AMERICAN MILLING METHODS.
[Footnote 1: A paper read before the meeting of the Pennsylvania State Millers Association at Pittsburgh, Pa., by Albert Hoppin, Editor of the Northwestern Miller.]
By ALBERT HOPPIN.
To speak of the wonderful strides which the art of milling has taken during the past decade has become exceedingly trite. This progress, patent to the most casual observer, is a marked example of the power inherent in man to overcome natural obstacles. Had the climatic conditions of the Northwest allowed the raising of as good winter wheat as that raised in winter wheat sections generally, I doubt if we should hear so much to-day of new processes and gradual reduction systems. So long as the great bulk of our supply of breadstuffs came from the winter wheat fields, progress was very slow; the mills of 1860, and I may even say of 1870, being but little in advance, so far as processes were concerned, of those built half a century earlier. The reason for this lack of progress may be found in the ease with which winter wheat could be made into good, white, merchantable flour. That this flour was inferior to the flour turned out by winter wheat mills now is proven by the old recipe for telling good flour from that which was bad, viz.: To throw a handful against the side of the barrel, if it stuck there it was good, the color being of a yellowish cast. What good winter wheat patent to-day will do this? Still the old time winter wheat flour was the best there was, and it had no competitor. The settling up of the Northwest which could not produce winter wheat at all, but which did produce a most superior article of hard spring wheat, was a new factor in the milling problem. The first mills built in the spring wheat States tried to make flour on the old system and made a most lamentable failure of it. I can remember when the farmer in Wisconsin, who liked a good loaf of bread, thought it necessary to raise a little patch of winter wheat for his own use. He oftener failed than succeeded, and most frequently gave it up as a bad job. Spring wheat was hard, with a very tender, brittle bran. If ground fine enough to make a good yield a good share of the bran went into the flour, making it dark and specky. If not so finely ground the flour was whiter, but the large percentage of middlings made the yield per bushel ruinously small. These middlings contained the choicest part of the flour producing part of the berry, but owing to the dirt, germ, and other impurities mixed with them, it was impossible to regrind them except for a low grade flour. Merchant milling of spring wheat was impossible wherever the flour came in competition with winter wheat flours. At Minneapolis, where the millers had an almost unlimited water power, and wheat at the lowest price, merchant milling was almost given up as impracticable. It was certainly unprofitable. To the apparently insurmountable obstacles in the way of milling spring wheat successfully, we may ascribe the progress of modern milling. Had it been as easy to raise good winter wheat in Wisconsin and Minnesota as in Pennsylvania and Ohio, or as easy to make white flour from spring as from winter wheat, we should not have heard of purifiers and roller mills for years to come.
The first step in advance was the introduction of a machine to purify middlings. It was found that the flour made from these purified middlings was whiter than the flour from the first grinding and brought a better price than even winter wheat flours. Then the aim was to make as many middlings as possible. To do this and still clean the bran so as to make a reasonable yield the dress of the burrs was more carefully attended to, the old fashioned cracks were left out, the faces and furrows made smooth, true, and uniform, self-adjusting drivers introduced, and the driving gear better fitted. Spring wheat patents rapidly rose to the first place in the market, and winter wheat millers waked up to find their vantage ground occupied by their hitherto contemned rivals. To their credit it may be said that they have not been slow in taking up the gauntlet, and through the competition of the millers of the two climatically divided sections of this country with each other and among themselves the onward march of milling progress has been constantly accelerated. Where it will end no man can tell, and the chief anxiety of every progressive miller, whether he lives in Pennsylvania or Minnesota, is not to be left behind in the race.
The millers of the more Eastern winter wheat States have a two-fold question to solve. First, how to make a flour as good as can be found in the market, and second, how to meet Western competition, which, through cheap raw material and discriminating freight rates, is making serious inroads upon the local markets. Whether the latter trouble can be remedied by legislature, either State or national, or not, remains to be proven by actual trial. That you can solve the first part of the problem satisfactorily to yourselves depends upon your readiness to adopt new ideas and the means you have at hand to carry them out. It is manifestly impossible to make as good a flour out of soft starchy wheat as out of that which is harder and more glutinous. It is equally impossible for the small mill poorly provided with machinery to cope successfully with the large merchant mill fully equipped with every appliance that American ingenuity can suggest and money can buy. I believe, however, that a mill of moderate size can make flour equally as good as the large mill, though, perhaps, not as economically in regard to yield and cost of manufacture.
The different methods of milling at present in use may be generally divided into three distinct processes, which, for want of any better names, I will distinguish as old style, new process, and gradual reduction. Perhaps the German division of low milling, half high milling, and high milling is better. Old style milling was that in general use in this country up to 1870, and which is still followed in the great majority of small custom or grist mills. It is very simple, consisting of grinding the wheat as fine as possible at the first grinding, and separating the meal into flour, superfine or extra, middlings, shorts, and bran. Given a pair of millstones and reel long enough, and the wheat could be made into flour by passing through the two. Because spring wheat was so poorly adapted to this crude process, it had to be improved and elaborated, resulting in the new process.
At first this merely consisted of purifying and regrinding the middlings made in the old way. In its perfected state it may be said to be halfway between the old style and gradual reduction, and is in use now in many mills. In it mill stones are used to make the reductions which are only two in number, in the first of which the aim of the miller is to make as many middlings as he can while cleaning the bran reasonably well, and in the second to make the purified middlings into flour. In the most advanced mills which use the new process, the bran is reground and the tailings from the coarse middlings, containing germ and large middlings with pieces of bran attached, are crushed between two rolls. These can hardly be counted as reductions, as they are simply the finishing touches, put on to aid in working the stuff up clean and to permit of a little higher grinding at first. Regarding both old style and new process milling, you are already posted. Gradual reduction is newer, much more extensive, and merits a much more thorough explanation. Before entering upon this I will call your attention to one or two points which every miller should understand.
The two essential qualities of a good marketable flour are color and strength. It should be sharply granular and not feel flat and soft to the touch. A wheat which has an abundance of starch, but is poor in gluten, cannot make a strong flour. This is the trouble with all soft wheats, both winter and spring. A wheat which is rich in gluten is hard, and in the case of our hard Minnesota wheat has a very tender bran. It is comparatively easy to make a strong flour, but it requires very careful milling to make a flour of good color from it. Probably the wheat which combines the most desirable qualities for flour-making purposes is the red Mediterranean, which has plenty of gluten and a tough bran, though claimed by some to have a little too much coloring matter, while the body of the berry is white. By poor milling a good wheat can be made into flour deficient both in strength and color, and by careful milling a wheat naturally deficient in strength may be made into flour having all the strength there was in the wheat originally and of good color. Good milling is indispensable, no matter what the quality of the wheat may be.
The idea of gradual reduction milling was borrowed by our millers from the Hungarian mills. There is, however, this difference between the Hungarian system and gradual reduction, as applied in this country, that in the former, when fully carried out, the products of the different breaks are kept separate to the end, and a large number of different grades of flour made, while in the system, as applied in this country, the separations are combined at different stages and usually only three different grades of flour made, viz.: patent, baker's, or as it is termed in Minnesota, clear flour, and low grade or red dog. In the largest mills the patent is often subdivided into first and second, and they may make different grades of baker's flour, these mills approaching much nearer to the Hungarian system, though modifying it to American methods and machinery. In mills of from three to five hundred barrels daily capacity, it is hardly possible or profitable to go to this subdivision of grades, owing to the excessive amount of machinery necessary to handling the stuff in its different stages of completion. The Hungarian system has, therefore, been greatly modified by American millers and milling engineers to adapt it to the requirements of mills of average capacity. This modified Hungarian system we call gradual reduction. It can be profitably employed in any mill large enough to run at all on merchant work. So far it has not been found practicable to use it in mills of less than one hundred and twenty-five to one hundred and fifty barrels capacity in twenty-four hours, and it is better to have the mill of at least double this capacity.
Gradual reduction, as its name implies, consists in reducing the wheat to flour, shorts, and bran, by several successive operations or reductions technically called breaks, the process going on gradually, each break leaving the material a little finer than the preceding one. Usually five reductions or breaks are made, though six or seven may be used. The larger the number of breaks the more complicated the system becomes, and it is preferable to keep it as simple as possible, for even at its simplest it requires a good, wide-awake thinking miller to handle it successfully. When it is thoroughly and systematically carried out in the mill it is without question as much in advance of the new process as that is ahead of the old style of milling.
In order that I may convey to you as clear an idea of gradual milling reduction as possible, I will give as fully as possible the programme of a mill of one hundred and fifty barrels maximum daily capacity designed to work on mixed hard and soft spring wheat, and which probably will come much nearer to meeting the conditions under which you have to mill than any other I have found readily obtainable. I have chosen a mill of this size, first, because following out the programme of a larger one would require too much time and too great a repetition of details and not give you any clearer idea of the main principles involved, and secondly, because I thought it would come nearer meeting the average requirements of the members of your association. Your worthy secretary cautioned me that I must remember that I was going to talk to winter wheat millers. The main principles and methods of gradual reduction are the same, whether applied to spring or winter wheat; the details may have to be varied to suit the varying conditions under which different mills are operated. For this programme I am indebted to Mr. James Pye, of Minneapolis, who is rapidly gaining an enviable and well deserved reputation as a milling engineer, and one who has given much study to the practical planning and working of gradual reduction mills.
And right here let me say that no miller should undertake to build a gradual reduction mill, or to change over his mill to the gradual reduction system, until he has consulted with some good milling engineer (the term millwright means very little nowadays), and obtained from him a programme which shall fit the size of the mill, the stock upon which it has to work, and the grade of flour which it is to make. This programme is to the miller what a chart is to the sailor. It shows him the course he must pursue, how the stuff must be handled, and where it must go. Without it he will be "going it blind," or at best only feeling his way in the dark. A gradual reduction mill, to be successful, must have a well-defined system, and to have this system, the miller must have a definite plan to work by. But to go on with my programme.
The wheat is first cleaned as thoroughly as possible to remove all extraneous impurities. In the cleaning operations care should be taken to scratch or abrade the bran as little as possible, for this reason: The outer coating of the bran is hard and more or less friable. Wherever it is scratched a portion is liable to become finely comminuted in the subsequent reductions, so finely that it is impossible to separate it from the flour by bolting, and consequently the grade of the latter is lowered. The ultimate purpose of the miller being to separate the flour portion of the berry from dirt, germ, and bran it is important that he does not at any stage of the process get any dirt or fine bran speck or dust mixed in with his flour, for if he does he cannot get rid of it again. So it must be borne in mind that at all stages of flouring, any abrasion or comminution of the bran is to be avoided as far as possible.
After the wheat is cleaned, it is by the first break or reduction split or cut open, in order to liberate the germ and crease impurities. As whatever of dirt is liberated by this break becomes mixed in with the flour, it is desirable to keep the amount of the latter as small as possible. Indeed, in all the reductions the object is to make as little flour and as many middlings as possible, for the reason that the latter can be purified, while the former cannot, at least by any means at present in use. After the first break the cracked wheat goes to a scalping reel covered with No. 22 wire cloth. The flour, middlings, etc., go through the cloth, and the cracked wheat goes over the tail of the reel to the second machine, which breaks it still finer. After this break the flour and middlings are scalped out on a reel covered with No. 22 wire cloth. The tailings go to the third machine, and are still further reduced, then through a reel covered with No. 24 wire cloth. The tailings go to the fourth machine, which makes them still finer, then through a fourth scalping reel the same as the third. The tailings from this reel are mostly bran with some middlings adhering, and go to the fifth machine, which cleans the bran. From this break the material passes to a reel covered with bolting cloth varying in fineness from No. 10 at the head to No. 00 at the tail. What goes over the tail of this reel is sent to the bran bin, and that which goes through next to the tail of the reel, goes to the shorts bin. The middlings from this reel go to a middlings purifier, which I will call No. 1, or bran middlings purifier. The flour which comes from this reel is sent to the chop reel covered at the head with say No. 9, with about No. 5 in the middle and No 0 at the tail. You will remember that after each reduction the flour and middlings were taken out by the scalping reels. This chop, as it is now called, also goes to the same reel I have just mentioned. The coarse middlings which go over the tail of this reel go to a middlings purifier, which I will designate as No. 2. These go through the No. 0 cloth at the tail of the reel purifier No. 3; those which go through No. 5 cloth got to purifier No. 4; while all that goes through the No. 9 cloth at the head of the reel is dropped to a second reel clothed with Nos. 13 to 15 cloth with two feet of No. 10 at the tail. The flour from this reel goes to the baker's flour packer; that which drops through the No. 10 is sent to the middlings stone, while that which goes over the tail of the reel goes to purifier No. 4. We have now disposed of all the immediate products of the first five breaks, tracing them successively to the bran and shorts bins, to the baker's flour packer and to the middlings purifiers, a very small portion going to the middlings stone without going through the purifiers.
The middlings are handled as follows in the purifiers. From the No. 1 machine, which takes the middlings from the fifth break, the tailings go to the shorts bin, the middlings which are sufficiently well purified go to the middlings stone, while those from near the tail of the machine which contain a little germ and bran specks go to the second germ rolls, these being a pair of smooth rolls which flatten out the germ and crush the middlings, loosening adhering particles from the bran specks. From the second germ rolls the material goes to a reel, where it is separated into flour which goes into the baker's grade, fine middlings which are returned to the second germ rolls at once, some still coarser which go to a pair of finely corrugated iron rolls for red dog, and what goes over the tail of the reel goes to the shorts bin. The No. 2 purifier takes the coarse middlings from the tail of the first or chop reel as already stated. The tailings from this machine go to the shorts bin, some few middlings from next the tail of the machine are returned to the head of the same machine, while the remainder are sent to the first germ rolls. The reason for returning is more to enable the miller to keep a regular feed on the purifiers than otherwise. The No. 3 purifier takes the middlings from the 0 cloth on the chop reel. From purifier No. 3 they drop to purifier No. 5. A small portion that are not sufficiently well purified are returned to the head of No. 3, while those from the head of the machine, which are well purified, are sent to the middlings stones. The remainder, which contain a great deal of the germ, are taken to the first germ rolls, in passing which they are crushed lightly to flatten the germ without making any more flour than necessary. The No. 4 purifier takes the middlings from No. 2 and also from No. 5 cloth on the chop reel and from the No. 10 on the tail of the baker's reel. The middlings from the head of this machine go to the middlings stones, and the remainder to purifier No. 6. The tailings from Nos. 3, 4, 5, and 6 go to the red dog rolls. A small portion not sufficiently well purified are returned from No. 6 to the head of No. 4, while the cleaned middlings go to the middlings stones.
The portions of the material which have not been traced either to the baker's flour or the bran and shorts bins are the middlings which have gone to the middlings stones, the germy middlings which have gone to the first germ rolls, and the tailings from purifiers Nos. 3, 4, 5, and 6, and some little stuff not quite poor enough for shorts from the reel following the second germ rolls. Taking these seriatim: the middlings after passing through the middlings stones, go to the first patent reel covered with eleven feet of No. 13 and four feet of No. 8. The flour from the head of the reel goes to the patent packer, that from the remainder of the reel is dropped to another reel, while the tailings go to the No. 4 purifier. The lower patent reel is clothed with No. 14 and two feet of No. 10 cloth; from the head of the reel the flour goes to the patent packer, the remainder that passes through the No. 10 cloth which will not do to go into the patent, being returned to the middlings stones, while the tailings are sent to the No. 4 purifier.
The germ middlings, after being slightly crushed as before stated, are sent to a reel covered with five feet of No. 13 cloth, five feet of No. 14, and the balance with cloth varying in coarseness from No. 7 to No. 00. The flour from this reel goes into the patent, the tailings to the red dog rolls, the middlings from next the tail of the reel which still contain some germ to the second germ rolls, while the middlings which are free from germ go to the middlings stones.
The tailings from purifiers 3, 4, 5, and 6, the material from the reel following the second germ rolls, which is too good for shorts, but not good enough to be returned into middlings again, and the tailings from the reel following the first germ rolls are sent to the red dog rolls, which, as I have stated, are finely corrugated. Following these rolls is the red dog reel. The flour goes to the red dog bin, the tailings to the shorts bin, while some stuff intermediate between the two, not fine enough for the flour but too good for shorts, is returned to the red dog rolls.
This finishes the programme. I have not given it as one which is exactly suited to winter wheat milling. However, as I said before, the general principles are the same in either winter or wheat gradual reduction mills, and the various systems of gradual reduction, although they differ in many points, and although there are probably no two engineers who would agree as to all the details of a programme, the main ideas are essentially the same. The system has been well described as one of gradual and continued purification. In the programme above given the idea was to fit up a mill which should do a maximum amount of work of good quality with a minimum amount of expenditure and machinery. In a larger mill or even in a mill of the same capacity where money was not an object, the various separations would probably be handled a little differently, the flour and middlings from the first and fifth breaks being handled together, and those from the second, third, and fourth breaks being also handled together. The reason for this separation being that the flour from the first and fifth breaks contain, the first a great deal of crease dirt, and the fifth more bran dust than that from the other breaks, the result being a lower grade of flour. The object all along being to keep the amount of flour with which dirt can get mixed as small as possible, and not to lower the grade of any part of the product by mixing it with that which is inferior, always bearing in mind that the aim is to make as many middlings as possible, for they can be purified while the flour can not, and that whenever any dirt is once eliminated it should be kept out afterwards. This leads me to say that if a miller thinks the adoption of rolls or reduction machines is all there is of the system, he is very much mistaken. If anything, more of the success of the mill depends upon the careful handling of the stuff after the breaks are made, and here the miller who is in earnest to master the gradual reduction system will find his greatest opportunities for study and improvement. A few years back it was an axiom of the trade that the condition of the millstone was the key to successful milling. This was true because the subsequent process of bolting was comparatively simple. Now the mere making of the breaks is a small matter compared with the complex separations which come after. In the foregoing programme we had five breaks or successive reductions. Although this is better than a smaller number, I will here say that it is not absolutely essential, for very good work is done with four breaks. The mill for which this programme was made, including the building, cost about $15,000, and is designed to make about sixty per cent. of patent, thirty-five per cent. of baker's, and five per cent. of low grade, results which are in advance of many larger and more pretentious mills.
One difficulty in the way of adapting the gradual reduction system to mills of very small capacity is that the various machines require to be loaded to a certain degree in order to work at their best. It is only a matter of short time when our milling inventors will design machinery especially for small mills; in fact they are now doing it, and every day brings it more within the power of the small miller to improve his manner of milling. To show what can be done in this direction I will briefly describe a mill of about ninety barrels maximum capacity per twenty-four hours, which is as small as can be profitably worked. I will premise this description by saying it is designed with a view to the greatest economy of cost, the best trade of work, and to reduce the amount of machinery and the handling of the stuff as much as possible. This latter point is of much importance in any mill, either large or small, no matter upon what system it is operated, for it takes power to run elevators and conveyors, and especially in elevating and conveying middlings, especially those made from winter wheat, their quality is inured and a loss incurred, by the unavoidable amount of flour made by the friction of the particles against each other. So much is this the case that in one of our largest mills it is deemed preferable to move the middlings from one end of the mill to the other by means of a hopper bin on a car which runs on a track spiked to the floor, rather than to employ a conveyor. A mill built as I am going to describe would require from fifty to sixty horse-power to run it, and including steam power and building would cost from $10,000 to $12,000, according to location. I give it as of interest to those among your number who own small mills and may contemplate improving them.
The building is four stories high, including basement, and thirty-two feet square. It would be some better to have it larger, but it is made this small to show how small a space a mill of this size can be made to occupy. No story is less than twelve feet high. The machinery Is very conveniently arranged, and there is plenty of room all around. The system is a modification of the gradual reduction system, the middlings being worked upon millstones. The first break is on one pair of 9 x 18 inch corrugated iron rolls, eight corrugations to the inch, the corrugations running parallel with the axis of the rolls. The second break on rolls having twelve corrugations to the inch, the third sixteen, and the fourth twenty to the inch, while the fifth break, where the bran is finally cleaned, has twenty-four corrugations to the inch. The basement contains the line shaft and pulleys for driving rolls, stones, cockle machine, and separator. The only other machinery in the basement is the cockle machine. The line shaft runs directly through the center of the basement, the power being from engine or water wheel outside the building. The first floor has the roller mills in a line nearly over the line shaft below, the middlings stones, two in number, at one side opposite the entrance to the mill, the receiving bin at one side of the entrance in the corner of the mill, and the two flour packers for the baker's and patent flour in the other corner. This arrangement leaves over half of the floor area for receiving and packing purposes. The bolting chests, one with six reel and the other with three reel begin on the second floor and reach up into the attic. An upright shaft from the line shaft in the basement geared to a horizontal shaft running through the attic parallel with the line shaft below, comprise about all the shafting there is in the mill. There is a short shaft on the second floor from which the two purifiers on this floor and the two in the attic are driven, and another short shaft on the first floor to drive the packers. There are four purifiers, two on the second floor, and two more directly over them in the attic. The elevator heads are all directly upon the attic line shaft, and the bolting chests are driven by uprights dropped from this shaft. The combined smutter and brush machine is on the third floor at one end of the bolting chests and directly over the stock hoppers. This comprises all the machinery in the mill. The programme is about as follows:
The break reels are clothed as follows: First break No. 20, wire cloth, second break No. 22, third break No. 24, and fourth break No. 24. The material passing through these scalping reels, now called chop, goes to a series of reels, the first clothed with Nos. 6, 4, and 0. The material passing over the tail is sent to the germ purifier, that passing through Nos. 4 and 0, to the coarse middlings purifier, and that through the No. 6 goes to the reel below clothed with Nos. 12 and 13. Some nice granular flour is taken off from this reel; the remainder, which passes over the tail and through the cutoffs, goes to the next reel below clothed with Nos. 14, 15, and 9. Some good flour comes from the 14 and 15; that which passes through the 9 goes at once to the stones without purifying, while that which passes over the tail is sent to the fine middlings purifiers.
After the purification, the middlings are ground on stones and bolted on Nos. 13 and 14 cloth, after having been scalped on No 8. The germ middlings are crushed on smooth rolls and bolted on Nos. 12 and 13. What is not crushed fine enough goes with poor tailings to the second germ rolls, and from these to a reel by themselves or to the fifth reduction or bran reel. A mill of this kind could be made much more perfect by an expenditure of two or three thousands dollars more. I have instanced it to show what can be done with gradual reduction in a very small way.
In mills of from three hundred to five hundred barrels capacity and still larger, the programme differs considerably from that I have sketched, the middlings being graded and handled with little, if any, returning, and are sized down on the smooth rolls, a much larger percentage of the work of flouring being done on millstones. For a three hundred barrel roller mill, the following plant is requisite: five double corrugated roller mills, five double smooth roller mills, three pairs of four foot burrs sixteen purifiers, four wire scalping reels, six feet long, one reel for the fifth break, one reel for low grade flour, eight chop reels, seven reels for flour from smooth rolls, three reels for the stone flour, two grading reels, three flour packers, and necessary cleaning machinery. The reels are eighteen feet thirty-two inches. The programme is necessarily more complicated.
When it comes to the machinery to be employed in making the reductions or breaks, the miller has several styles from which to choose. Which is best comes under the head of what I don't know, and moreover, of that which I have found no one else who does know. Each machine has its good points, and the mill owner must make his own decision as to which is best suited to his purpose. The main principles involved are to abrade the bran as little as possible while cleaning it thoroughly, and to make as little break flour, and as many middlings as possible, the latter to be made in such shape as to be the most easily purified. Regarding the difference between spring and winter wheat for gradual reduction milling, it may be stated something after this manner: Spring wheat has a thinner and more tender bran, makes more middlings because it is harder, and for the same reason the flour is more inclined to be coarse and granular. In milling with winter wheat, especially the better varieties, there will be more break flour made, the middlings will be finer with fewer bran specks, and the bran more easily cleaned, because it will stand harsher treatment. Winter wheat, moreover, requires more careful handling in making the breaks, not because of the bran, but to avoid breaking down the middlings, and making too much and too fine and soft break flour. In order to keep the flour sharp and granular, coarser cloths are used in bolting, and because the middlings are finer the bolting is not so free and a larger bolting surface is required. In milling either spring or winter wheat there should be ample purifying capacity, it being very unwise to limit the number of machines, so that any of them will be overtaxed. The day has gone by when one purifier will take care of all the middlings in the mill.
There is one point which is of much interest to mill owners who wish to change their mills over to the gradual reduction process, that is, how far they can utilize their present plan of milling machinery in making the change. Of course the cleaning machinery is the same In both cases, so are the elevators, conveyors, bolting chests, etc. But to use the millstone is a debatable question. After carefully considering the matter I have come to the conclusion that it has its place, and an important one at that, under the new regime, viz., that of reducing the finer purified middlings to flour. The reason for this lies in the peculiar construction of the wheat berry. If the interior of the berry were one solid mass of flour, needing only to be broken up to the requisite fineness, it could be done as well on the rolls. But instead of this, as is well known, the flour part of the berry is made up of a large number of granules or cells, the walls of which are cellular tissue, different from the bran in that it is soft and white instead of hard and dark colored. It is also fibrous to a certain extent, and when the fine middlings are passed between the rolls instead of breaking down and becoming finer, it has a tendency to cake up and flatten out, rendering the flour soft and flaky. It does not hurt the color, but it does hurt the strength. When the millstone is used in place of the roll the flour is of equally good color, and more round and granular. I know that in this the advocates of smooth rolls will differ from my conclusions, but I believe that the final outcome will be the use of millstones on the finer middlings, and in fact on all the middlings that are thoroughly freed from the germ.
It has been said that that which a man gives the most freely and receives with the worst grace is advice. I will, however, close with a little of the article which may not be wholly put of place. If you have a mill do not imagine that the addition of a few pairs of rolls, a purifier or two, and a little overhauling of bolting-chests, is going to make it a full-fledged Hungarian roller mill. If you are going to change an old mill or build a new one, do not take the counsel or follow the plans of every itinerant miller or millwright who claims to know all about gradual reduction. No matter what kind of a mill you want to build, go to some milling engineer who has a reputation for good work, tell him how large a mill you want, show him samples of the wheat it must use and the grades of flour it must make, and have him make a programme for the mill and plan the machinery to fit it. Then have the mill built to fit the machinery. When it starts follow the programme, whether it agrees with your preconceived notions or not, and the mill will, in ninety-nine cases out of one hundred, do good work.