What a Communications Satellite Can Do
One of the attractive things about using a satellite is that it doesn’t require a revolutionary breakthrough in technical knowledge. It can employ a satisfactory means of communicating that is already available: the microwave radio relay. Today, this kind of transmission is used on a routine basis to send thousands of telephone calls and television programs across long distances. It gives high-quality performance and has a large message capacity. But there has always been one difficulty keeping us from using it for overseas communications: Extremely high frequency waves can travel almost unlimited distances, but they can go only in straight lines. This means that the curvature of the earth limits a microwave’s line-of-sight path to about 30 miles; so we must build a series of transmission relay towers spaced every 30 miles or so. Obviously, this isn’t possible when you send messages across an ocean. But, if we could find a way to send a signal high up into the sky and then bounce it from there back again to a far-off spot, we could send microwave messages great distances.
Curvature of the earth requires microwave towers to be about 30 miles apart
Microwaves sent via an orbiting satellite can travel vast distances
As long ago as 1945, Arthur C. Clarke, an English writer and scientist, proposed that a man-made satellite orbiting in space might be used to relay signals in this way. In 1945, of course, the very idea of getting a satellite out into space seemed utterly fantastic, and satellite communications could only be classified as science fiction. Ten years later, although Sputnik I had not yet been launched, artificial satellites were close to reality. At that time, John R. Pierce of Bell Telephone Laboratories made the first serious study of what would have to be done to build a working satellite communication system—assuming it ever became possible to put satellites into orbit. And Bell Laboratories has been interested in satellite communications ever since.