POWER HAMMERS WITH MOVABLE FULCRUM.
[Footnote: Paper read before the Institution of Mechanical Engineers.--Engineering.]
By DANIEL LONGWORTH, of London.
The movable-fulcrum power hammer was designed by the writer about five and a half years ago, to meet a want in the market for a power hammer which, while under the complete control of only one workman, could produce blows of varying forces without alteration in the rapidity with which they were given. It was also necessary that the vibration and shock of the hammer head should not be transmitted to the driving mechanism, and that the latter should be free from noise and liability to derangement. The various uses to which the movable fulcrum hammers have been put, and their success in working[1]--as well as the importance of the general subject which includes them, namely, the substitution of stored power for human effort--form the author's excuse for now occupying the time of the meeting.
[Footnote 1: The hammers have been for some years used by A. Bamlett, of Thirsk; the American Tool Company, of Antwerp; Messrs. W.&T. Avery, of Birmingham; Pullar & Sons, of Perth; Salter & Co., of West Bromwich; Vernon Hope & Co., of Wednesbury, etc.; and also for stamps by Messrs. Collins & Co., of Birmingham, etc.]
Until these hammers were introduced, no satisfactory method had been devised for altering the force of the blow. The plan generally adopted was to have either a tightening pulley acting on the driving belt, a friction driving clutch, or a simple brake on the driving pulley, put in action by the hand or foot of the workman. Heavy blows were produced by simply increasing the number of blows per minute (and therefore the velocity), and light blows by diminishing it--a plan which was quite contrary to the true requirements of the case. To prevent the shock of the hammer head being communicated to the driving gear, an elastic connection was usually formed between them, consisting of a steel spring or a cushion of compressed air. With the steel spring, the variation which could be given in the thickness of the work under the hammer was very limited, owing to the risk of breaking the spring; but with the compressed air or pneumatic connection the work might vary considerably in thickness, say from 0 to 8 in. with a hammer weighing 400lb. The pneumatic hammers had a crank, with a connecting rod or a slotted crossbar on the piston-rod, a piston and a cylinder which formed the hammer-head. The piston-rod was packed with a cup leather, or with ordinary packing, the latter required to be adjusted with the greatest nicety, otherwise the piston struck the hammer before lifting it, or else the force of the blow was considerably diminished. As the piston moved with the same velocity during its upward and downward strokes, and, in the latter, had to overtake and outrun the hammer falling under the action of gravity, the air was not compressed sufficiently to give a sharp blow at ordinary working speeds, and a much heavier hammer was required than if the velocity of the piston had been accelerated to a greater degree.
As it is impossible in the limits of this paper to describe all the forms in which the movable fulcrum hammers have been arranged, two types only will be selected taken from actual work; namely, a small planishing hammer, and a medium-sized forging hammer.[1]
[Footnote 1: To the makers, Messrs. J. Scott Rawlings & Co, of Birmingham, the author is indebted for the working drawings of these hammers.]
The small planishing hammer, Figs. 1 to 3, next page, is used for copper, tin, electro, and iron plate, for scythes, and other thin work, for which it is sufficient to adjust the force of the blow once for all by hand, according to the thickness and quality of the material before commencing to hammer it. The hammer weighs 15 lb., and has a stroke variable from 2½ in. to 9½ in., and makes 250 blows per minute. The driving shaft, A, is fitted with fast and loose belt pulleys, the belt fork being connected to the pedal, P, which when pressed down by the foot of the workman, slides the driving belt on to the fast pulley and starts the hammer; when the foot is taken off the pedal, the weight on the latter moves the belt quickly on to the loose pulley, and the hammer is stopped. The flywheel on the shaft, A, is weighted on one side, so that it causes the hammer to stop at the top of its stroke after working; thus enabling the material to be placed on the anvil before starting the hammer. The movable fulcrum, B, consists of a stud, free to slide in a slot, C, in the framing, and held in position by a nut and toothed washer. On the fulcrum is mounted the socket, D, through which passes freely a round bar or rocking lever, E, attached at one end to the main piston, F, of the hammer, G, and having at the other extremity a long slide, H, mounted upon it. This slide is carried on the crank-pin, I, fastened to the disk, J, attached to the driving shaft, A. The crank-pin, in revolving, reciprocates the rocking lever, E, and main piston, F, and through the medium of the pneumatic connection, the hammer, G. The slide, H, in revolving with the crank-pin, also moves backward and forward along the rocking lever, approaching the fulcrum, B, during the down-stroke of the hammer, and receding from it during the up-stroke. By this means the velocity of the hammer is considerably accelerated in its downward stroke, causing a sharp blow to be given while it is gently raised during its upward stroke.
To alter the force of the blow, the hammer, G, is made to rise and fall through a greater or less distance, as may be required, from the fixed anvil block, K, after the manner of the smith giving heavy or light blows on his anvil. It is evident that this special alteration of the stroke could not be obtained by altering the throw of a simple crank and connecting rod; but by placing the slot, C, parallel with the direction of the rocking lever, E, when the latter is in its lowest position, with the hammer resting on the anvil, and with the crank at the top of its stroke, this lowest position of the rocking lever and hammer is made constant, no matter what position the fulcrum, B, may have in the slot, C. To obtain a short stroke, and consequently a light blow, the fulcrum is moved in the slot toward the hammer, G; and to produce a long stroke and heavy blow the fulcrum is moved in the opposite direction.
Fig. 3 gives the details of the pneumatic connection between the main piston and the hammer, in which packing and packing glands are dispensed with. The hammer, G, is of cast steel, bored out to fit the main piston, F, the latter being also bored out to receive an internal piston, L. A pin, M, passing freely through slots in the main piston, F, connects rigidly the internal piston, L, with the hammer, G. When the main piston is raised by the rocking lever, the air in the space, X, between the main and internal pistons, is compressed, and forms an elastic medium for lifting the hammer; when the main piston is moved down, the air in the space, Y, is compressed in its turn, and the hammer forced down to give the blow. Two holes drilled in the side of the hammer renew the air automatically in the spaces, X and Y, at each blow of the hammer.
Figs. 4 to 6, on the next page, represent the medium size forging hammer, for making forgings in dies, swaging and tilting bars, and plating edged tools, etc.
The hammer weighs 1 cwt., has a stroke variable from 4 in. to 14½ in., and gives 200 blows per minute; the compressed air space between the main piston and the hammer is sufficiently long to admit forgings up to 3 in. thick under the hammer.
To make forgings economically, it is necessary to bring them into the desired form by a few heavy blows, while the material is still in a highly plastic condition, and then to finish them by a succession of lighter blows. The heavy blows should be given at a slower rate than the lighter ones, to allow time for turning the work in the dies or on the anvil, and so to avoid the risk of spoiling it. In forging with the steam hammer the workman requires an assistant, who, with the lever of the valve motion in hand, obeys his directions as to starting and stopping, heavy or light blows, slow or quick blows, etc; the quickest speed attainable depending on the speed of the arm of the assistant. In the movable-fulcrum forging hammer the operations of starting and stopping, and the giving of heavy or light blows, are under the complete control of one foot of the workman, who requires therefore no assistant; and by properly proportioning the diameter of the driving pulley and size of belt to the hammer, the heavy blows are given at a slower rate than the light ones, owing to the greater resistance which they offer to the driving belt.
In this hammer the pneumatic connection, the arrangements for the starting, stopping, and holding up of the hammer, as well as those for communicating the motion of the crank-pin to the hammer by means of a rocking lever and movable fulcrum, are similar to those in the planishing hammer, differing only in the details, which provide double guides and bearings for the principal working parts.
LONGWORTH'S POWER HAMMER WITH MOVABLE FULCRUM.
The movable fulcrum, B, Figs. 4 and 5, consists of two adjustable steel pins, attached to the fulcrum lever, Q, and turned conical where they fit in the socket, D. The fulcrum lever is pivoted on a pin, R, fixed in the framing of the machine, and is connected at its lower extremity to the nut, S, in gear with the regulating screw, T. The to-and-fro movement of the fulcrum lever, Q, by which heavy or light blows are given by the hammer, is placed under the control of the foot of the workman, in the following manner: U is a double-ended forked lever, pivoted in the center, and having one end embracing the starting pedal, P, and the other end the small belt which connects the fast pulley on the driving shaft, A, with the loose pulley, V, or the reversing pulleys, W and X. These are respectivly connected with the bevel wheels, W1, and X1, gearing into and placed at opposite sides of the bevel wheel, Z, on the regulating screw in connection with the fulcrum lever. When the workman places his foot on the pedal, P, to start the hammer, he finds his foot within the fork of the lever, U; and by slightly turning his foot round on his heel he can readily move the forked lever to right or left, so shifting the small belt on to either of the reversing pulleys, W or X, and causing the regulating screw, T, to revolve in either direction. The fulcrum lever is thus caused to move forward or backward, to give light or heavy blows. By moving the forked lever into mid position, the small belt is shifted into its usual place on the loose pulley, V, and the fulcrum remains at rest. To fix the lightest and heaviest blow required for each kind of work, adjustable stops are provided, and are mounted on a rod, Y, connected to an arm of the forked lever. When the nut of the regulating screw comes in contact with either of the stops, the forked lever is forced into mid position, in spite of the pressure of the foot of the workman, and thus further movement of the fulcrum lever, in the direction which it was taking, is prevented. The movable fulcrum can also be adjusted by hand to any required blow, when the hammer is stopped, by means of a handle in connection with the regulating screw.
In conclusion the author wishes to direct attention to the fact, that in many of our largest manufactories, particularly in the midland counties, foot and hand labor for forging and stamping is still employed to an enormous extent. Hundreds of "Olivers," with hammers up to 60 lb. in weight, are laboriously put in motion by the foot of the workman, at a speed averaging fifty blows per minute; while large numbers of stamps, worked by hand and foot, and weighing up to 120 lb., are also employed. The low first cost of the foot hammers and stamps, combined with the system of piece work, and the desire of manufacturers to keep their methods of working secret, have no doubt much to do with the small amount of progress that has been made; although in a few cases competition, particularly with the United States of America, has forced the manufacturer to throw the Oliver and hand-stamp aside, and to employ steam power hammers and stamps. The writer believes that in connection with forging and stamping processes there is still a wide and profitable field for the ingenuity and capital of engineers, who choose to occupy themselves with this minor, but not the less useful, branch of mechanics.