The Satellite Goes Into Orbit
At 4:35 a.m. (Eastern Daylight Time) on July 10, 1962, a Thor-Delta rocket launched Telstar I into its orbit, almost exactly according to plan, from the National Aeronautics and Space Administration’s Cape Canaveral base. On Telstar’s sixth orbit around the earth—at 7:26 p.m.—the first transmission to and from the satellite took place. During this pass telephone calls, television, and photos were transmitted between Andover and Holmdel. Some of these signals were also picked up in Europe. On the next day, a taped television program was sent from France to the United States, and a live program came from England via Telstar. During the next four months, more than 400 transmissions were handled by Telstar—including 50 television demonstrations (both black-and-white and color), the sending of telephone calls and data in both directions, and the relaying of facsimile and telephotos.
In addition, the satellite performed more than 300 valuable technical tests. Almost all of them showed remarkably successful results. Radio transmission was as good as was expected. Telstar’s communications equipment worked exactly as it should, with no damage from the shock and vibration of the launch. Temperatures inside the satellite were kept under good control. The satellite was successfully stabilized—prevented from tumbling over and over—by being spun around its polar axis, with the spin rate gradually decreasing, as predicted, from its rate of 177.7 revolutions per minute just after launch. The solar cells worked almost exactly as expected. Much extremely valuable data about radiation in space was reported. The ground stations accurately traced the fast-moving satellite in almost routine fashion.
But it would be asking too much to have everything perfect. Telstar I unexpectedly met radiation in space estimated to be 100 times more potent than had been predicted. As a result, difficulties arose during November 1962 in some of the transistors in its command circuit—and on pages [78] to [85] we tell you what these problems were, how they were discovered, and what steps were taken to overcome them. Some time later the satellite again failed to respond to commands from the ground, and on February 21, 1963, it went silent.
New gold-domed device on the Telstar II satellite can measure electrons in an energy range from 750 thousand to 2 million electron volts.