THE STRUCTURE AND FUNCTIONS OF THE ANIMAL BODY

Organs and functions.—The body of the toad is composed of various parts, such as the lungs, the heart, the muscles, the eyes, the stomach, and others. The life of the toad consists of the performance by it of various processes, such as breathing, digesting food, circulating blood, moving, seeing, and others. These various processes are performed by the various parts of the body. The parts of the body are called organs, and the processes (or work) they perform are called their functions. The lungs are the principal organs for the function of breathing; the heart, arteries and veins are the organs which have for their function the circulation of the blood; the principal organ concerned in the digestion of food is the alimentary canal, the function of seeing is performed by the organs of sight, the eyes, and so one might continue the catalogue of all the organs of the body and of all the functions performed by the animal.

The animal body a machine.—The whole body of the toad is a machine composed of various parts, each part with its special work or business to do, but all depending on one another and all co-operating to accomplish the total work of living. The locomotive engine is a machine similarly composed of various parts, each part with its special work or function, and all the parts depending on one another and so working together as to perform satisfactorily the work for which the locomotive engine is intended. An important difference between the locomotive engine and the toad's body is that one is a lifeless machine and the other a living machine. But there is a real similarity between the two in that both are composed of special parts, each part performing a special kind of work or function, and all the parts and functions so fitted together as to form a complex machine which successfully accomplishes the work for which it is intended. And this similarity is one which should help make plain the fundamental fact of animal structure and physiology, namely, the division of the body into numerous parts or organs, and the division of the total work of living into various processes which are the special work or functions of the various organs.

The essential functions or life-processes.—The toad has a great many different special parts in its body. Its body is very complex. It performs a great many different functions, that is, does a great many different things in its living. And the structure and life of most of the other animals with which we are familiar are similarly complex: a fish, or a rabbit, or a bird has a body composed of many different parts, and is capable of doing many different things. Are all animals similarly complex in structure, and capable of doing such a great variety of things? We shall find that the answer to this question is No. There are many animals in which the body is composed of but a few parts, and whose life includes the performance of fewer functions or processes than in the case of the toad. There are many animals which have no eyes nor ears nor other organs of special sense. There are animals without legs or other special organs of locomotion; some animals have no blood and hence no heart nor arteries and veins. But in the life of every animal there are certain processes which must be performed, and the body must be so arranged or composed as to be capable of performing these necessary life-processes. All animals take food, digest it, and assimilate it, that is, convert it into new body substance; all animals take in oxygen and give off carbonic acid gas; all animals have the power of movement or motion (not necessarily locomotion); all animals have the power of sensation, that is, can feel; all animals can reproduce themselves, that is, produce young. These are the necessary life-processes. It is evident that the toad could still live if it had no eyes. Seeing is not one of the necessary functions or processes of life. Nor is hearing, nor is leaping, nor are many of the things which the toad can do; and animals can exist, and do exist, without any of those organs which enable the toad to see and hear and leap. But the body of any animal must be capable of performing the few essential processes which are necessary to animal life. How surprisingly simple such a body can be will be later discovered. But in most animals the body is a complicated object, and is able to do many things which are accessory to the really essential life-processes, and which make its life complex and elaborate.


[CHAPTER IV]

THE CRAYFISH (Cambarus sp.)

LABORATORY EXERCISE

Technical Note.—The crayfish, or crawfish, is found in most of the fresh-water ponds and streams of the United States. (It is not found east of the Hoosatonic River, Mass. In this region the lobster may be used. On the Pacific coast the crayfishes belong to the genus Astacus.) Crayfishes may be taken by a net baited with dead fish, or they may be caught in a trap made from a box with ends which open in, and baited with dead fish or animal refuse of any sort. This box should be placed in a pond or stream frequented by crayfish. If possible the student should study the living animal and observe its habits. Crayfish which are to be kept alive should be placed in a moist chamber in a cool place. They will keep for a longer time in a moist chamber than in water. Some fresh specimens should be injected by the teacher for the study of the circulatory system. A watery solution of coloring matter or, better, of an injecting mass of gelatine (see p. [451]) is injected into the heart through the needle of a hypodermic syringe. For the purpose of injecting, a small bit of the shell may be removed from the cephalothorax above the heart. Specimens which are to be kept for some time should be placed in alcohol or 4% formalin.

External structure (fig. [3]).—Place a specimen in a pan for study. Note that the body, which of course differs much in shape from that of the toad, is also unlike that of the toad in being covered by a hard calcareous exoskeleton, which acts as a covering for the soft parts and also as a place of attachment for the muscles, just as the internal skeleton does in the case of the toad. The body is composed of an anterior part, the cephalothorax, and a posterior part, the abdomen. The cephalothorax is covered above and on the sides by the carapace, which is divided into parts corresponding to the head and thorax of the toad by the transverse cervical suture. The abdomen is composed of segments. How many? The flattened terminal segment is called the telson. Is the cephalothorax composed of segments? Where is the mouth of the crayfish? Where is the anal opening?

Fig. 3.—Ventral aspect of crayfish (Cambarus sp.), with the appendages of one side disarticulated.

At the anterior end of the cephalothorax note a sharp projection, the rostrum. Where are the eyes? Remove one of them and examine its outer surface with a microscope. A bit of the outer wall should be torn off and mounted on a glass slide. Note that it is made up of a great many little facets placed side by side. Each of these facets is the external window of an eye element or ommatidium. An eye composed in this way is called a compound eye. In front of the eyes note two pairs of slender many-segmented appendages. The shorter pair, the antennules, are two-branched. Remove one of them and note at its base a small slit along the upper surface. This slit opens into a small bag-like structure which contains fine sand-grains. The bag is protected by a series of fine bristles along the edge of the slit. This bag-like structure is believed to be an auditory organ. The longer pair of appendages are the antennæ, and in the fine hair-like projections upon the joints is believed to be located the sense of smell. Thus it will be seen that the sense-organs of the crayfish, like those of the toad, are located on the head. Beneath the basal portion of each antenna there is a flat plate-like projection, at the base of which on the upper edge will be noted a small opening, the exit of the kidney, or green gland.

Make a drawing of the surface of part of an eye; also of an antennule; and of an antenna.

Technical Note.—Stick one point of the scissors under the posterior end of the carapace on the right side, and cut forward, thus exposing a large cavity, the gill-chamber. Remove all of the mouth-parts, legs and abdominal appendages from the right side, being careful to leave the fringe-like parts, the gills, attached to their respective legs. Place all of the appendages in order on a piece of cardboard.

Examine the abdominal appendages, called pleopods, or swimming feet. How many pairs are there? Each is composed of a basal part, the protopodite, and two terminal segments, an inner one, the endopodite, and an outer, the exopodite. In the males the first and second pleopods of the abdomen are larger and less flexible than the others. In the female the pleopods serve to carry the eggs and the first two pairs are very small or absent. Note the last set of abdominal appendages. These are the uropods, which together with the telson form the tail.

Make a drawing of the pleopods of one side.

Examine the appendages of the cephalothorax. Like the appendages of the abdomen the typical composition of each includes a protopodite, an exopodite and an endopodite, but some of these appendages are much modified, and show a loss of one of these parts, or the addition of an extra part. The cephalothoracic appendages may be divided into three groups, an anterior group of three pairs of mouth-parts (belonging to the head) of which the first pair is the mandibles and the others are the maxillæ; a second group of three pairs of foot-jaws or maxillipeds, belonging to the thorax, and a third group of five pairs of walking-legs. The mandibles, lying next to the mouth-opening, are hard and jaw-like and lack the exopodite; the first maxillæ are small and also lack the exopodite; the second maxillæ have a large paddle-like structure which extends back over the gills on each side within the space, the branchial chamber, above the gills. It is by means of this paddle-like structure (the scaphognathite) that currents of water are kept up through the gill-chambers. The maxillipeds increase in size from first to third pair. Each pair of walking-legs except the last bears gills. These gills are the organs by which the blood is purified. The blood of the crayfish flows into the large vessels on the outer sides of the gill and thence into the fine vessels in the little leaf-like lamellæ. At the same time the air which is mixed with the water bathing the gills passes freely through the thin membranous walls of these lamellæ and blood-vessels, and the blood gives off its carbonic acid gas to the water and takes up oxygen from the air in the water. Thus it will be seen that the office of the gill is like that of the lung in the toad, namely, to act as an organ for the elimination of carbonic acid gas and the taking up of oxygen.

Note the pincer-like appendages of the first pair of legs. These pincers are the chelæ, with which food is torn into bits and placed in the mouth. In the basal segment of each of the last pair of legs of the male note the genital pore. In the female the genital pores are in the basal segments of the next to last pair of legs. Is the crayfish bilaterally symmetrical? Note the repetition of parts in the crayfish, that is, the recurrence of similar parts in successive segments. This serial repetition of parts among animals is called metemerism.

Internal structure (fig. [4]).—Technical Note.—With a pair of scissors cut through the dorsal wall of the cephalothorax into the body-cavity. Cut the body-wall away from both sides and remove the middle portion.

Fig. 4.—Diagrammatic median longitudinal section of crayfish (Cambarus sp.).

At the anterior end of the cephalothorax note the large membranous sac, the stomach. Attached to each end of this are sets of muscles which control its movements. To the right and left of the stomach notice attached to the shell large muscles which connect by stout ligaments at their lower ends with the mandibles. Note a yellow fringe-like structure, the digestive gland, which fills most of the region about the stomach. It connects by a pair of small tubes, the bile-ducts, with the alimentary canal. Within the posterior portion of the cephalothorax note a pentagonal sac, the heart, contained within a delicate membrane, the pericardium. Remove the pericardium and note a pair of dorsal openings into the heart, called ostia. (There are also two lateral pairs and a ventral pair of ostia.) Note passing anteriorly from the heart along the median line to the eyes a blood-vessel, the ophthalmic artery. Arising from the anterior portion of the heart are the antennary arteries, running to the antennæ. Yet another pair running anteriorly from the heart to the stomach and digestive glands are called the hepatic arteries. From the posterior end of the heart arises the dorsal abdominal artery, running back to the telson. Below this arises the sternal artery, which will be seen later.

In the region below the heart are located the reproductive organs. They are whitish glandular masses from each of which runs a tube which opens at the base of the last pair of walking-legs in the male, and at the base of the third pair of walking-legs in the female.

Technical Note.—Cut longitudinally through the dorsal wall of the abdomen on either side of the median line and remove the piece of shell.

Note the powerful muscles within which flex and extend the abdomen. By a rapid contraction of these muscles the tail is brought beneath the body, propelling the animal strongly backwards. When the crayfish crawls it generally goes forward, but in swimming it reverses this direction.

Make a drawing showing, in their natural position, the internal organs which have been studied.

Examine the alimentary canal for its whole length. Note that the large bladder-shaped stomach is attached to the mouth-opening by a short tube. What part of the canal is this? From the posterior end of the stomach is a short thick-walled part, the small intestine, followed by a long straight tube, the large intestine, which opens to the exterior through the anus.

Technical Note.—Remove the alimentary canal, detaching it from the anal end first, and working forward.

Cut the stomach open. Note an anterior portion, the cardiac chamber, and a smaller posterior portion, the pyloric chamber. Examine its inner surface. What do you find here? This structure is called the gastric mill. Food, which for the most part consists of any dead organic matter, is chewed by the "stomach-teeth" into fine bits, and is then passed into the pyloric chamber. It is here that the digestive glands empty their secretion into the food. These glands have the same office as have the liver and pancreas combined in the toad, and so they are often called the hepato-pancreas. When the stomach has been removed there will be noted in the anterior portion of the body paired, flattened bodies, already mentioned, which connect with openings at the base of each of the antennæ by means of wide thin-walled sacs, the ureters. These organs are the kidneys, or green glands. Their office is similar to that of the kidneys in the toad, namely, the elimination of waste from the body.

Technical Note.—Carefully remove all of the alimentary canal, digestive glands, and reproductive organs. This process will expose the floor of the cephalothorax. Now cut away from either side the horny floor or bridge at the bottom of the cephalothorax. If the specimen has not already been immersed, place it in clear water for further dissection.

The foregoing dissection will expose the central nervous system. It extends as a series of paired ganglia connected by a double nerve-cord along the ventral median line from the œsophagus to the last segment of the abdomen. From what points do the lateral nerves arise? Anteriorly the double nerve-cord divides, the two parts passing upward on each side of the œsophagus, where they again meet to form the supra-œsophageal ganglion or brain. Where do the nerves run which rise from the brain? What is the difference between the position of the central nervous system in the crayfish and in the toad?

Make a drawing of the nervous system.

Just beneath the nerve-cord note a blood-vessel extending the length of the body. This is the sternal artery, which arises from the posterior end of the heart and passes ventrally at one side of the alimentary canal and between the nerve-cords. Here the sternal artery divides into an anterior and a posterior branch, from which lesser branches are given off to each one of the appendages. The various arteries running to all parts of the body finally pour out the blood into the body-cavity, where it flows freely in the spaces among the various tissues and organs. After the blood has bathed the body tissues it flows to the gills on either side, passing up the outer side of the gill through delicate thin-walled vessels, where it is oxygenated as has already been described. From the gills the purified blood flows back on the inner side through a large chamber, sinus, into the pericardium, through the ostia of the heart, whence it is driven into the arteries once more. This sort of a circulatory system in which the blood in places is not enclosed in a definite vessel is known as an open system. In the toad we find the blood in a closed system, i.e., arteries leading into capillaries which in turn lead into veins, in no case allowing the blood to pass freely through the spaces of the body.


[CHAPTER V]