How We Record Flashes from the Mirrors

Now we had finally found a satisfactory way to reflect a train of tiny flashes—much too faint to be seen by the naked eye—from Telstar as it passed across the sky during the night. But our main aim was to record the exact times when these flash bursts occurred. With this information, we could, using the method we described above, tell very accurately both the satellite’s spin axis and its rate of spin. We do not have space to describe the many problems that had to be solved in setting up the equipment to record the flashes. Let us merely outline the procedure that we finally devised:

1. To pick up the satellite’s flashes we use a 12-inch-aperture photoelectric telescope mounted on a radar trailer (shown in [illustration below]). It is pointed by means of prediction drive tapes produced by an electronic computer; these are based on data from previous passes.

2. On clear, dark nights when the satellite is at relatively short range, we can see it with an auxiliary finder telescope, and then adjust the large telescope precisely. Or, if the satellite’s high-frequency beacon has been turned on, the Holmdel microwave antenna can automatically point our large telescope.

3. When flashes of light are picked up by the telescope, they fall directly onto the cathode of a photomultiplier tube. They are then filtered out from the random light in the night sky and amplified.

Twelve-inch telescope and electronics box mounted on a radar antenna pedestal at Crawford’s Hill. Three-inch sighting telescope mounted on top has since been replaced by six-inch telescope.

4. Rather than make a continuous recording of the output—one night this would have produced a record twelve miles long for us to pore over—we use an electronic trigger. This is the time base of an oscilloscope, whose sawtooth output is set in operation only if a signal of four volts or more is received ([photo below]).

5. A pen recorder makes a continuous line on a revolving drum, with a heated stylus connected to a galvanometer marking a permanent record on heat-sensitive paper. Any signal output from the oscilloscope is picked up by the galvanometer and causes the pen to make a sawtoothed mark; when the paper is unrolled from the drum, these marks are clearly visible as notches in a series of otherwise straight lines.

6. A synchronous timer marks the chart every ten seconds, and we are able to time individual pulses with a precision of one tenth of a second. Because the beginning and end of a train of pulses are not always distinct, we can only determine the center of a burst of flashes—which we use as our most important time indication—to within two seconds. However, this is accurate enough, for a change of only one degree in the orientation of the satellite’s spin axis would change the time of the flash burst center by about half a minute (see [below]).

7. We use a second oscilloscope to check on whether the signals we receive are genuine flashes or just accidental stray light. This oscilloscope has a long-persistence screen, which we use as a temporary memory. The pulses traced on its cathode ray tube are automatically photographed by a 35-mm camera while they persist on the screen. We can then examine the photograph to see if the pulses are genuine, which we ascertain from (a) their shape and size and (b) the intervals between successive pulses. Looking at the photographic record also confirms whether we are observing flashes from the 68° plane mirror or the 95° faceted mirrors. We can calculate the satellite’s spin rate by measuring the intervals between individual flashes.

General view of amplifying, monitoring, and recording gear that picks up glints of sunlight at the Crawford’s Hill observation station.

Enlarged portion of a typical pen record of flashes of sunlight from Telstar mirrors, showing a burst of 21 glints from the 68° mirror recorded at 03:40:58 Greenwich Mean Time on August 9, 1962. Synchronizing vibration mark seven lines above the recorded burst indicates the time 02:59:00. Measuring the horizontal distance between consecutive sawtooth marks tells us that the spin rate is between 163 and 164 revolutions per minute. (Precise measurements of the oscilloscope traces fixed the exact spin rate at the time of this burst at 163.64 revolutions per minute.)