Designing and Making the Best Solar Cells

After it was discovered that the n-on-p cell was more resistant to radiation, we decided to make an all-out effort to develop an n-on-p cell that could be manufactured in quantity for our new satellite. Since we didn’t know whether we could solve this problem in time to meet the Telstar I launch date, we “hedged” by designing the new n-on-p cells to be the same physical size (one by two centimeters) as conventional p-on-n cells. Thus, if the n-on-p project hit a snag, we probably could use regular p-on-n cells.

As you can imagine, making a solar cell to fit the very high requirements we had set for the Telstar satellite is not an easy job—and making these cells by the thousands is even more of a task. During October, November, and December of 1960 we carried on a crash program in which we made hundreds of experimental cells in our laboratories, using a variety of materials and many different manufacturing techniques.

We perfected a phosphorus diffusion process to develop the very thin n-layer (about one forty-thousandth of an inch thick) that we needed for our special blue-sensitive n-on-p cells. We also had to devise an entirely new way to attach the metallic contacts to the highly polished surfaces of our cells, using a combination of titanium and silver.

Some tricky manufacturing problems also had to be solved once the Western Electric Company began to make the large quantity of cells needed for the Telstar program. For example, during the diffusion of the n-layer of the cell, the silicon slice is surrounded by phosphorus pentoxide vapor, which covers the entire slice with an “n-skin.” This skin must be removed from the bottom of the cell by etching or grit blasting before the p-contact is applied. Another difficult problem occurred when we decided to give our cells an anti-reflection coating. Because polished silicon has a refractive index near 4 and space has an index of 1, silicon will reflect about 34% of visible light from the sun. However, if we apply an anti-reflection layer onto the silicon this percentage of reflection can be considerably decreased. We found that the best substance for this purpose was a layer of silicon monoxide only three-millionths of an inch thick. But it was only after quite a bit of trouble—and scrapping several thousand cells—that we were able to get this coating to adhere properly in the right thickness.