THE PHOSPHORESCENT SEA
(From Studies of Animated Nature.)
By W.S. DALLAS.
It is not merely on land that this phenomenon of phosphorescence is to be seen in living forms. Among marine animals, indeed, it is a phenomenon much more general, much more splendid, and, we may add, much more familiar to those who live on our coasts. There must be many in the British Isles who have never had the opportunity of seeing the light of the glow-worm, but there can be few of those who have frequented in summer any part of our coasts, who have never seen that beautiful greenish light which is then so often visible, especially on our southern shores, when the water is disturbed by the blade of an oar or the prow of a boat or ship. In some cases, even on our own shores, the phenomenon is much more brilliant, every rippling wave being crested with a line of the same peculiar light, and in warmer seas exhibitions of this kind are much more common. It is now known that this light is due to a minute living form, to which we will afterward return.
But before going on to speak in some detail of the organisms to which the phosphorescence of the sea is due, it will be as well to mention that the kind of phosphorescence just spoken of is only one mode in which the phenomenon is exhibited on the ocean. Though sometimes the light is shown in continuous lines whenever the surface is disturbed, at other times, and, according to M. de Quatrefages, more commonly, the light appears only in minute sparks, which, however numerous, never coalesce. "In the little channel known as the Sund de Chausez," he writes, "I have seen on a dark night each stroke of the oar kindle, as it were, myriads of stars, and the wake of the craft appeared in a manner besprinkled with diamonds." When such is the case the phosphorescence is due to various minute animals, especially crustaceans; that is, creatures which, microscopically small as they are, are yet constructed more or less on the type of the lobster or cray-fish.
At other times, again, the phosphorescence is still more partial. "Great domes of pale gold with long streamers," to use the eloquent words of Professor Martin Duncan, "move slowly along in endless succession; small silvery disks swim, now enlarging and now contracting, and here and there a green or bluish gleam marks the course of a tiny, but rapidly rising and sinking globe. Hour after hour the procession passes by, and the fishermen hauling in their nets from the midst drag out liquid light, and the soft sea jellies, crushed and torn piecemeal, shine in every clinging particle. The night grows dark, the wind rises and is cold, and the tide changes; so does the luminosity of the sea. The pale spectres below the surface sink deeper, and are lost to sight, but the increasing waves are tinged here and there with green and white, and often along a line, where the fresh water is mixing with the salt in an estuary, there is a brightness so intense that boats and shores are visible.... But if such sights are to be seen on the surface, what must not be the phosphorescence of the depths! Every sea-pen is glorious in its light, in fact, nearly every eight-armed Alcyonarian is thus resplendent, and the social Pyrosoma, bulky and a free swimmer, glows like a bar of hot metal with a white and green radiance."
Such accounts are enough to indicate how varied and how general a phenomenon is the phosphorescence of the sea. To take notice of one tithe of the points of interest summed up in the paragraph just quoted would occupy many pages, and we must therefore confine the attention to a few of the most interesting facts relating to marine phosphorescence.
We will return to that form of marine luminosity to which we first referred: what is known as the general or diffused phosphorescence of the sea. From this mode of describing it the reader must not infer that the surface of the ocean is ever to be seen all aglow in one sheet of continuous light. So far, at least, as was ever observed by M. de Quatrefages, who studied this phenomenon carefully and during long periods on the coasts of Brittany and elsewhere, no light was visible when the surface of the sea was perfectly still. On the other hand, when the sea exhibits in a high degree the phenomenon of diffused phosphorescence no disturbance can be too slight to cause the water to shine with that peculiar characteristic gleam. Drop but a grain of sand upon its surface, and you will see a point of light marking the spot where it falls, and from that point as a centre a number of increasing wavelets, each clearly defined by a line of light, will spread out in circles all around.
The cause of this diffused phosphorescence was long the subject of curiosity, and was long unknown, but more than a hundred years ago (in 1764) the light was stated by M. Kigaut to proceed from a minute and very lowly organism, now known as Noctiluca miliaris; and subsequent researches have confirmed this opinion. This Noctiluca is a spherical form of not more than one-fiftieth of an inch in size, with a slight depression or indentation at one point, marking the position of a mouth leading to a short digestive cavity, and having close beside it a filament, by means of which it probably moves about. The sphere is filled with protoplasm, in which there is a nucleus and one or more gaps, or "vacuoles." Such is nearly all the structure that can be discerned with the aid of the microscope in this simple organism.
Nevertheless, this lowly form is the chief cause of that diffused phosphorescence which is sometimes seen over a wide extent of the ocean. How innumerable the individuals belonging to this species must therefore be, may be left to the imagination. Probably the Noctiluca is not rivalled in this respect even by miscroscopic unicellular algæ which compose the "red snow."
By filtering sea-water containing Noctilucæ its light can be concentrated, and it has been found that a few teaspoonfuls will then yield light enough to enable one to read holding a book at the ordinary distance from the eyes—about ten inches.
A singular and highly remarkable case of diffused marine phosphorescence was observed by Nordenskiöld during his voyage to Greenland in 1883. One dark night, when the weather was calm and the sea smooth, his vessel was steaming across a narrow inlet called the Igaliko Fjord, when the sea was suddenly observed to be illumined in the rear of the vessel by a broad but sharply-defined band of light, which had a uniform, somewhat golden sheen, quite unlike the ordinary bluish-green phosphorescence of the sea. The latter kind of light was distinctly visible at the same time in the wake of the vessel. Though the steamer was going at the rate of from five to six miles an hour, the remarkable sheet of light got nearer and nearer. When quite close, it appeared as if the vessel were sailing in a sea of fire or molten metal. In the course of an hour the light passed on ahead, and ultimately it disappeared in the remote horizon. The nature of this phenomenon Nordenskiöld is unable to explain; and unfortunately he had not the opportunity of examining it with the spectroscope.
If we come now to consider the more partial phosphorescence of the sea, we find that it is due to animals belonging to almost every group of marine forms—to Echinoderms, or creatures of the sea-urchin and star-fish type, to Annelid worm, to Medusidæ, or jelly-fish, as they are popularly called, including the "great domes" and the "silvery disks" of the passage above quoted from Professor Martin Duncan, to Tunicates, among which is the Pyrosoma, to Mollusks, Crustaceans, and in very many cases to Actinozoa, or forms belonging to the type of the sea anemone and the coral polyp.
Of these we will single out only a few for more special notice.
Many of the Medusidæ, or jelly-fish, possess the character of which we are speaking. In some cases the phosphorescence is spontaneous among them, but in others it is not so; the creature requires to be irritated or stimulated in some way before it will emit the light. It is spontaneous, for example, in the Pelagia phosphorea, but not in the allied Pelagia noctiluca, a very common form in the Mediterranean.
In both of the jelly-fishes just mentioned the phosphorescence, when displayed at all, is on the surface of the swimming disk, and this is most commonly the case with the whole group. Sometimes, however, the phosphorescence is specially localized. In some forms, as in Thaumantius pilosella and other members of the same genus, it is seen in buds at the base of tentacles given off from the margin of the swimming-bell. In other cases it is situated in certain internal organs, as in the canals which radiate from the centre to the margin of the bell, or in the ovaries. It is from this latter seat that the phosphorescence proceeds in Oceania pilata, the form which gives out such a light that Ehrenberg compared it to a lamp-globe lighted by a flame.
The property of emitting a phosphorescent light, sometimes spontaneously and sometimes on being stimulated, is likewise exemplified in the Ctenophora, a group resembling the Medusidæ in the jelly-like character of their bodies, but more closely allied in structure to the Actinozoa. But we will pass over these cases in order to dwell more particularly on the remarkable tunicate known as Pyrosoma, a name indicative of its phosphorescent property, being derived from two Greek words signifying fire-body. As shown in the illustration Pyrosoma is not a single creature, but is composed of a whole colony of individuals, each of which is represented by one of the projections on the surface of the tube, closed at one end, which they all combine to form. The free end on the exterior contains the mouth, while there is another opening in each individual toward the interior of the tube. Such colonies, which swim about by the alternate contraction and dilatation of the individuals composing them, are pretty common in the Mediterranean, where they may attain the length of perhaps fourteen inches, with a breadth of about three inches. In the ocean they may reach a much greater size. Mr. Moseley, in his "Notes of a Naturalist on the Challenger," mentions a giant specimen which he once caught in the deep-sea trawl, a specimen four feet in length and ten inches in diameter, with "walls of jelly about an inch in thickness."
The same naturalist states that the light emitted by this compound form is the most beautiful of all kinds of phosphorescence. When stimulated by a touch, or shake, or swirl of the water, it "gives out a globe of bluish light, which lasts for several seconds, as the animal drifts past several feet beneath the surface, and then suddenly goes out." He adds that on the giant specimen just referred to be wrote his name with his finger as it lay on the deck in a tub at night, and in a few seconds he had the gratification of seeing his name come out in "letters of fire."
Among mollusks, the best known instance of phosphorescence is in the rock-boring Pholas, the luminosity of which after death is mentioned by Pliny. But it is not merely after death that Pholas becomes luminous—a phenomenon perfectly familiar even in the case of many fish, especially the herring and mackerel. It was long before the luminosity of the living animal was known, but this is now a well-ascertained fact; and Panceri, an Italian naturalist, recently dead, has been able to discover in this, as in several other marine phosphorescent forms, the precise seat of the light-giving bodies, which he has dissected out again and again for the sake of making experiments in connection with this subject.
A more beautiful example of a phosphorescent mollusk is presented by a sea-slug called Phyllirhoë bucephala. This is a creature of from one and a half to two inches in length, without a shell in the adult stage, and without even gills. It breathes only by the general surface of the body. It is common enough in the Mediterranean, but is not easy to see, as it is almost perfectly transparent, so that it cannot be distinguished without difficulty, by day at least, from the medium in which it swims. By night, however, it is more easily discerned, in consequence of its property of emitting light. When disturbed or stimulated in any way, it exhibits a number of luminous spots of different sizes irregularly distributed all over it, but most thickly aggregated on the upper and under parts. These phosphorescent spots, it is found, are not on the surface, but for the most part represent so many large cells which form the terminations of nerves, and are situated underneath the transparent cuticle. The spots shine with exceptional brilliancy when the animal is withdrawn from the water and stimulated by a drop of ammonia.
Among the Annelid worms a species of Nereis, or sea-centipedes, has earned by its phosphorescent property the specific name of noctiluca (night-shining), and the same property is very beautifully shown in Polynoë, a near ally of the familiar sea-mouse. M. de Quatrefages speaks with enthusiasm of the beauty of the spectacle presented by this latter form when examined under a microscope magnifying to the extent of a hundred diameters. He then found, as he did in the great majority of cases which he studied, that the phosphorescence was confined to the motor muscles, and was manifested solely when these were in the act of contracting, manifested, too, not in continuous lines along the course of the muscles, but in rows of brilliant points.
More interesting than the Annelids, however, are the Alcyonarian Actinozoa. The Actinozoa have already been described as formed on the type of the sea-anemone and the coral polyp, that is, they are all animals with a radiate structure, attached to one end, and having their only opening at the other end, which is surrounded by tentacles. In the Alcyonarian forms belonging to this great group these tentacles are always eight in number, and fringed on both sides. Moreover, these forms are almost without exception compound. Like the Pyrosoma, they have a common life belonging to a whole stock or colony, as well as an individual life.
Now, throughout this sub-division of the Actinozoa phosphorescence is a very general phenomenon. Professor Moseley, already quoted as a naturalist accompanying the Challenger expedition, informs us that "all the Alcyonarians dredged by the Challenger in deep water were found to be brilliantly phosphorescent when brought to the surface."
Among these Alcyonarians are the sea-pens mentioned in the quotation above made from Professor Martin Duncan. Each sea-pen is a colony of Alcyonarians, and the name is due to the singular arrangement of the individuals upon the common stem. This stem is supported internally by a coral rod, but its outer part is composed of fleshy matter belonging to the whole colony. The lower portion of it is fixed in the muddy bottom of the sea, but the upper portion is free, and gives off a number of branches, on which the individual polyps are seated. The whole colony thus has the appearance of a highly ornamental pen.
There is one British species, Pennatula phosphorea, which is found in tolerably deep water, and is from two to four inches in length. The specific name again indicates the phosphorescent quality belonging to it. When irritated, it shines brilliantly, and the curious thing is that the phosphorescence travels gradually on from polyp to polyp, starting from the point at which the irritation is applied. If the lower part of the stem is irritated, the phosphorescence passes gradually upwards along each pair of branches in succession; but if the top is irritated the phosphorescence will pass in the same way downwards. When both top and bottom are irritated simultaneously two luminous currents start at once, and, meeting in the middle, usually become extinguished there; but on one occasion Panceri found that the two crossed, and each completed its course independently of the other. Those of our readers who have had opportunities of making or seeing experiments with the sensitive plant (Mimosa pudica) will be reminded of the way in which, when that plant is irritated, the influence travels regularly on from pinnules to pinnules and pinnae to pinnae.
In all the cases mentioned the phenomenon of phosphorescence is exhibited by invertebrate animals; but though rare, it is not an unknown phenomenon even in living vertebrates. In a genus of deep-sea fishes called Stomias, Gunther mentions that a "series of phosphorescent dots run along the lower side of the head, body, and tail." Several other deep-sea fishes, locally phosphorescent, seem to have been dredged up by the French ship Talisman in its exploring cruise off the west coast of Northern Africa in 1883. During the same expedition, a number of deep-sea phosphorescent crustaceans were dredged up, the phosphorescence being in some cases diffused over the whole body, in other cases localized to particular areas. In deep-sea forms the phenomenon is, in fact, so common, as to have given rise to the theory that in the depths of the ocean, where the light of the sun cannot penetrate, the phosphorescence of various organisms diffuse a light which limits the domain of absolute darkness.
So much by way of illustration regarding the phosphorescence exhibited by animals, terrestrial and marine; but it ought to be noticed that there are also a few cases in which the same phenomenon is to be witnessed in plants. These are not so numerous as was at one time supposed, the property having been mistakenly ascribed to some plants not really luminous.
In some instances the mistake appears to have been due to a subjective effect produced by brilliantly colored (red or orange) flowers, such as the great Indian cress, the orange lily, the sunflower, and the marigold. The fact that such flowers do give out in the dusk sudden flashes of light has often been stated on the authority of a daughter of Linnæus, subsequently backed by the assertions of various other observers. But most careful observers seem to be agreed that the supposed flashes of light are in reality nothing else than a certain dazzling of the eyes.
In another case, in which a moss, Schistostega osmundacea, has been stated to be phosphorescent, the effect is said to be really due to the refraction and reflection of light by minute crystals scattered over its highly cellular leaves, and not to be produced at all where the darkness is complete.
Among plants, genuine phosphorescence is to be found chiefly in certain fungi, the most remarkable of which is Rhizomorpha subterranea, which is sometimes to be seen ramifying over the walls of dark, damp mines, caverns, or decayed towers, and emitting at numerous points a mild phosphorescent light, which is sometimes bright enough to allow of surrounding objects being distinguished by it. The name of "vegetable glow-worm" has sometimes been applied to this curious growth.
Among other phosphorescent fungi are several species of Agaricus, including the A. olearius of Europe, A. Gardneri of Brazil, and A. lampas of Australia, and besides the members of this genus, Thelaphora cærulea, which is the cause of the phosphorescent light sometimes to be seen on decaying wood—the "touchwood" which many boys have kept in the hope of seeing this light displayed. The milky juice of a South American Euphorbia (E. phosphorea) is stated by Martins to be phosphorescent when gently heated. But phosphorescence is evidently not so interesting and important a phenomenon in the vegetable as it is in the animal kingdom.
The whole phenomenon is one that gives rise to a good many questions which it is not easy to answer, and this is especially true in the case of animal phosphorescence. What is the nature of the light? What are the conditions under which it is manifested? What purpose does it serve in the animal economy?
As to the nature of the light, the principal question is whether it is a direct consequence of the vital activity of the organism in which it is seen, of such a nature that no further explanation can be given of it, any more than we can explain why a muscle is contracted under the influence of a nerve-stimulus; or whether it is due to some chemical process more or less analogous to the burning of a candle.
The fact of luminosity appearing to be in certain cases directly under the control of the creature in which it is found, and the fact of its being manifested in many forms, as M. de Quatrefages found, only when muscular contraction was taking place, would seem to favor the former view. On the other hand, it is against this view that the phosphorescence is often found to persist after the animal is dead, and even in the phosphorescent organs for a considerable time after they have been extracted from the body of the animal. In the glow-worm the light goes on shining for some time after the death of the insect, and even when it has become completely extinguished it can be restored for a time by the application of a little moisture. Further, both Matteucci and Phipson found that when the luminous substance was extracted from the insect it would keep on glowing for thirty or forty minutes.
In Pholas the light is still more persistent, and it is found that when the dead body of this mollusk is placed in honey, it will retain for more than a year the power of emitting light when plunged in warm water.
The investigations of recent years have rendered it more and more probable that the light exhibited by phosphorescent organisms is due to a chemical process somewhat analogous to that which goes on in the burning of a candle. This latter process is one of rapid oxidation. The particles of carbon supplied by the oily matter that feeds the candle become so rapidly combined with oxygen derived from the air that a considerable amount of light, along with heat, is produced thereby. Now, the phenomenon of phosphorescence in organic forms, whether living or dead, appears also to be due to a process of oxidation, but one that goes on much more slowly than in the case of a lighted candle. It is thus more closely analogous to what is observed in the element phosphorus itself, which owes its name (meaning "light-bearer") to the fact that when exposed to the air at ordinary temperatures it glows in the dark, in consequence of its becoming slowly combined with oxygen.
At one time it was believed that the presence of oxygen was not necessary to the exhibition of phosphorescence in organic forms, but it has now been placed beyond doubt that this is a mistake. Oxygen has been proved to be indispensable, and hence we see a reason for the luminous organs in the glow-worm being so intimately connected, as above mentioned, with the air-tubes that ramify through the insect.
This fact of itself might be taken as a strong indication of the chemical nature of the process to which phosphorescence is due. But the problem has been made the subject of further investigations which have thrown more light upon it. It was long known that there were various inorganic bodies besides phosphorus which emitted a phosphorescent light in the dark, at least after being exposed to the rays of the sun; but it was not till quite recently that any organic compound was known to phosphoresce at ordinary temperatures.
This discovery was made by a Polish chemist, named Bronislaus Radziszewski, who followed it up with a long series of experiments on the phosphorescence of organic compounds, by which he was able to determine the conditions under which that phenomenon was exhibited. In all the substances investigated by him in which phosphorescence was introduced he found that three conditions were essential to its production: (1) that oxygen should be present; (2) that there should be an alkaline reaction in the phosphorescing mixture—that is, a reaction such as is produced on acids and vegetable coloring matters by potash, soda, and the other alkalies; and (3) that some kind of chemical action should take place.
He found, moreover, that among the organic compounds that could be made to phosphoresce under these conditions were nearly all the fixed and ethereal oils. With reference to the phosphorescence of animals, this observation is important, for it has been shown in a great many cases that a fatty substance forms the main constituent in their luminous organs. This has long been known to be the case in the luminous insects belonging to the Lampyridæ and Elateridæ, as well as in the luminous centipedes; and the researches of Panceri, already referred to, on the luminous organs of many marine forms have shown that it holds good with regard to these also.
We may, therefore, conclude that substances fitted to phosphoresce under the conditions determined by the experiments of Radziszewski are generally, and probably universally, present in the luminous organs of phosphorescent animals. Now, what is to be said as to the occurrence of these conditions? The access of oxygen is in all cases easy to account for, but it must also be shown how the alkaline reaction is to be produced. We need not expect to find in animal organisms potash, soda, ammonia, and the other common alkalies; but it was established by experiment that the alkaline organic compounds cholin and neurin, which are present in animal tissues, would also serve to bring about the phenomenon of phosphorescence in the substances on which the experiments were made.
Accordingly, it seems fair to conclude that when all these conditions for the production of phosphorescence in a chemical laboratory are present in animal organisms, the phenomenon, when observed in these, is exactly of the same nature as that which is produced artificially. By that it is meant that animal phosphorescence is attended, like the artificial phenomenon, by a slow chemical action, or in other words, that the phosphorescent light is due to a gradual process of oxidation.
One curious circumstance has been discovered which lends still further probability to this explanation. It was mentioned above that among phosphorescent plants there are several species of Agaricus. Now, from one species of this genus, though not indeed one of the phosphorescent species (from A. muscarius) there has been extracted a principle called amanitia, which is found to be identical with cholin. In the light of the results derived from the investigations just referred to it is reasonable to draw the conclusion that, if sought for, this principle would likewise be found in the phosphorescent species in which the other conditions of phosphorescence are also present.
On this theory of the production of the phenomenon now under consideration, the effect of shaking or of vital action in giving rise to or intensifying the exhibition of the light is accounted for by the fact that by these means fresh supplies of oxygen are brought into contact with the phosphorescent substance. The effect of ammonia on the light emitted by the sea-slug Phyllirhoë bucephala, is also fully explained, ammonia being one of those alkaline substances which are so directly favorable to the exhibition of the phenomenon.
Nor is it difficult to account for the control which in some cases insects appear to have over the luminosity of the phosphorescent organs, exhibiting and withdrawing the light at will. It is not necessary to suppose that this is an immediate effect, a conversion of nerve force into light, and a withdrawal of that force. The action of the creature's will may be merely in maintaining or destroying the conditions under which the light is manifested. It may, for example, have the power of withdrawing the supply of oxygen, and this supposition receives some countenance from the observation cited from Kirby and Spence on the two captured glow-worms, one of which withdrew its light, while the other kept it shining, but while doing so had the posterior extremity of the abdomen in constant motion. But the animal may also have the power in another way of affecting the chemical conditions of the phenomenon. It may, for example, have the power of increasing or diminishing by some nervous influence the supply of the necessary alkaline ingredient.
But if animal phosphorescence is really due to a process of slow oxidation, there is one singular circumstance to be noted in connection with it. Oxidation is a process that is normally accompanied by the development of heat. Even where no light is produced an increase of temperature regularly takes place when substances are oxidized. We ought, then, to expect such a rise of temperature when light is emitted by the phosphorescent organs of animals. But the most careful observations have shown that nothing of the kind can be detected. It was with a view to test this that Panceri dissected out the luminous organs of so many specimens of Pholas. He selected this mollusk because it was so abundant in the neighborhood of Naples, where, his experiments were made; and in making his experiments he made use of a thermopile, an apparatus by which, with the aid of electricity, much smaller quantities of heat can be indicated than by means of the most delicate thermometer. The organs remained luminous long after they were extracted, but no rise in temperature whatever could be found to accompany the luminosity. Many experiments upon different animals were made with similar negative results by means of the thermometer.
The only explanation of this that can be given is probably to be found in the fact that the chemical process ascertained to go on in the phosphorescence of organic compounds on which experiments were made in the laboratory is an extremely slow one.
The so-called phosphorescence of most inorganic bodies is one of a totally different nature from that exhibited in organic forms. The diamond shines for a time in the dark after it has been exposed to the sun; so do pieces of quartz when rubbed together, and powdered fluor-spar when heated shines with considerable brilliancy. Various artificial compounds, such as sulphide of calcium (Canton's phosphorus, as it is called from the discoverer), sulphate of barium (Bologna stone, or Bologna phosphorus), sulphide of strontium, etc., after being illuminated by the rays of the sun, give out in the dark a beautiful phosphorescence, green, blue, violet, orange, red, according to circumstances. The luminous paint which has recently attracted so much attention is of the same nature. In these cases what we have is either a conversion of heat rays into light rays (as in the powdered fluor-spar), or the absorption and giving out again of sun-rays. In the latter case the phenomenon is essentially the same as fluorescence, in which the dark rays of the solar spectrum beyond the violet are made visible.
But we must now return to the other questions that have been started in relation to phosphorescence in animals. There has been much speculation as to the object of this light, and to the purposes it serves in Nature. Probably no general answer can be given to this question. It is no doubt impossible to show why so many animals have been endowed with this remarkable property; but we may consider some of the effects which the possession of it has in different cases.
In the first place, it will undoubtedly serve in many cases to afford light to enable the animal to see by, and in the Lampyridæ it would seem that the degree of luminosity is related to the development of the vision. In that family, according to the Rev. H.S. Gorham, the eyes are developed, as a rule, in inverse proportion to the luminosity. Where there is an ample supply of this kind of light the eyes are small, but where the light is insignificant the eyes are large by way of compensation. And moreover, where both eyes and light are small, then the antennae are large and feathery, so that the deficiency in the sense of sight is made up for by an unusual development in the organs of touch.
But it is none the less certain that the presence of this light cannot always be designed to serve this purpose, for many of the animals so endowed are blind. The phosphorescent centipedes are without eyes, like all the other members of the genus (Geophilus) to which they belong, and probably the majority of phosphorescent marine forms are likewise destitute of organs of sight.
Another suggestion is that the light derived from these marine forms, and especially from deep-sea Alcyonarians, is what enables the members of the deep-sea fauna that are possessed of eyes (which are always enormously enlarged) to see. Such is the suggestion of Dr. Carpenter, Sir Wyville Thomson, and Mr. Gwyn Jeffries; and it is possible that this actually is one of the effects of the phosphorescent property. But if so, it remains to inquire how the forms endowed with it came to be possessed of a power useful in that way to other forms, but not to themselves. According to the Darwinian doctrine of development, the powers that are developed in different organisms by the process of natural selection are such as are useful to themselves and not to others, unless incidentally.
This consideration has led to another suggestion, namely, that the property of phosphorescence serves as a protection to the forms possessing it, driving away enemies in one way or another: it may be by warning them of the fact that they are unpalatable food, as is believed to be the case with the colors of certain brilliantly-colored caterpillars; it may be in other ways. In Kirby and Spence one case is recorded in which the phosphorescence of the common phosphorescent centipede (Geophilus electricus) was actually seen apparently to serve as a means of defence against an enemy. "Mr. Shepherd," says that authority, "once noticed a scarabeus running round the last-mentioned insect when shining, as if wishing, but afraid to attack it." In the case of the jelly-fishes, it has been pointed out that their well-known urticating or stinging powers would make them at least unpleasant, if not dangerous, food for fishes; and that consequently the luminosity by which so many of them are characterized at night may serve at once as a warning to predatory fishes and as a protection to themselves. The experience of the unpleasant properties of many phosphorescent animals may likewise have taught fishes to avoid all forms possessing this attribute, even though many of them might be quite harmless.
Lastly, it has been suggested that the phosphorescence in the female glow-worm may be designed to attract the male; and that it will actually have this effect may readily be taken for granted. Observation shows that the male glow-worm is very apt to be attracted by a light. Gilbert White of Selborne mentions that they, attracted by the light of the candles, came into his parlor. Another observer states that by the same light he captured as many as forty male glow-worms in one night.