descriptive botanist, who worked under the influence of the current belief in the constancy of species. But his enormous output of accurate description and of delineation of the most varied forms, has provided a sure basis upon which the more modern seeker after phyletic lines may proceed.

There have been few if any writers on botanical subjects so prolific as Sir William Hooker, and probably none have ever equalled him in the number and accuracy of the plates which illustrated his writings. Sir Joseph Hooker estimates the number of the latter at nearly 8000, of which about 1800 were from drawings executed by himself. The remainder were chiefly from the hand of Walter Fitch, who acted as botanical limner to Sir William for thirty years, showing in the work fidelity, artistic skill and extraordinary rapidity of execution. The numbers quoted give some idea of the magnitude of the results.

For the purpose of a rapid review of the chief writings of Sir William's later years, they may be classified under three heads, viz. (1) Journals, (2) Floristic works, and (3) Writings on the Filicales. Taking first the Journals, one of the most remarkable features about them is the apparent variety and number of the enterprises on which Sir William engaged: this is, however, explained when they are pieced together as they will be found below. His connection during 45 years with large and growing gardens, into which the most varied living specimens were being drafted in a constant stream, put him in possession of a vast mass of facts, detached, but needing to be recorded. The materials were thus present for that type of publication styled a Botanical Miscellany. The majority of the serials which he edited took this form, and though published under various titles, dictated in some measure by the source of their publication, more than one of them was a mere continuation of a predecessor under a different title. The first of them appeared under the name of the Exotic Flora, in three volumes (1823-7), with 232 coloured plates illustrating subjects from the Gardens of Glasgow, Edinburgh, and Liverpool. But owing to his taking up in 1827 the editorship of the Botanical Magazine, then in a critical position, the Exotic Flora ceased, and its materials swelled the pages of the more ancient serial, with which he was connected till his death.

To those not intimately acquainted with the other serials edited by Sir William, their relations are difficult to trace. But Sir Joseph Hooker has given their titles in series, with their dates, as follows:

Botanical Miscellany. 3 vols. 1830-33.
Journal of Botany. 1 vol. 1834.
Companion of the Botanical Magazine. 2 vols. 1835-36.
Jardine's Annals of Natural History. 4 vols. 1838-40.
The Journal of Botany (continued). Vols. ii.-iv. 1840-42.
The London Journal of Botany. 7 vols. 1842-48.
The Companion of the Botanical Magazine. (New Series. 1845-48.)
London Journal of Botany and Kew Gardens Miscellany. 9 vols. 1849-57.

From this list it appears that throughout a long term of years, though under varying titles, the stream of information gathered chiefly through garden management was edited and published, taking the form of 28 volumes, with 556 plates.

The "Floristic" works of Sir William Hooker began with the second edition of Curtis's Flora Londinensis, in five folio volumes, upon which he worked from 1817 to 1828. He contributed a large proportion of the plates from his own drawings, while the descriptions throughout (excepting those of the plates on Algae and Fungi by R. K. Greville) were enlarged, and rewritten by him. He was in fact the real author of the work, which, however, was so badly edited—even the letter-press was not paged—that citation of it was impossible, and it never took its proper place as a scientific work. Sir Joseph Hooker points out that the second edition was not properly styled Flora Londinensis, since it included many species which are not indigenous anywhere near London. But these were the lapses of the editor, not of the author and artist. Minor works were the accounts of the plants collected on Parry's and Sabine's Arctic voyages (1823-28), but the Flora Boreali Americana was a more important undertaking. It appeared as two quarto volumes (1829-40), in which 2500 species were described with numerous illustrations. It was based on the collections of various travellers, and included ferns and their allies. In 1830 came the first edition of the British Flora, a work which was continued through eight editions, the last being in 1860, and it contained 1636 species. The botanical results of Beechey's voyage in the "Blossom" to the Behring Sea, the Pacific Ocean, and China were produced jointly with Dr Walker-Arnott in 1830-41, as a quarto volume, with descriptions of about 2700 species, and notable for the diversity of the floras included. In 1849 the Niger Flora appeared, dealing with the collections of Vogel on the Niger expedition of 1841. But the most remarkable of all these floristic works was the great series of the Icones Plantarum. It was initiated in 1837 for the illustration of New and rare plants selected from the Author's Herbarium, and was continued by him till his death in 1865. Owing to the munificence of Bentham's bequest to the Kew Herbarium for its continuance and illustration, it remains still as the principal channel for the description and delineation of new and rare plants from the Kew Herbarium. The fact that the number of the plates is now about 3000 gives some idea of the magnitude of this work, which was started by Sir William Hooker in the later days of his Glasgow professorship.

It might well be thought that the production of the works already named would have sufficed to occupy a life-time, especially when it is remembered that they were produced in the intervals of leisure after the performance of the official duties of a professor, and later of the Director of the growing establishment at Kew. But there still remain to be mentioned that noble series of publications on the Filicales, which gave Sir William Hooker the position of the leading Pteridologist of his time. The series on ferns began with the Icones Filicum (1828-31) in two folio volumes, with 240 coloured plates by R. K. Greville, the text being written by Hooker. The same authors again cooperated in the Enumeratio Filicum (1832), a work projected to give the synonymy, citation of authors, habitat, and description of new and imperfectly known species. But it only extended to the first 13 genera, including the Lycopodineae, Ophioglosseae, Marattiaceae, and Osmundaceae, and was then dropped. Here may be conveniently introduced a number of volumes, which were for the illustration of ferns, but not systematically arranged. They were issued from time to time, and collectively give a large but not a coordinated body of fact. They were, the First Century of Ferns, issued in 1854; the Filices Exoticae in 1859; a Second Century of Ferns in 1861; British Ferns also in 1861, and Garden Ferns in 1862.

There still remain to be mentioned three great systematic works on ferns, each of which is complete in itself, viz. the Genera Filicum, the Species Filicum, and the Synopsis Filicum. The first of these was the Genera Filicum (1838-40), a volume issued in parts, royal octavo, with 126 coloured plates illustrating 135 genera. It goes under the joint names of Francis Bauer and Sir William Hooker, the latter being described on the title-page as Director of Kew. But the preface is dated May 1, 1838, from Glasgow, and it was printed at the University Press. The title-page further states that the plates were from the drawings of F. Bauer, but Sir Joseph Hooker points out (l.c. p. cviii), that "of the whole 135 genera depicted I think that 78 are by Fitch." Sir William in the preface states that "The plates have all been executed in my own residence, and under my own eye, in zincography, by a young artist, Walter Fitch, with a delicacy and accuracy which I trust will not discredit the figures from which they were copied." The result is one of the most sumptuous volumes in illustration of a single family ever published. After 70 years it is still the natural companion of all Pteridologists. At its close is a synopsis of the genera of ferns, according to Presl's arrangement, which Sir William describes as "the most full and complete that has yet been published." But in the preface he remarks that Presl "has laid too much stress on the number and other circumstances connected with the bundles of vessels in the stipes, which in the Herbarium are difficult of investigation." This is a specially illuminating passage for us at a time when anatomical characters are becoming ever more important as phyletic indices. It shows that readiness of diagnosis was for him a more important factor than details of structural similarity.

In the preface to the Genera Filicum Sir William says, he "would not have it to be understood that the Genera here introduced are what I definitely recommend as, in every instance, worthy of being retained.... A more accurate examination of the several species of each Genus, which are now under review in the preparation of a Species Filicum, will enable me hereafter to form a more correct judgement on this head than it is now in my power to do." The five volumes of the Species Filicum thus promised, appeared at intervals from 1846 to 1864. The work is briefly characterised by Sir Joseph as consisting of "descriptions of the known Ferns, particularly of such as exist in the Author's Herbarium, or are with sufficient accuracy described in the works to which he has had access, accompanied by numerous Figures. This which will probably prove to be the most enduring monument to my father's labour as a systematist and descriptive pteridologist, is comprised in five 8vo volumes, embracing nearly 2500 species, with 304 plates by Fitch, illustrating 520 of these. It occupied much of the latter eighteen years of his life, the last part appearing in 1864." The work is a most extraordinary mine of detailed information. It is a condensed extract from his own unrivalled Herbarium of Ferns, with exact data of distribution, and collectors' numbers. Probably no family so extensive as this has ever been monographed by a single hand with such minuteness and exhaustive care. It is the classic book of reference in the systematic study of ferns. But as indicated in the preface to the Genera, the judgement as to which genera are "worthy of being retained" had been exercised. The result was the merging of a number of the genera of Presl, and others, into neighbouring genera. Though this was somewhat drastically done in the Species Filicum, it comes out more prominently in the work upon which he entered in the very last months of his life, viz. the Synopsis Filicum. This work was published in 1868 as an octavo volume, with 9 coloured plates, containing analyses of 75 genera. Sir Joseph tells us (l.c. p. 117) that "Upon this work my father was engaged up to a few days before his decease, and 48 pages of it in print were left on his desk, together with the preface and much matter in manuscript. After full consideration it appeared to me that, with the material in hand, the aid of the Species Filicum completed only three years earlier, and of the Fern Herbarium in perfect order, and named according to his views, a competent botanist should find no great difficulty in carrying on this work to its completion. Such a botanist I knew my friend Mr Baker to be, and also that he had made a study of Ferns, and accepted my father's limitations of their genera and species. I therefore requested that gentleman to undertake the work, which to my great satisfaction he has done. The Synopsis Filicum contains 75 genera, and about 2252 species, inclusive of Osmundaceae, Schizaeaceae, Marattiaceae, and Ophioglossaceae, which are not included in the Species Filicum." This work summarised the Pteridological results of Sir William Hooker's life. The total number of plates of ferns published by him is about 1210, embracing 1267 species, of which about 250 appeared under the joint authorship of Dr Greville and himself. These figures are in themselves sufficient evidence of the extent of his Pteridographic work.

It has been noted that the number of genera in the Genera Filicum was 135, maintained approximately according to the limitations of Presl in his Tentamen Pteridographiae: allowance has, however, to be made for 23 genera of Parkeriaceae, Schizaeaceae, Osmundaceae, Marattiaceae, Ophioglossaceae, and Lycopodiaceae, which were omitted in the Tentamen. But in the Synopsis Filicum there were only 75. It is true that the three genera of Lycopodiaceae were excluded also from the Synopsis, but still there is the wide discrepancy between 132 of Presl's genera as against 75 in Hooker's Synopsis. This at once indicates a salient feature of his method. He merged a large number of genera, ranking many of the smaller ones as sub-genera under the more comprehensive headings. Doubtless the reasons for this were various. One was his mistrust of anatomical data, which it must be confessed Presl put too much in the fore-front. The very first sentence of the Tentamen runs thus "Vasa plantarum principale signum esse ex eo patet, quod exinde primaria divisio omnium plantarum exstitit." But occasionally Sir William explained his reason in a specific case. Thus in the question of Kunze's sub-genus Plagiogyria of the genus Lomaria, which Mettenius had raised to the dignity of a distinct genus, he explained his reasons for merging it into the genus Lomaria. Mettenius had laid stress upon various characters, but especially on the oblique annulus as distinctive. On this Hooker remarks "even should the capsules in all the species referred to Plagiogyria prove to be helicogyrate, yet the habit and sori are so entirely in accordance with true Lomaria that, unless the student has the opportunity of examining very perfect specimens, or unless he examines the structure of the annulus of the very minute capsules under the high power of the microscope, the genus cannot be identified. Kunze only proposed to form a group or section under the name of Plagiogyria, but even that would be found inconvenient to retain in a work whose main object is to assist the tyro in the verification of genera and species: and natural habit is often a safer guide than minute microscopic characters." Thus we see that in his method convenience of diagnosis is put before the use of important structural characters. I have recently found reason to uphold the opinion of Mettenius on this point, and to confirm Plagiogyria as a substantive genus.

Similarly, the genera Lophosoria and Metaxya will have to be detached from Alsophila: Prantl removed Microlepia from Davallia into his new family of the Dennstaedtiinae, where they are related with Patania (Dennstaedtia), which Hooker had merged into Dicksonia. Goebel also has detached Hecistopteris which Hooker had placed in Gymnogramme, and has placed it with the Vittarieae. These are all examples of the way in which further study is tending to reverse the excessive merging of genera, which Hooker carried out in the interest of diagnostic convenience.

The general conclusion which we draw from contemplating Sir William Hooker's work on the systematic treatment of ferns is that it was carried out consistently to the end under the influence of the current belief in the Constancy of Species. The methods were not phylogenetic, as they have since become under the influence of evolutionary belief. The problem seems to have been to depict and describe with the utmost accuracy the multitudinous representatives of the Filicales, and to arrange them so that with the least possible difficulty and loss of time any given specimen could be located and named. But the result is not to dispose them in any genetic order. Even the arrangement of the larger genera according to the complexity of branching of the leaves appears as a method of convenience rather than of genesis, and subsequent inquiry is tending to show that so far as such series really exist, they will require to be read in converse. Goebel, in his paper on Hecistopteris, remarks that "the systematic grouping of the Leptosporangiate Ferns, as it is at present, e.g. in the Synopsis Filicum, is artificial throughout; it is adequate for the diagnosis of Ferns, but it does not give any satisfactory conclusion as to the affinity of the several forms." He proceeds to say that "a thorough investigation, taking into account the general characters of form of both the generations, will be necessary before the naturally related groups, and their relations to one another, are recognised in the plexus of forms of the Polypodiaceae."

Such observations as these must not be understood in any sense of disparagement of the work of this great man. They are merely intended to indicate his historical position. The Origin of Species was, it is true, published some few years before the Synopsis Filicum. But we must remember that Sir William Hooker was already an old man. Few men over 70 years of age alter their opinions, and the labourer who had grown old under the belief in the Constancy of Species could not in a few brief years be expected to change the methods of thought of a long and active life. We must take Sir William Hooker as perhaps the greatest and the last of the systematists who worked under the belief in the Constancy of Species. Because we have adopted a newer point of view, and take into consideration facts and arguments which were never his, and come to different conclusions now, is no reason for valuing one whit the less the achievements of this great botanist.

His published work was just as much fundamental as was his official work. We have seen how he provided in Kew the means of indefinite development later, by constructing the coordinating machine with its collections and its libraries. In somewhat similar sense his publications were also fundamental. He did not himself construct. There is, I believe, no great modification of system or of view which is to be associated with his name. But in the wealth of trustworthy detail, recorded both pictorially and in verbal diagnoses, he has supplied the foundation for future workers to build upon, laid surely and firmly by accurate observation, and therefore durable for all time.

One remark I may make as to the effect of his work on the trend of botanical activity in this country. We have noted that anatomy was not Sir William Hooker's strong point. He and many of his contemporaries did not pursue microscopic detail, and indeed seem to have avoided it. He was, however, a dominating botanical influence of the middle Victorian period. May we not see in these facts, combined with the extraordinary success of the systematic work carried on by himself, or under his guidance, a probable cause of that paralysis of laboratory investigation which ruled in Britain till the early seventies? British botany was at that time almost purely descriptive. The revival came within 10 years of the death of Sir William, and it is well to remember that the immediate stimulus to that revival was given by a botanist, who became later the Director of Kew, and was allied by marriage with Sir William Hooker himself. I mean, Sir William Thiselton-Dyer. The stimulus had its result in the active development of anatomical and physiological study of plants, as we see it in this country to-day. For a time the swing of the pendulum in this direction was too extreme and exclusive. I remember very well an occasion when Sir Joseph Hooker said to me, "You young men do not know your plants." And it was true, though it may be added that few indeed, at any time, knew them in the full Hookerian sense. A saner position is gradually being attained. But even now the systematic study of Angiosperms receives far too little attention among us, and is an almost open field for the young investigator.

I would conclude with one word of advice, which naturally springs from contemplation of a life-work such as Sir William Hooker's. We sometimes see wide-reaching phyletic conclusions advanced by writers who we know have not specific knowledge of the groups in question. Let us learn from Sir William the importance of specific knowledge. It is only on such a foundation that sound phyletic argument can proceed. Let us always remember that it is better to carry out sound work on species, as he did, without theorising on their phyletic relations, than to promulgate phyletic theories without a sufficient specific knowledge of the families themselves. The former will probably be lasting work, the latter runs every chance of early refutation. Under the most favourable circumstances analytical work is as a rule more durable than synthetic. Sir William Hooker's contributions fall chiefly under the former head, and will be found to have a corresponding element of durability.


Plate XIII

[back]

JOHN STEVENS HENSLOW (1851)

[JOHN STEVENS HENSLOW]

1796-1861

By GEORGE HENSLOW

An all-round man—appointed Professor of Mineralogy at Cambridge in 1826, but succeeds Martyn in the Chair of Botany a year later—essentially an ecologist—his famous teaching methods—"practical work"—his wide interests—country life—the educational museum—village amenities.

The scientific career and parochial life of the late Rev. Prof. J. S. Henslow, are described by my late uncle, the Rev. Leonard Jenyns, in his Memoir[96]. I propose adding and illustrating some of his more personal traits, habits and pursuits as a scientific man, and to deal especially with his educational methods. His studies in science were by no means confined to one branch, thus Geology was first ardently pursued in conjunction with Sedgwick. It was in a tour together in the Isle of Wight in 1819, that they proposed establishing a "Corresponding Society, for the purpose of introducing subjects of natural history to the Cambridge students." The outcome of this idea, which was subsequently abandoned, was the "Cambridge Philosophical Society," of which "Henslow, B.A. was elected secretary in 1821[97]."

Conchology and Entomology claimed his attention; one of his first discoveries was the rare insect Macroplea equiseti, his identical "find" being figured in Curtis' British Entomology, while he found the bivalve Cyclas Henslowiana, so named by Dr Leach, at Baitsbite on the Cam. His first and best collection of insects was presented to the Cambridge Philosophical Society. Other discoveries were made in after years, and are referred to by Jenyns.

On the death of Dr E. D. Clarke, he offered himself for the Professorship of Mineralogy. Chemistry, as well as the study of Minerals, now occupied his attention. He was only 26 years of age, and still B.A., when elected to that chair. At the age of 27 he published his Syllabus of Mineralogy in 1823, "A useful manual of reference to all persons studying Mineralogy, independently of the immediate circumstances which led to its publication[98]."

In 1827 Prof. Martyn died and Prof. Henslow was elected to the chair of Botany, being succeeded by Whewell on resigning the Professorship of Mineralogy. He now turned his attention to the study of Botany; but he never paid much heed to systematic botany, for his taste lay in the direction of what is now called Ecology. He then wrote "Botanists would rather receive one of our most common weeds from a newly-discovered or newly-explored country, than a new species of an already known genus. There are higher departments of Botany than mere collectors of specimens are aware of; for to ascertain the geographical distribution of a well-known species is a point of vastly superior interest to the mere acquisition of a rare specimen." À propos of this he made elaborate epitomes of the Botanical Geographies of De Candolle, and of the writings of Humboldt, Poiret and others. His MS. is not unlike a fore-runner of Schimper's Botanical Geography of to-day. He thus expressed himself in the Introduction to his Descriptive and Physiological Botany (1836):—in the second section headed Botany ... "This enquiry should extend as well to the investigation of the outward forms [of plant organs] and the conditions in which plants, whether recent or fossil, are met with, as to the examination of the various functions which they perform whilst in the living state and to the laws by which their distribution on the earth's surface is regulated." Again, in the Preface to the Flora of Suffolk by himself and E. S. Skepper, he wrote:—"We had thought of saying something in regard to the Geographic distribution of the species, but found our material insufficient for treating this question to advantage." As an alternative he suggests interleaving the 'Catalogue,' as the book was also called, in which observers could add observations on the Geological formations and superficial soils upon which each species grows, e.g. Chalk, the Crags, Gravels of post-tertiary period, &c. as well as maritime, marshy, boggy, healthy and cultivated soils[99].

Though he wrote against mere collecting, he was an insatiable collector himself; but it was always with some definite, useful and generally educational purpose, and the best of his collections invariably went to museums, especially those of the Philosophical Society of Cambridge, of Kew and of Ipswich. The first still has the fishes he collected at Weymouth in 1832, solely for his brother-in-law L. Jenyns, the author of The British Vertebrate Animals.

One of the first things to which his attention was directed was the Cambridge Botanic Garden. It was far too small and in the centre of the town, where the scientific buildings are now erected. He urged the necessity of a new one, but it was not till 1831 that the present site was secured; the first tree, however, was not planted until 1846.

His educational method of teaching was totally different from the mere instructional method of all previous lecturers. To cram up facts was the students' duty in the Medical schools, where botany was supposed to be taught. To learn by their own discovery was his new method, and so each student educated himself by examining and recording plant structures first seen by his own dissections. Having long been in the habit of observing himself, he was early convinced of the importance of practical work and he always had "demonstrations," as he called them, from living specimens. Each member of the class had a round wooden plate for dissecting upon. He had only sixteen lectures to give, but he succeeded in arousing an enthusiasm in some, and interest in all who attended, and thus many came besides undergraduates, as Dr Ainslie, the Master of Pembroke.

The value of "practical work" put a stop to cram, and he was the first to introduce the examination of flowers, not only at Cambridge but for the degrees in the University of London. "He insisted," wrote Dr Hooker, "that a knowledge of physiological botany, technical terms, minute anatomy, &c. were not subjects by which a candidate's real knowledge could be tested, for the longest memory must win the day, the less did it test the observing or reasoning faculties of the men. He, therefore, insisted in all his examinations that the men should dissect specimens, describe their organs systematically and be prepared to explain their relations, uses and significations in a physiological and classificatory point of view; and thus prove that they had used their eyes, hands and heads, as well as their books[100]."

His natural bent and interest were in the investigations of the phenomena of plant-life, e.g. the colours of flowers, the laws of phyllotaxis and what would now be called biometrical studies, e.g. of the variations in the leaves of Paris and the cotyledons of the sycamore, hybridization, teratology and the origin of varieties, etc. The geographical distribution of plants and the effects of external agencies upon them were also specially studied, as is recorded in the note-book mentioned. He was thus a genuine Ecologist without knowing it. He published about 50 papers on botanical subjects during his professorship from 1825 to 1861, in which he was more than once the pioneer of special branches of study since taken up, as in the above mentioned hybridization and varietal differences under cultivation, etc.; for experiments were made on the specific identity between the Primrose, Oxlip, Cowslip and Polyanthus. He raised many varieties, which were often permanent or "Mutations"; though sometimes reversions appeared, concluding that when one form thus changed to another that was sufficient proof of identity.

Though his occupations were necessarily much changed at Hitcham, of which he became the Rector in 1838, from those at Cambridge, he by no means neglected science; but he utilized it in different ways. Thus having a good knowledge of chemistry, he endeavoured to make the farmers interested in more scientific methods of farming than they had been accustomed to. He gave lectures on the fermentation of manures and he wrote fifteen "Letters to Farmers," first published in the Bury Post and then separately. He even proposed that they should make experiments themselves. For this purpose he issued schedules to about 70 farmers who asked for them.

The experiment was to test Liebig's suggestion that gypsum should be added to manure heaps to fix the ammonia. Unfortunately there is no record of the results[101].

The most important discovery from an industrial point of view, due to his knowledge of Geology, was undoubtedly that of the phosphate nodules known in the trade as "Coprolite," at Felixstowe in 1843, when he and his family were staying there. The cliffs are formed of "London clay," topped by the "Red Crag," between which is a bed of rolled, brown pebbles, once, with the crag, forming an ancient beach. Where the white "Coralline[102]" Crag occurs, the pebble bed lies below it. This accounts for the fact that it contains remains of Miocene animals, such as teeth of the Hipparion, or ancestor of the horse.

As the sea is always encroaching, the cliff has much "talus" in places, upon which was strewed the debris from the crag, including vast quantities of pebbles. Observing that they often contained a shark's tooth or other organic remains, he suspected that they might be composed partly of phosphate of lime. This proved to be the case, for the first analysis made by Mr Potter of Lambeth showed 54% (1844). He communicated the fact to Mr, subsequently Sir, John Bennet Lawes, who desired a ton of nodules to be forwarded to him for experiment. This led to their becoming a recognised article of trade. Large fortunes have been realised in Suffolk by owners of land containing the nodule bed, though frequently occurring at a considerable depth.

In 1848 he advocated the use of phosphate nodules in the "Greensand" beds of Cambridgeshire. These also soon became a commercial commodity.

In 1849, Professor Henslow delivered the inaugural address on the foundation of the Ipswich Museum, the object being, for "Giving Instruction to the working Classes in Ipswich in various branches of Science and more especially Natural History." It affords the best example of his views generally upon the uses of Science, not only as being of indisputable value in all useful arts, but as a means of education by dispelling the then prevailing ignorance and harmful prejudices rife in those days, even among men learned in other subjects at our Universities.

He illustrates his remarks from the chief sciences, as in Astronomy, by its importance in understanding the laws of storms and tides, which Whewell was then studying. Agriculture was touched upon, in showing the importance of a knowledge of Vegetable Physiology, and illustrated by the parasites, yellow Rattle and Wheat-rust. He insisted upon the educational value of accuracy, demanded of the scientist, and the avoiding a priori assumptions and hastily drawn deductions from insufficient data. But even the philosopher himself does not always escape from the imputation; for the farmers at Hitcham were firmly convinced that the "Piperage" or Barberry itself blighted the wheat. The Professor could not convince them that the red colour of the spots on the leaves of the bush was not due to the same fungus as that on the wheat. Indeed, he observes (in a MS.): "It is not likely (as some suppose) that it is due to the influence of Æcidium berberidis." We now know that the farmers were nearer the truth and the botanists were wrong. But one point the Professor established—and I possess his dried specimens to this day—and that was, that the "mildew," a black fungus, subsequently arises from the same substratum or mycelium as the rust. The mildew, then, throws off orange-coloured dust-like "spores," which attack the Barberry, and so the cycle is completed[103].

I still possess his dried specimens of other species of Æcidium attacking various kinds of plants, which he collected for comparison with that of the Barberry.

As abortive attempts to find coal had been made in some counties, he pointed out the value of Geology in at least intimating where coal was possible and also where it was impossible. It was not, he said, that a "little knowledge is a dangerous thing," as no one would become learned if he did not begin with a little, but it was the hasty deductions that were valueless and often dangerous.

As a practical illustration of this under the false assumption that the roots made the "bulb" of mangold-wurzel, he noticed the common practice of stripping off the leaves of plants, and explained to them that unless they were required for fodder, it was a wasteful practice, as the leaves (and not the roots, as they supposed) were the makers of the "bulbs." Indeed, in 1860, Prof. Jas. Buckman proved that it lessens the weight of mangold-wurzel by nearly one half.

Science was not even shut out at the Hitcham Horticultural Society's Exhibitions, for he always had his own marquee erected and a large board over the entrance with "The Marquee Museum" upon it, the letters being composed of Hitcham fresh-water mussel shells. During the day of the show, he would deliver "lecturets" from time to time on the various specimens exhibited.

The following are samples of the latter. Cases of land and fresh-water shells of Hitcham. Photographs of microscopic objects enlarged, including the first ever made, by the Rev. H. Kingsley, Tutor of Sidney College, Camb. in 1855. A case containing living specimens of the smallest British Mammal, the harvest mouse. Pearls from British molluscs. The slow-worm and viper in spirits, to show their differences. Hornets' and wasps' nests, naturally mounted, taken by himself, etc.

The Monday afternoon lessons in botany in the village school-room, held after school-hours, were always remarkable for the enthusiasm exhibited by the children. They were perfectly voluntary, but none was admitted to the Third Class until the child had learnt to spell correctly thirteen terms of classification of the classes, divisions and sections. On entering the class they at once began to fill up the "Floral Schedule[104]."

The botanical lesson included:—

1st—Inspection of specimens, anything special noticed and explained.

2nd—"Hard word" exercises. Two or three words (botanical terms) given to be correctly spelt on the next Monday.

3rd—Specimens examined and dissected and floral schedules, traced on slates, to be filled up. Marks allowed for accuracy, etc.

4th—Questions on the plant "organs."

Botanical excursions were made for those only who had received a sufficient number of marks.

The First Class came at certain times to the rectory on Sunday afternoons after Divine Service; when objects of natural history were shown and "such accounts given of them as may tend to improve our means of better appreciating the wisdom, power, and goodness of the Creator[105]."

A printed list of all the wild flowers in Hitcham was always suspended in the school-room, and a rack for named phials, which the children had to keep supplied with flowers as they came into blossom. Of course, little rewards were given to those who first found a flower and those who supplied the greater number, etc.

One of the exhibits of the Horticultural Shows was the collections of wild flowers made by the children. In addition, a public examination in botany was held, and a stranger would often find it a difficult matter to puzzle one of the best pupils, not merely as to the name—a trivial matter—but as to the structure of the flower itself.

The Government Inspector in 1858, wrote as follows in his Report:—"Extra subjects, pretty fair, and among them Botany, excellent; this last being most thoroughly yet simply taught, and by such a system that there can be no cram. As far as a child goes, it must know what it does. The good moral effect of this study on the minds of the children is very apparent."

In those days, I am speaking of the "fifties," Darwin had not enlightened us as to the wonderful adaptations of flowers for fertilization by insects. This adds enormously to the interest of the study—as the present writer soon found with village children of the parishes in which he has lived, and taught them botany—but even without that attraction the Hitcham children were intensely enthusiastic.

The Professor also taught them how to dry plants. The village Herbarium, containing all the plants growing wild in Hitcham, was entirely made by them.

It may be asked by cynics, "What can be the use of teaching science to such children?" It is not the mere fact that a child knows the structure of a rose, but it is the training in accuracy of observation, mind and habit, which the minute and close observation demands, i.e. if it be properly taught, and to secure that, is all important in children, who are naturally inattentive and inaccurate in consequence. In teaching them botany as described above, the child is trained to avoid this bad habit in an interesting way, because inattention is solely due to want of interest.

The Ipswich Museum was a great source of pleasure to him. As President he carried out his plan of making it a "typical" museum, never letting it degenerate into a mere show, as so many country museums are, or at least used to be.

The Ipswich Museum has been a model for all others in that typical series of fossils, etc., are exhibited in the visible cases, all others being relegated to drawers, for students to examine. In allusion to the uses of Museums in his inaugural address referred to above, he remarked:—"Our collections should be viewed as the means of assisting us in the acquisition of real knowledge, and not merely to be gazed at as raree shows, or as only valuable in proportion to the number or scarcity of the objects they contain."

Of course, periodical lectures were delivered by the Professor at Ipswich, and he was a most lucid and admirable exponent.

He was the first to maintain that in museums of animals, they should, whenever possible, as, e.g. with birds, be represented in their natural conditions. With this object he collected nests with the boughs, or whatever it was in which they rested. Since then this plan has been admirably carried out at the Natural History Museum, South Kensington. He also supplied several museums with wasps' and hornets' nests with their surroundings. The plan he discovered most convenient for taking them, was to saturate tow with spirits of turpentine and place it at night in the hole, covered over with an inverted and corked flower-pot. The nest could then be dug up with impunity, as all the wasps were dead or torpid by the following morning. He always preserved the "pavement" or bottom-soil covered with stones which accumulated as the hollow for the nest increased in size. The nest was then suspended over it on rods to show the exact position. It was also half-dissected, to exhibit the interior, all the grubs having been carefully extracted. The village carpenter, the late Mr W. Baker, was a most enthusiastic assistant in taking and mounting the specimens.

When the potato famine occurred in Ireland in 1845-46, the disease was very prevalent in Hitcham. This induced the Professor to explain to his parishioners and others—for he published his recommendations—how they could utilise their rotten potatoes by extracting the valuable starch, which still remained sound within the tubers, even when these were refused by pigs. The process is so simple that it may be mentioned here. The potatoes must be grated (a piece of tin with holes punched through it will do); the pulp is then stirred with a stream of cold water through a hair-sieve. The brown water must be allowed a few minutes for the starch, carried through, to settle. The water is poured off, and the layer of starch must be stirred up and washed with fresh cold water. This may be done two or three times, till it becomes perfectly white. It must then be carefully dried in the sun or in a warm room (our method was to hang it up in small muslin bags in the kitchen); the bags must be repeatedly "kneaded" to prevent its clotting. When perfectly dry, it will keep for any length of time. Of course, it is precisely the same thing as sago, tapioca, cornflour, arrowroot, etc. and can be used like them. All our potatoes in the Rectory garden were rotten, but we recovered at least two sacks of starch. I remember taking a large sponge-cake to school, more or less made with this potato-flour, and making my reverend master somewhat incredulous by telling him it was made out of rotten potatoes!

Professor Henslow printed and circulated the receipt for the extraction of starch, in the village; so that several, who thought it worth while, obtained considerable quantities of starch.

In one of his lectures, dealing with this subject, he pointed out how a good basin of "arrowroot" can be made in ten minutes from two or three fair-sized potatoes; for as soon as the starch has been thoroughly "washed," it is ready for the boiling milk. It is essential the milk or water should be actually boiling, or the granules of starch do not burst and so make the required "jelly."

The school children of Hitcham were by no means left out in the cold as to the knowledge of natural phenomena. They were early instructed as to the harmless nature of toads and slow-worms, which were very abundant, on the one hand; and of the danger of handling a viper, on the other. This last is the only poisonous reptile in England, and easily recognisable by the lozenge-shaped marks down the back. Having specimens in spirit, they had no excuse for confounding them; but, as always happens with children, if there is an alternative of any sort between which they are well taught the difference, some one is sure to get them transposed in his memory. Consequently, a boy came up to the Rectory with his arm greatly swollen; he had been bitten by a viper which he had taken up, thinking it was a slow-worm, because, as he said, it had the marks along its back!

Besides the tiny harvest mice, he at one time possessed for some two or three years two "pet" Jersey toads, or the great crapaud. They were kept in a wire-gauze cage, and it was our delight as children to feed these monsters every morning. A butterfly net swept over the lawn was sure to secure all sorts of flying and jumping creatures. The lid of the cage being lifted up, the net was turned inside out over the toads, and quickly closed. Then began the matutinal breakfast. They would never notice anything that did not move. Seeing, however, say a grasshopper, stir, the toad would stalk it like a cat after a bird; and when within tongue-shot, out came its long tongue like a flash of lightning, and the grasshopper vanished in the flash. Worms were a great delight. Snapping up one in the middle, the two ends were carefully cleaned from earth by passing them between the toes two or three times; then followed a mighty gulp, and all was over.

Shell-traps were always laid about the grass, consisting of slates, under which there would generally be found a various crop of sorts. I have now two glass cases containing all the shells, land and fresh-water, of Hitcham, mounted by the Professor himself. A reward was offered for every specimen of a Helix with the shell reversed. They are very rare, but one was brought by a little boy who discovered it, for he found he was unable to get his thumb into the opening the right way when playing at "conquerors." So he got the only sixpence earned in twenty-three years that the Professor was incumbent of Hitcham. The collection of butterflies was always being added to; now and then a rare one would appear at Hitcham, as, e.g. the Camberwell Beauty. The Professor was walking in the Rectory garden with the late Judge Eagle, of Bury St Edmunds, when one settled on a wall. Mr Eagle stood sentry while the Professor ran indoors for his net. It need hardly be added that the specimen still rests in the collection, which passed into the possession of his son-in-law, the late Sir J. D. Hooker, F.R.S., etc.

I cannot do better than conclude with my uncle's words at the end of his Memoir:—"When a good man dies the world does not cease to benefit from those labours of love which he undertook for his fellow men. Though personally removed from them his example remains; his voice too, is still heard in the lessons left to be handed down to those who come after him. The influences of Professor Henslow's teaching have been felt in other places than those in which he himself taught, they have borne fruit far beyond the obscure neighbourhood in which he first sowed the good seed, and who shall say to what further results they may not grow in years to come, bringing honour to his memory, and what is far more, glory to God? ''A word spoken in due season, how good is it!'"