NEW YORK, October 3, 1891
Scientific American Supplement. Vol. XXXII, No. 822.
Scientific American established 1845
Scientific American Supplement, $5 a year.
Scientific American and Supplement, $7 a year.
THE REDOUTABLE.
The central battery and barbette ship Redoutable, illustrated this week, forms part of the French Mediterranean squadron, and although launched as early as 1876 is still one of its most powerful ships. Below are some of the principal dimensions and particulars of this ironclad:
| Length | 318 ft. | 2 in. |
| Beam | 64 ft. | 8 in. |
| Draught | 25 ft. | 6 in. |
| Displacement | 9200 tons. | |
| Crew | 706 officers and men. | |
The Redoutable is built partly of iron and partly of steel and is similar in many respects to the ironclads Devastation and Courbet of the same fleet, although rather smaller. She is completely belted with 14 in. armor, with a 15 in. backing, and has the central battery armored with plates of 9½ in. in thickness.
The engines are two in number, horizontal, and of the compound two cylinder type, developing a horse power of 6,071, which on the trial trip gave a speed of 14.66 knots per hour. Five hundred and ten tons of coal are carried in the bunkers, which at a speed of 10 knots should enable the ship to make a voyage of 2,800 knots. Torpedo defense netting is fitted, and there are three masts with military tops carrying Hotchkiss revolver machine guns.
The offensive power of the ship consists of seven breechloading rifled guns of 27 centimeters (10.63 in.), and weighing 24 tons each, six breechloading rifled guns of 14 centimeters (5.51 in.), and quick-firing and machine guns of the Hotchkiss systems. There are in addition four torpedo discharge tubes, two on each side of the ship. The positions of the guns are as follows: Four of 27 centimeters in the central battery, two on each broadside; three 27 centimeter guns on the upper deck in barbettes, one on each side amidships, and one aft. The 14 centimeter guns are in various positions on the broadsides, and the machine guns are fitted on deck, on the bridges, and in the military tops, four of them also being mounted on what is rather a novelty in naval construction, a gallery running round the outside of the funnel, which was fitted when the ship was under repairs some months ago.
There are three electric light projectors, one forward on the upper deck, one on the bridge just forward of the funnel, and one in the mizzen top.—Engineering.
ARMOR PLATING ON BATTLESHIPS: FRANCE AND GREAT BRITAIN.
The visit of the French squadron under Admiral Gervais to England has revived in many a nautical mind the recollection of that oft-repeated controversy as to the relative advantages of armored belts and citadels. Now that a typical French battleship of the belted class has been brought so prominently to our notice, it may not be considered an inappropriate season to dwell shortly upon the various idiosyncrasies of thought which have produced, in our two nations, types of war vessels differing so materially from each other as to their protective features. In order to facilitate a study of these features, the accompanying sketch has been prepared, which shows at a glance the relative quantities of armored surface that afford protection to the Nile, the Camperdown, the Marceau, the Royal Sovereign, and the Dupuy de Lôme; the first three of these vessels having been actually present at the review on the 21st of August and the two others having been selected as the latest efforts of shipbuilding skill in France and Great Britain. Nothing but the armored surface in each several class is shown, the same scale having been adhered to in all cases.
Two impressions cannot fail to be made upon our minds, both as to French and British armor plate disposition. These two impressions, as regards Great Britain, point to the Royal Sovereign as embodying the idea of two protected stations with a narrow and partial connecting belt; and to the Nile as embodying the idea of a vast and absolutely protected raft. For France, we have the Marceau as representing the wholly belted type with four disconnected but protected stations; and the Dupuy de Lôme, in which the armor plating is thinned out to a substance of only 4 in., so as entirely to cover the sides of the vessel down to 5 ft, below the water line; this thickness of plating being regarded as sufficient to break up upon its surface the dreaded mélinite or guncotton shell, but permitting the passage of armor-piercing projectiles right through from side to side; provision being made to prevent damage from these latter to engines and vitals by means of double-armored decks below, with a belt of cellulose between them. Thus, as we have explained, two prominent ideas are present in the disposition of armor upon the battleships of Great Britain, as well as in that of the battleships of France. But, while in our country these two ideas follow one another in the natural sequence of development, from the Inflexible to the Royal Sovereign, the citadel being gradually extended into two redoubts, and space being left between the redoubts for an auxiliary battery—this latter being, however, singularly placed above the armored belt, and not within its shelter—in France, on the other hand, we find the second idea to be a new departure altogether in armored protection, or rather to be a return to the original thought which produced the Gloire and vessels of her class. In point of fact, while we have always clung to the armored citadel, France has discarded the belt altogether, and gone in for speed and light armor, as well as for a much lighter class of armament. Time alone, and the circumstances of actual warfare, can prove which nation has adopted the wisest alternative.
A glance at the engraving will show the striking contrast between the existing service types as to armored surface. The Marceau appears absolutely naked by the side of the solidly armed citadel of the Nile. The contrast between the future types will be, of course, still more striking, for the reasons given in the last paragraph. But while remarking upon the paucity of heavy plating as exhibited in the service French battleships, we would say one word for the angle at which it is placed. The receding sides of the great vessels of France give two very important attributes in their favor. In the first place, a much broader platform at the water line is afforded to secure steadiness of the ship and stable equilibrium, and the angle at which the armor rests is so great as to present a very oblique surface to the impact of projectiles. The trajectory of modern rifled guns is so exceedingly flat that the angle of descent of the shot or shell is practically nil. Were the sides of the Royal Sovereign to fall back like those of the Marceau or Magenta, we seriously doubt whether any projectile, however pointed, would effect penetration at all. We conclude, then, that a comparison of the Marceau with the Nile as regards protective features is so incontestably in favor of the latter, that they cannot be classed together for a moment. In speed, moreover, though this is not a point under consideration, the Nile has the advantage. It is impossible, however, to avoid the conviction that the Dupuy de Lôme would be a most powerful and disagreeable enemy for either of the eight great ironclads of Great Britain now building to encounter on service. The Hood and Royal Sovereign have many vulnerable points. At any position outside of the dark and light colored portions of armor plate indicated in our drawing, they could be hulled with impunity with the lightest weapons. It is true that gun detachments and ammunition will be secure within the internal "crinolines," but how about the other men and matériel between decks? Now, the Dupuy de Lôme may be riddled through and through bf a 13½ in. shell if a Royal Sovereign ever succeeds in catching her; but from lighter weapons her between decks is almost secure. We cannot help feeling a sneaking admiration for the great French cruising battleship, with her 6,300 tons and 14,000 horse power, giving an easy speed of 20 knots in almost any weather, and protected by a complete 4 in. steel panoply, which will explode the shells of most of our secondary batteries on impact, or prevent their penetration. In fact, there is little doubt that the interior of the Trafalgar, whether as regards the secondary batteries or the unarmored ends, would be probably found to be a safer and pleasanter situation, in the event of action with a Dupuy de Lôme, than either of the naked batteries or the upper works of the Royal Sovereign. This is what Sir E.J. Reed was so anxious to point out at the meeting of naval architects in 1889, when he described the modern British battleship as a "spoiled Trafalgar." There was perhaps some reason in what he said.—The Engineer.
DEMOLITION OF ROCKS UNDER WATER WITHOUT EXPLOSIVES-LOBNITZ SYSTEM.[1]
By EDWIN S. CRAWLEY.
The methods of demolishing rocks by the use of explosives are always attended by a certain amount of danger, while at the same time there is always more or less uncertainty in regard to the final result of the operation. Especially is this the case when the work must be carried on without interrupting navigation and in the vicinity of constructions that may receive injury from the explosions.
Such were the conditions imposed in enlarging the Suez Canal in certain parts where the ordinary dredges could not be used.
Mr. Henry Lobnitz, engineer at Renfrew, has contrived a new method of procedure, designed for the purpose of enlarging and deepening the canal in those parts between the Bitter Lakes and Suez, where it runs over a rocky bed. It was necessary to execute the work without interrupting or obstructing traffic on the canal.
The principle of the system consists in producing a shattering of the rock by the action of a heavy mass let fall from a convenient height, and acting like a projectile of artillery upon the wall of a fortress.
From experiments made in the quarry of Craigmiller, near Edinburgh, with a weight of two tons shod with a steel point, it was found that with a fall of about 5.5 meters (18.04 ft.) there was broken up on an average more than 0.113 cubic meter (0.148 cubic yard) of hard rock per blow. The first blow, delivered 90 centimeters (2 ft. 11½ in.) from the wall face, produced an almost imperceptible rent, a second or a third blow applied at the same place extended this opening often to a length of 1.50 meters (4 ft. 11 in.) and to a depth of from 90 to 120 centimeters (2 ft. 11 in. to 3 ft. 11 in.) The next blow opened the fissure and detached the block of rock.
The application of the same system under water upon an unknown surface would obviously modify the conditions of the experiment. Nevertheless, the results obtained with the "Derocheuse," the first dredging machine constructed upon this principle, have realized the hopes of the inventor.
This dredging machine was launched on the Clyde and reached Port Said in twenty days. It measures 55 meters (180 ft. 5 in.) in length, 12.20 meters (40 ft. 1 in.) in breadth, and 3.65 meters (12 ft.) in depth. Its mean draught of water is 2.75 meters (9 ft. 2½ in.) It is divided into eighteen watertight compartments. Five steel-pointed battering rams, each of four tons weight, are arranged in line upon each side of the chain of buckets of the dredging machine. See Figs. 1 and 2. The battering rams, suspended by chains, are raised by hydraulic power to a height varying from 1.50 to 6 meters (4 ft. 11 in. to 19 ft. 8 in.), and are then let fall upon the rock. The mechanism of the battering rams is carried by a metallic cage which can be moved forward or backward by the aid of steam as the needs of the work require. A series of five battering rams gives from 200 to 300 blows per hour.
FIG. 1.—LONGITUDINAL SECTION.
FIG. 2.—PLAN
A dredging machine combined with the apparatus just described, raises the fragments of rock as they are detached from the bottom. A guide wheel is provided, which supports the chain carrying the buckets, and thus diminishes the stress upon the axles and bearings. With this guide wheel or auxiliary drum there is no difficulty in dredging to a depth of 12 meters (39 ft. 4 in.), while without this accessory it is difficult to attain a depth of 9 meters (29 ft. 6 in.)
A compound engine, with four cylinders of 200 indicated horse power, drives, by means of friction gear, the chain, which carries the buckets. If the buckets happen to strike against the rock, the friction gear yields until the excess of resistance has disappeared.
Fig. 3 indicates the manner in which the dredge is operated during the work. It turns alternately about two spuds which are thrust successively into the bottom and about which the dredge describes a series of arcs in a zigzag fashion. These spuds are worked by hydraulic power.
FIG. 3.—DREDGE MOVEMENT.
A three ton hand crane is placed upon the bridge for use in making repairs to the chain which carries the buckets. A six ton steam crane is placed upon the top of the cage which supports the hydraulic apparatus for raising the battering rams, thus permitting them to be easily lifted and replaced.
The dredging machine is also furnished with two screws driven by an engine of 300 indicated horse power, as well as with two independent boilers. Two independent series of pumps, with separate connections, feed the hydraulic lifting apparatus, thus permitting repairs to be made when necessary, without interrupting the work. A special machine with three cylinders drives the pumps of the condenser. An accumulator regulates the hydraulic pressure and serves to raise or lower the spuds.
At the end of the Suez Canal next to the Red Sea, the bottom consists of various conglomerates containing gypsum, sandstone and sometimes shells. It was upon a bed of this nature that the machine was first put to work. The mean depth of water, originally 8.25 meters (26 ft. 3 in.), was for a long time sufficient for the traffic of the canal; but as the variations in level of the Red Sea are from 1.8 to 3 meters (5 ft. 11 in. to 9 ft. 10 in.), the depth at the moment of low water is scarcely adequate for the constantly increasing draught of water of the steamers. Attempts were made to attack the rocky surface of the bottom with powerful dredges, but this method was expensive because it necessitated constant repairs to the dredges.
These last, although of good construction, seldom raised more than 153 cubic meters (200 cubic yards) in from eight to fifteen days. Their daily advance was often only from sixty to ninety centimeters (about 2 to 3 ft.), while with the "Derocheuse" it was possible to advance ten times as rapidly in dredging to the same depth. The bottom upon which the machine commenced its work was clean and of a true rocky nature. It was soon perceived that this conglomerate, rich in gypsum, possessed too great elasticity for the pointed battering rams to have their proper effect upon it. Each blow made a hole of from fifteen to sixty centimeters (6 in. to 2. ft.) in depth. A second blow, given even very near to the first, formed a similar hole, leaving the bed of the rock to all appearances intact between the two holes. This result, due entirely to the special nature of the rock, led to the fear that the action of the battering rams would be without effect. After some experimentation it was found that the best results were obtained by arranging the battering rams very near to the chain of buckets and by working the dredge and battering rams simultaneously. The advance at each oscillation was about 90 centimeters (about 3 ft.)
The results obtained were as follows: At first the quantity extracted varied much from day to day; but at the end of some weeks, on account of the greater experience of the crew, more regularity was obtained. The nature of the conglomerate was essentially variable, sometimes hard and tenacious, like malleable iron, then suddenly changing into friable masses surrounded by portions more elastic and richer in gypsum.
During the last five weeks at Port Tewfik, the expense, including the repairs, was 8,850 francs ($1,770.00) for 1,600 cubic meters (2,093 cubic yards) extracted. This would make the cost 5.52 francs per cubic meter, or $0.84 per cubic yard, not including the insurance, the interest and the depreciation of the plant.
After some improvements in details, suggested by practice, the machine was put in operation at Chalouf upon a hard rock, from 1.50 to 3 meters (4 ft. 11 in. to 9 ft. 10 in.) thick. The battering rams were given a fall of 1.80 meters (5 ft. 11 in.). To break the rock into fragments small enough not to be rejected by the buckets of the dredge, the operations of dredging and of disintegration were carried on separately, permitting the battering rams to work at a greater distance from the wall face. The time consumed in thus pulverizing the rock by repeated blows was naturally found to be increased. It was found more convenient to use only a single row of battering rams. The production was from about seven to eleven cubic meters (9.2 to 14.4 cubic yards) per hour. Toward the close of September, after it had been demonstrated that the "Derocheuse" was capable of accomplishing with celerity and economy the result for which it was designed, it was purchased by the Suez Canal Company.
During the month of September, an experiment, the details of which were carefully noted, extending over a period of sixteen days, gave the following results:
| Crew (33 men), 140 hours. | 2,012.50 francs | $402.50 |
| Coal, @ 87.50 francs ($7.50) per ton | 787.50 francs | 157.50 |
| Oil and supplies | 220.00 francs | 44.00 |
| Fresh water, 16 days | 210.00 francs | 42.00 |
| Sundries | 42.50 francs | 8.50 |
| ————— | ——— | |
| Total expense for removing 764 cubic meters (999.2 cubic yards), | 3,272.50 francs | $654.50 |
Average, 4.28 francs per cubic meter ($0.65 per cubic yard).
This result cannot be taken as a universal basis, because after a year's use there are numerous repairs to make to the plant, which would increase the average net cost. This, besides, does not include the cost of removal of the dredged material, nor the depreciation, the interest and the insurance.
It should be added on the other hand, however, that the warm season was far from being favorable to the energy and perseverance necessary to carry on successfully experiments of this kind. The temperature, even at midnight, was often 38°C. (100.4° F.). Still further, the work was constantly interrupted by the passage of ships through the canal. On an average not more than forty minutes' work to the hour was obtained. Notwithstanding this, there were extracted at Chalouf, on an average, 38.225 cubic meters (50 cubic yards) per day without interrupting navigation. At Port Tewfik, where there was much less inconvenience from the passage of ships, the work was carried on from eight to eleven hours per day and the quantity extracted in this time was generally more than 76 cubic meters (99.4 cubic yards).
In most cases the system could be simplified. The engine which works the dredge could, when not thus employed, be used to drive the pumps. The propelling engine could also be used for the same purpose.
The results obtained at Suez indicate the appreciable advantages arising from the application of this system to the works of ports, rivers and canals, and ever, to the work of cutting in the construction of roads and railroads.
Read before the Engineer's Club, Philadelphia. Translated from Nouvelles Anodes de la Construction, March, 1890.
PROGRESS IN ENGINEERING.
Mr. T. Forster Brown, in his address to the Mechanical Science Section of the British Association, said that great progress had been made in mechanical science since the British Association met in the principality of Wales eleven years ago; and some of the results of that progress were exemplified in our locomotives, and marine engineering, and in such works as the Severn Tunnel, the Forth and Tay Bridges, and the Manchester Ship Canal, which was now in progress of construction. In mining, the progress had been slow, and it was a remarkable fact that, with the exception of pumping, the machinery in use in connection with mining operations in Great Britain had not, in regard to economy, advanced so rapidly as had been the case in our manufactures and marine. This was probably due, in metalliferous mining, to the uncertain nature of the mineral deposits not affording any adequate security to adventurers that the increased cost of adopting improved appliances would be reimbursed; while in coal mining, the cheapness of fuel, the large proportion which manual labor bore to the total cost of producing coal, and the necessity for producing large outputs with the simplest appliances, explained the reluctance with which high pressure steam compound engines, and other modes embracing the most modern and approved types of economizing power had been adopted. Metalliferous mining, with the exception of the working of iron ore, was not in a prosperous condition; but in special localities, where the deposits of minerals were rich and profitable, progress had been made within a recent period by the adoption of more economical and efficient machinery, of which the speaker quoted a number of examples. Reference was also made to the rapid strides made in the use of electricity as a motive power, and to the mechanical ventilation of mines by exhaustion of the air.