Further Details by Post.

Although the formal official reports of the Eclipse Expedition are not yet published, and may not be for some weeks or months, we are able from the letters of Lockyer, Jannsen, Respighi, Maclear, etc., to form some idea of the general results. We may already regard two or three important questions as fairly answered. The reversal of the dark solar lines of the spectrum which was first announced by the great Roman observer, Father Secchi, and seen by him without an eclipse, may now be considered as established. It is true that all the observers of 1871 did not witness this. Some were doubtful, but others observed it positively and distinctly.

In such a case negative results do not refute the positive observations of qualified men, especially when several of such observations have been made independently; the phenomenon is but instantaneous, a mere flash of bright stripes in place of dark lines across the colored riband of the spectroscope, which happens just at the moment before and after totality, and is presented only when the instrument is accurately directed to the delicate curved vanishing thread of light which is the last visible fragment of the solar outline, and that which makes the first flash of his re-appearance.

A little explanation is necessary to render the significance of this “reversal” intelligible to those who have not specially studied the subject.

1st. When the spectroscope is directed to a luminous solid a simple rainbow-band or “continuous spectrum” is seen. When, on the other hand, the object is a luminous gas or vapor of moderate density, the spectrum is not a continuous band with its colors actually blending; it consists only of certain luminous stripes with blank spaces between them, each particular gas or vapor showing its own particular set of stripes of certain colors, and always appearing at exactly the same place, so invariably and certainly, that, by means of such luminous stripes, the composition of the gas or vapor may be determined. If, however, the gas be much compressed, the stripes widen as the condensation proceeds; they may even spread out sufficiently to meet and form a continuous spectrum like that from a solid. Liquids also produce continuous spectra.

2d. When a luminous solid or liquid, or very dense gas, capable of producing a continuous spectrum, is viewed through an intervening body of other gas or vapor of moderate or small density, fine dark lines cross the spectrum in precisely the same places as the bright stripes would appear if this intervening gas or vapor were luminous and seen by itself.

When the spectroscope is directed to the face of the sun under ordinary circumstances, it presents a brilliant continuous spectrum, striped with a multitude of the dark lines. From this it has been inferred that the luminous face of the sun is that of an incandescent solid or liquid, and that it is surrounded by the gases and vapors whose bright stripes, when artificially produced, occupy precisely the same places as the dark lines of the solar spectrum. This was the theory of Kirchoff and others in the early days of spectrum analysis, when it was only known that solids and liquids were capable of producing a continuous spectrum. The important discovery that gases and vapors, if sufficiently condensed, will also produce a continuous spectrum, opened another speculation, far more consistent with the other known facts concerning the constitution of the sun, viz., that the sun may be a great gaseous orb, blazing at its surface and gradually increasing in density from the surface towards the centre.

According to this, the metals sodium, calcium, barium, magnesium, iron, chromium, nickel, copper, zinc, strontium, cobalt, manganese, aluminium, and titanium, whose vapors, with those of some few other substances, give the dark lines that cross the solar spectrum, should exist neither as solids nor liquids on the solar surface, but as blazing gases. But such blazing gases, according to what I have stated above, should give us bright stripes instead of dark lines. Why, then, are not such bright stripes seen under ordinary circumstances?

This is easily answered. These blazing gases must, as we proceed from the surface of the sun downwards, become so condensed by the pressure of their own superincumbent strata, as to produce a continuous spectrum of great brilliancy. With such a background the bright stripes would be confounded and lost to sight. Besides this, the outer film of cooler vapor through which our vision must necessarily penetrate before reaching the luminous solar surface, will produce the dark lines exactly where the bright stripes should be, and thus effectually obliterate them; or, in other words, the intervening non-luminous vapors are opaque to the particular rays of light which the bright vapors of the same substance emits.

Therefore, according to this theory, if we could sweep away these outside darkening vapors, and screen off the inner layers of denser blazing matter which produces the continuous background, we should have a spectrum displaying a multitude of bright stripes exactly where the black lines of the ordinary solar spectrum appear.

Secchi announced that these bright lines were to be seen under favorable circumstances, when, by skillful management, the rays from the edge of the sun were so caught by the slit of the spectroscope as to exhibit only the spectrum of the superficial layer of the sun’s bright surface. This was disputed at the time by Mr. Lockyer, who, I suspect, omitted to consider the atmospheric difficulties under which English astronomers work, and the fact that the atmosphere of Italy is exceptionally favorable for delicate astronomical observation.

If he had fairly considered this I think he would agree with me in concluding that an observation of this kind, avowedly made with great difficulty and questionable distinctness by so skillful a spectroscopic observer as Father Secchi, could not possibly be seen by any human eyes through a London atmosphere.

Subsequently Professor Young startled the astronomical world by the announcement that, at the moment when the thinnest perceptible thread of the sun’s edge was alone displayed during the eclipse which he observed, the whole of the dark lines of the solar spectrum flashed out as bright stripes in a most unmistakable manner. This observation is now fully confirmed. The first telegrams from Mr. Pogson, the Government astronomer of Madras, and from Colonel Tennant, both announce this most positively, Colonel Tennant’s words being, “the reversion of the lines fully confirmed.” A similar result was obtained by some, but not by all, of the Ceylon observers.

To understand this clearly, we must consider the fact that what appears to us as the outline of a flat disc is really that part of the sun which we see by looking horizontally athwart his rotundity, just as we look at the ocean surface of our own earth when we stand upon the shore and see its horizon outline. When the moon obscures all but the last film of this solar edge, we see only the surface of the supposed gaseous orb, just that portion of the blazing gases which are not greatly compressed by those above them, and which accordingly should, if they consist of the vapors or the gases above named, display a bright-striped spectrum, provided the intervening non-luminous vapors of the same metals are not sufficiently abundant to obscure them—at this particular moment, when only the absolute horizon-line is seen, and the body of the moon cuts off all the intervening solar surface, and the lower or denser portion of the intervening super-solar vapors, though, of course, these are not so entirely cut off as the continuous background.

The reversion of the dark lines therefore reveals to us the stupendous fact that the surface of the mighty sun, which is as big as a million and a quarter of our worlds, consists of a flaming ocean of hydrogen and of the metals above-named in a gaseous condition, similar to that of the hydrogen itself.

This fact, coupled with the other revelations of the spectroscope, which, without the help of an eclipse, reveals the surface outline of the sun, the “sierra” and the “prominences” tell us that this flaming ocean is in a state of perpetual tempest, heaving up its billows and flame-Alps hundreds and thousands of miles in height, and belching forth above all these still taller pillars of fire that even reach an elevation of more than a hundred thousand miles, and then burst out into mighty clouds of flame and vapor, bigger than five hundred worlds.

What does the last eclipse teach us in reference to the corona? Firstly and clearly, that Lockyer’s explanation which attributed it to an illumination of the upper regions of the earth’s atmosphere must be now forever abandoned. This theory has died hard, but, in spite of Mr. Lockyer’s proclamation of “victory all along the line,” it is now past galvanizing. There can be no further hesitation in pronouncing that the corona actually belongs to the sun itself, that it is a marvelous solar appendage extending from the sun in all directions, but by no means regularly.

The immensity of this appendage will be best understood by the fact that the space included within the outer limits of the visible corona is at least twenty times as great as the bulk of the sun itself, that above twenty-five millions of our worlds would be required to fill it.

Jannsen says: “I believe the question whether the corona is due to the terrestrial atmosphere is settled, and we have before us the prospect of the study of the extra-solar regions, which will be very interesting and fertile.”

The spectroscope, the polariscope, and ordinary vision all concur in supporting the explanation that the corona is composed of solid particles and gaseous matter intermingled. It fulfils exactly all the requirements of the hypothesis which attributes it to the same materials as those which in a gaseous state cause the reversion of the dark lines above described, but which have been ejected with the great eruptions forming the solar prominences, and have become condensed into glowing metallic hailstones as their distance from the central heat has increased. These must necessarily be accompanied by the vapors of the more volatile materials, and should give out some of the lighter gases, such as hydrogen, which, under greater pressure, would be occluded within them, just as the hydrogen gas occluded within the substance of the Lenarto meteor (a mass of iron which fell from the sky upon the earth) was extracted by the late Master of the Mint by means of his mercurial air-pump.

The rifts or gaps between the radial streamers, which have been so often described and figured, but were regarded by some as optical illusions, are now established as unquestionable facts. Mr. Lockyer, the last to be convinced, is now compelled to admit this, which overthrows the supposition that this solar appendage is a luminous solar atmosphere of any kind. If it were gaseous or true vapor, it must obey the law of gaseous diffusion, and could not present the phenomena of bright radial streamers, with dark spaces between them, unless it were in the course of very rapid radial motion either to or from the sun.

The photographs have not yet been published. When they have all arrived, and can be compared, we shall learn something that I anticipate will be extremely interesting respecting the changes of the corona, as they have been taken at the different stations at different times. I alluded to this subject before, when it was only a matter of possibility that such a succession of pictures might have been taken. We now have the assurance that such pictures have been obtained. There can be no question about optical illusion in these; they are original affidavits made by the corona itself, signed, sealed, and delivered as its own act and deed.