NEW GAS BURNER.
Speaking at the last meeting of the Gaslight and Coke Company, Mr. George Livesey said many things with a view to inspire confidence of the future in the minds of timid gas proprietors. Among others he mentioned the advances now being made by invention in regard to improved appliances for developing the illuminating power of coal gas, with especial reference to a new burner just patented by Mr. Grimston. Mr. Livesey passed a very high encomium upon the burner, and this expression of opinion by such an authority is sufficient to arouse deep interest in the apparatus in question. It is therefore with much pleasure that we present our readers with the following early account of Mr. Grimston's burner, for which we are indebted to the inventor and Mr. George Bower, of St. Neots, in whose manufactory the burners are now being made in all sizes. It should be premised, to save disappointment, that the invention is yet so fresh that its ultimate capabilities are unknown. The accompanying illustration, therefore, represents the bare skeleton of one of the first models; and the actual performance of only the very earliest burner, made in great part by Mr. Grimston himself, has been fully tested. Before proceeding to describe the invention, a brief history may be interesting of how it happened that Mr. Grimston, an electric lighting engineer, became a gas burner maker. The story will undoubtedly help to explain the reasons for many of the characteristics of the new burner.
IMPROVED GAS BURNER. FIG. 1.--Sectional Elevation.
It appears, then, that Mr. Grimston, who was connected with the electrical engineering establishment of Siemens Bros. & Co., Limited, was some months ago shown the construction and working of the Siemens regenerative gas burner, which is now sufficiently well known to render a description unnecessary here. In common with most spectators of this very ingeniously and philosophically designed appliance, Mr. Grimston was struck with its bulk and the superficial clumsiness of the arrangement whereby the air and gas supply are heated in it by the products of combustion. These lamps have, of course, materially improved of late; but when Mr. Grimston first saw them, perhaps 18 months ago, they certainly could not be called neat and compact in design. He at once grasped the idea embodied in these lamps, and set about constructing an arrangement which should be based on a similar principle, but at the same time avoid the inconveniences complained of. It is not too much to say that he has succeeded in both these aims, and the burner which now bears his name strikes the observer at once by the brilliant light which it produces by the simplest and most obvious means. We may now describe, by reference to the accompanying illustrations, how Mr. Grimston produces the regenerative effect which is likewise the central idea of the Siemens burner.
IMPROVED GAS BURNER. FIG. 2.--Section through A B.
The light is simply that produced by an arrangement of a kind of Argand burner turned upside down. The central gas-pipe, a (Figs. 1 and 3), is connected to a distributing chamber, whence the annular cluster of brass tubes, a', a, (Figs. 1 and 2), are prolonged downward, forming the burner. The burner is inclosed in an iron or brass annular casing, b, b, which forms the main framework of the apparatus. The annular space which it affords is the outlet chimney or flue for the products of combustion of the burner beneath, and is crossed by a number of thin brass tubes, c, c, which lead from the outer air into the inner space containing the burner tubes, a', a', already described. The upper openings of the annular body, b, are shown at e, e (Fig. 3), which communicate direct with the chimney proper, e', e'. The burner is lighted by opening the hinged glass cover, d, which fits practically air-tight on the bottom of the body, so that the air needed to support combustion must all pass through the tubes, c, c, the outer ends of which are protected by the casing, k, k.
IMPROVED GAS BURNER. FIG. 3.--Section through C D.
When the gas is lighted at the burner, and the glass closed, the burner begins to act at once, although some minutes are necessarily required to elapse before its full brilliancy is gained. The cold air passes in through the tubes provided for it, and when these are heated to the fullest extent on their outside, by the hot fumes from the burner, they so readily part with their heat to the air that a temperature of 1,000° to 1,200° Fahr. is easily obtained in the air when it arrives inside, and commences in turn to heat the burner-tubes. The air-tubes are placed so as to intercept the hot gases as completely as possible; and also, of course, obtain heat by conduction from the sides of the annular body. It is evident that the number and dimensions of these tubes might be increased so as to abstract almost all the heat from the escaping fumes, but for the limitations imposed, first, by a consideration of the actual quantity of air required to support combustion, and, secondly, by the obligation to let sufficient ascensional power remain in the gases which are left to pass out through the upper chimney. If the gases are cooled too much, they will either fall back into the lamp and extinguish the flame, or will be removable only by the draught of a long chimney. It will probably be the aim of the inventor to balance these requirements, and so to produce burners with very short or longer chimneys, according as appearance is to be consulted or the highest possible effect produced. The burner is a ring of brass tubes of considerable diameter, in proportion to the quantity of gas consumed, and thus provides for the delivery of gas expanded by heat. In connection with this device an explanation may be found of the failure of the British Association Committee on Gas Burners to find any advantage from previously heating the air and gas consumed. The Committee did not make the necessary provision for the increased bulk of the combustible and its air supply, caused by their heightened temperature; and the same quantity of gas measured cold (at the meter) could only be driven through the ordinary small burner holes at a velocity destructive of good results. Herr Frederick Siemens perceived this in his early experiments, and not only increased the orifices of his burners, but provided for the closer contact of the more rarefied gas and air by the use of notched deflectors, which are now an essential part of his apparatus. Mr. Grimston also uses separate tubes of large area for his hot gas, but dispenses with deflectors, save in so far as the same duty may be performed by the plain lower edge of the inner cylinder of the lamp body, and the indentation of the glass beneath, which, as will be noticed, is made to follow the shape of the flame. It only remains now to speak of the flame and its qualities. It is, in the first place, a flame of hot gas, burning at an extremly small velocity of flow, and wholly exposed to view from the exact point which it is required to light. In this latter respect it differs materially, and with advantage, from the Siemens burner, which, while presenting an extremely brilliant and beautiful ball of flame outside its central tube of porcelain, may yet be tailing smokily downward inside this opaque screen, and thereby causing unperceived waste. The flame of the Grimston burner, on the other hand, is quite exposed, and all its light, from the ends of the burner-tubes to the point where visible combustion ceases, is made available for use. As a perfect Argand flame in the usual position has been likened in form to a tulip flower, so the flame of this burner presents the appearance of an inverted convolvulus. So far as he has already gone, Mr. Grimston prefers to keep the tubes of the burner at such a distance from each other that the several jets part at the point where they turn upward, so that the convolvulus figure is not maintained to the edge of the flame. From its peculiar position the light is, of course, completely shadowless as regards the lamp which affords it; and this, of itself, is no small recommendation for a pendant. It shows well for the simplicity and effectiveness of the perfected burners that Mr. Grimston's experimental example, although necessarily imperfect In many ways, burns with a remarkably steady light, of great brilliancy, which is assured by the fact that the products of combustion are robbed of all their heat to magnify the useful effect, so that the hand may be borne with ease over the outlet of the chimney. With respect to the endurance of the apparatus, it will be sufficient to remark that there is nothing in the gas or air heating arrangements to get out of order, and they are all easily accessible while the burner is in action. The glass is not liable to breakage, although it is in close proximity to the flame, as may be gathered from the testimony of the inventor, who has never broken one, notwithstanding the severity of some of his experimental studies upon his first lamp. The consumption of gas in the first working-model burner made by Mr. Grimston was 10 cubic feet per hour, and its illuminating power averaged 60 candles. The diameter of this burner was 1¼ inches across the tubes. It is scarcely necessary to state that if this high duty, which was obtained with the ordinary 16-candle gas of the Gaslight and Coke Company, can be maintained, to say nothing of being exceeded, in the commercial article, the Grimston burner, with its other advantages over all existing methods of obtaining equal results, has a great future before it. For example, it does not require a separate air supply under high pressure, or any extra material to render incandescent, and it may be turned on full immediately upon lighting. It throws a shadowless light, and lends itself to ventilating arrangements; and it is not by any means cumbersome, delicate in construction, or costly in manufacture. One of the greatest advantages to which it lays claim is, however, the power of yielding almost as good results in a small burner as in a large one. This is a consideration of great moment, when it is remembered that the tendency of most of the high power burners hitherto introduced is to benefit the lighting of streets, large interiors, and, generally speaking, points of great consumption. Meanwhile, the private user of burners, consuming from 3 to 5 cubic feet of gas per hour, has been left to attain as best he might, by the use of burners excellent of their kind, to the maximum effect of the standard Argand. Now, however, Mr. Grimston seeks to make the small consumer partake of the advantages erstwhile reserved for the wholesale user of large and costly Siemens and other lamps, and he even looks to this class of patrons with particular care. The example which we now illustrate, in Fig. 1, is a sectional presentment precisely half the actual size of a 5-foot burner, which it is intended to prepare for the market before all others. Another simple form of the burner, with vertical tubes, will, we understand, be introduced as soon as possible. It will be readily understood that the principle is capable of being embodied in many shapes; and it is satisfactory to learn that the inventor is quite alive to the necessity of producing a cheap as well as a good burner.
Gas companies, as Mr. Livesey has expressed it, will be well content with a slower relative growth of consumption, if their consumers are at the same time making their gas go as far again as formerly, by the use of burners which turn nominal 16-candle gas into gas of 30-candle actual illuminating power. How far Mr. Grimston's invention may succeed in this work it is not for us to say. It is sufficient for the present that he has done excellently well in showing how Herr Frederick Siemens' scientific principles of regenerative gas burner construction may be carried out yet in another way. There is nothing more common in industrial annals than for one man to begin a work which another is destined to bring to greater perfection. Whether this natural process is to be repeated in the present instance must be left for the future to decide. In any case, Mr. Grimston's success, if success is to be his reward, though it will be well merited by his ingenuity and perseverance in solving a difficult problem, will never cause us to forget the prior claims of Herr Frederick Siemens, of Dresden, to the palm of the discoverer. Mr. Grimston may or may not be the happy inventor of the best gas-burner of the day; but there is the consolation of knowing that in the same field in which he will find his recompense there is room for any number and variety of useful improvements of a like character and object.--Journal of Gas Lighting.