DETERMINATION OF COBALT.

Neutral potassium oxalate is added in excess to the solution of a cobalt salt, and the clear solution of cobalt potassium oxalate submitted to electrolysis. The intense red color of this solution is soon changed into a dark green; the latter diminishing in intensity as the metal is deposited at the negative electrode. The electric current decomposes the potassium oxalate into the carbonate, so that a precipitate of cobalt carbonate is simultaneously formed with the separation of the metallic cobalt. This precipitate may be dissolved by adding oxalic acid or dilute sulphuric acid; the further action of the current will change the solution to an alkaline reaction, upon which the treatment with acid is repeated until all the cobalt has been separated out in its metallic condition. The electrolytic separation of cobalt is much more easily and rapidly effected when the potassium oxalate is substituted by the corresponding ammonium salt, as the latter forms a soluble double salt with the cobalt compounds. If the ammonium oxalate added is just sufficient to form the double salt, a red cobalt oxalate (which is only slowly reduced by the current) will separate out in addition to the cobalt. In order to obviate this difficulty, the solution to which the ammonium oxalate had been added in excess is heated, and then three or four grammes more of solid ammonium oxalate are added. The hot solution, when exposed to the action of the current, deposits the cobalt as a closely adhering gray film. By the aid of two Bunsen's elements, 0.2 gramme cobalt can be separated in an hour's time. When the reduction has been completed, and this is best determined by testing a small sample (removed by a pipette) with ammonium sulphide, the positive electrode[1] is removed from the solution, and the liquid poured off. The dish is immediately rinsed several times with water, and the excess of water removed at first with alcohol, and then with absolute ether. The cobalt in the dish is dried in the air bath at 100° C., and in the course of a few minutes a constant weight is obtained.

[Footnote 1: A piece of platinum foil, 4.5 cm. in diameter, is used for the positive electrode, and a deep platinum dish as the negative electrode.--Vide "Classen's Quantitative Analysis," 3d Edition, p. 46.]