THE ACTION OF FROST IN WATER-PIPES AND ON BUILDING MATERIALS.

Popular science has penetrated too deeply now to render necessary any refutation of the old popular fallacy which attributed the bursting of water-pipes to the thaw following a frost; everybody now understands that the thaw merely renders the work of the previous freezing so disastrously evident. Nevertheless, the general subject of the action of freezing water upon our dwellings is not so fully understood by all concerned as it should be. Builders and house-owners should understand it thoroughly, as most of the domestic miseries resulting from severe winters may be greatly mitigated, if not entirely prevented, by scientific adaptation in the course of building construction. Now-a-days tenants know something about this and select accordingly. Thus the market value of a building may be increased by such adaptation.

Solids, liquids, and gases expand as they are heated. This great general law is, however, subject to a few exceptions, the most remarkable of which is that presented by water. Let us suppose a simple experiment. Imagine a thermometer tube with its bulb and stem so filled with water that when the water is heated nearly to its boiling point it will rise to nearly the top of the long stem. Now let us cool it. As the cooling proceeds the water will descend, and this descending will continue until it attains the temperature marked on our ordinary thermometer as 39°, or more strictly 39-2/10; then a strange inversion occurs. As the temperature falls below this, the water rises gradually in the stem until the freezing point is reached.

This expansion amounts to 1/7692 part of the whole bulk of the water, or 100,000 parts become 100,013. So far the amount of expansion is very small, but this is only a foretaste of what is coming. Lower the temperature still further, the water begins to freeze, and at the moment of freezing it expands suddenly to an extent equalling 1/15 of its bulk, i.e., of the bulk of so much water as becomes solidified. The temperature remains at 32° until the whole of the water is frozen.

Fortunately for us, the freezing of water is always a slow process, for if this conversion of every 15 gallons into 16 took place suddenly, all our pipes would rip open with something like explosive violence. But such sudden freezing of any considerable quantity of water is practically impossible, on account of the “latent heat” of liquid water, which amounts to 142½°. All this is given out in the act of freezing. It is this giving out of so much heat that keeps the temperature of freezing water always at 32°, even though the air around may be much colder. No part of the water can fall below 32° without becoming solid, and that portion which solidifies gives out enough heat to raise 142½ times its own quantity from 31° to 32°.

The slowness of thawing is due to the same general fact. An instructive experiment may be made by simply filling a saucepan with snow or broken ice, and placing it over a common fire. The slowness of the thawing will surprise most people who have not previously tried the experiment. It takes about as long to melt this snow as it would to raise an equal weight of water from 32° to 174°. Or, if a pound of water at 174° be mixed with a pound of snow at 32°, the result will be two pounds of water at 32°; 142° will have disappeared without making the snow any warmer, it will all have been used up in doing the work of melting.

The force with which the great expansion due to freezing takes place is practically irresistible. Strong pieces of ordnance have been filled with water, and plugged at muzzle and touch-hole. They have burst in spite of their great thickness and tenacity. Such being the case, it is at first sight a matter of surprise that frozen water-pipes, whether of lead or iron, ever stand at all. They would not stand but for another property of ice, which is but very little understood, viz., its viscosity.

This requires some explanation. Though ice is what we call a solid, it is not truly solid. Like other apparent solids it is not perfect rigid, but still retains some degree of the possibility of flowing which is the characteristic of liquids. This has been shown by filling a bombshell with water, leaving the fuse-hole open and freezing it. A shell of ice is first formed on the outside, which of course plugs up the fuse-hole. Then the interior gradually freezes, but the expansion due to this forces the ice out of the fuse-hole as a cylindrical stick, just as putty might be squeezed out, only that the force required to mould and eject the ice is much greater.

I have constructed an apparatus which illustrates this very strikingly. It is an iron syringe with cylindrical interior of about half an inch in diameter, and a terminal orifice of less than 1/20 of an inch in diameter. Its piston of metal is driven down by a screw. Into this syringe I place small fragments of ice, or a cylinder of ice fitted to the syringe, and then screw down the piston. Presently a thin wire of ice is squirted forth like vermicelli when the dough from which it is made is similarly treated, showing that the ice is plastic like the dough, provided it is squeezed with sufficient force.

This viscosity of ice is displayed on a grand scale in glaciers, the ice of which actually flows like a river down the glacier valley, contracting as the valley narrows and spreading out as it widens, just as a river would; but moving only a few inches daily according to the steepness of the slope and the season, slower in winter than in summer.

Upon this, and the slowness of the act of freezing, depends the possibility of water in freezing in iron pipes without bursting them. Even iron yields a little before bursting, but ordinary qualities not sufficiently to bear the expansion of 1/15 of their contents. What happens then? The cylinder of ice contained in the tube elongates as it freezes, provided always the pipe is open at one or both ends. But there is a limit to this, seeing that the friction of such a tight-fitting core, even of slippery ice, is considerable, and if the pipe be too long, the resistance of this friction may exceed the resistance of tenacity of the pipe. I am unable to give any figures for such length; the subject does not appear to have been investigated as it should be, and as it might well be by our wealthy water companies.

We all know that lead pipes frequently succumb, but a little observation shows that they do so only after a struggle. The tenacity of lead is much less than that of iron (about 1/20 of that of ordinary wrought iron), but it yields considerably before breaking. It has, in fact, the property of viscosity similar to that of ice. At Woolwich the lead used for elongated rifle bullets is squirted like the ice in my syringe above described, powerful hydraulic pressure being used.

This yielding saves many pipes. It would save all new pipes if the lead were pure and uniform; but as this is not the case, they may burst at a weak place, the yielding being shown by the bulge that commonly appears at the broken part.

From the above it will be easily understood that a pipe which is perfectly cylindrical—other conditions equal—will be less likely to burst than one which is of varying diameter, as the sliding from a larger to a smaller portion of the pipe must be attended with great resistance, or a certain degree of block, beyond what would be due to the mere friction along a pipe of uniform diameter.

Let us now consider the relative merits of lead and iron as material for water-pipes in places where exposure to frost is inevitable. Lead yields more than iron, and so far has an advantage; this, however is but limited. As lead is practically inelastic, every stretch remains, and every stretch diminishes the capacity for further stretching; the lead thus stretched at one frost is less able to stretch again, and has lost some of its original tenacity. Hence the superiority of new leaden pipes. Iron is elastic within certain limits, and thus the iron pipe may yield a little without permanent strain or “distress,” and if its power of elastic resistance is not exceeded, it regains its original size without becoming sensibly weaker. Add to this its great tenacity, its nonliability to be indented, or otherwise to vary in diameter, and we have a far superior material.

But this conclusion demands some qualification. There is iron and iron, cast-iron and wrought-iron, and very variable qualities of each of these. I need scarcely add that common brittle cast-iron is quite out of the question for such purposes, though there is a new kind of cast-iron or semi-steel coming forward that may possibly supersede all other kinds; but this opens too wide a subject for discussion in the present paper, the main object of which has been a popular exposition of the general physical laws which must be obeyed by the builder, or engineer, who desires to construct domestic or other buildings that will satisfy the wants of intelligent people.

The mischievous action of freezing water is not confined to the pipes that are constructed to receive or convey it. Wherever water may be, if that water freezes, it must expand in the degree and with the force already described. If it penetrates stone or brick, or mortar or stucco, and freezes therein, one of two things must occur—either the superfluous ice must exude at the surface or to neighboring cavities, or the saturated material must give way, and split or crumble according to the manner and degree of penetration. To understand this, the reader must remember what I stated about the little-understood viscosity of ice, as well as its expansion at the moment of freezing.

Bricks are punished, but not so severely as might be anticipated, seeing how porous are some of the common qualities, especially those used in London. They are so amply porous that the water not only finds its way into them, but the pores are big enough and many enough for the ice to demonstrate its viscosity by squeezing out and displaying its crystalline structure in the form of snow-like efflorescence on the surface. This may have been observed by some of my readers during a severe frost. It is commonly confounded with the hoar-frost that whitens the roofs of houses, but which is very rarely deposited on perpendicular wall faces.

The mortar most liable to suffer is that which is porous and pulverulent within, but has been cleverly faced or pointed with a crust of more compact material. This outer film prevents the exuding of the expanding ice crystals, is thrust forth bodily, and retained by ice-cement during the frost, but it falls in scales when this temporary binding material thaws. Mortar that is compact throughout does not suffer to any appreciable extent. This is proved by the condition of the remains of Roman brickwork that still exist in Britain and other parts of Europe. Some of the old shingle walls at Brighton and other parts of the south coast, where the chalk for lime-burning was at the builder’s feet, and where his mortar is so thickly laid between the irregular masses of flint, also show the possible duration of good mortar. The jerry builder’s mortar, made of the riddlings of burnt clay ballast and dust-hole refuse just flavored with lime, crumbles immediately, because these materials do not combine with the lime as fine siliceous sand gradually does, to form an impermeable glassy silicate.

Stucco is punished by two distinct modes of action. The first is where the surface is porous, and the water permeates accordingly and freezes. This, of course, produces superficial crumbling, which should not occur at all upon good material protected by suitable paint. The other case, very deplorable in many instances, is where the water finds a space between the inner surface of the stucco and the outer surface of the material upon which it is laid. This water, when frozen, of course, expands, and wedges away the stucco bodily, causing it to come down in masses at the thaw. This, however, only occurs after severe frosts, as the ordinary mild frosts of our favored climate seldom endure long enough to penetrate to any notable depth of so bad a conductor as stone or stucco. It is worthy of note that water is a still worse conductor than stone.

Building stones are so various both in chemical composition and mechanical structure that the action of freezing water is necessarily as varied as the nature of the material. The highly siliceous granites (or, rather, porphyries that commonly bear the name of granite) are practically impermeable to water so long as they are free from any chemical decomposition of their feldspathic constituents; but when we come to sandstones and limestones, or intermediate material, very wide differences prevail.

The possible width of this difference is shown in the behavior of the unselected material in its natural home. Certain cliffs and mountains have stood for countless ages almost unchanged by the action of frost; others are breaking up with astonishing rapidity in spite of apparent solidity of structure. The Matterhorn, or Mont Cervin, one of the most gigantic of the giant Alps, 15,200 feet high, is rendered especially dangerous to ambitious climbers by the continual crashing down of fragments that are loosened when the summer sun melts the ice that first separated and then for a while held them in their original places. All the glaciers of the Alps are more or less streaked with “moraines,” which are fragments of the mountains that freezing water has detached.

Our stone buildings would suffer proportionally if some selection of material were not made. Generally speaking, this selection is based upon the experience of previous practical trials. Certain quarries are known to have supplied good material of a certain character, and this quarry has, therefore, a reputation which is usually of no small value to its fortunate owner. Other quarries are opened in the neighborhood wherever the rock resembles that of the tested quarry.

Sometimes, however, materials are open for selection that have not been so well tested, and a method of testing which is more expeditious and less expensive than constructing a building and watching the result, is very desirable. The subject of testing building materials in special reference to their resistance of frost was brought before the Academy of Science of Paris by M. Brard some years since.

In his preliminary experiments he used small cubes of the stone to be tested, soaked them in water, and then exposed them to the air in frosty weather, or subjected them to the action of freezing mixtures. Afterwards he found that by availing himself of the expansive force which certain saline solutions exert at the moment of crystallization, he could conveniently imitate the action of freezing without the aid of natural or artificial frost. Epsom salts, nitre, alum, sulphate of iron, Glauber’s salts, etc., were tried. The last named, Glauber’s salt (or sulphate of soda), which is very cheap, was found to be the best for the purpose.

His method of applying the test is as follows: Cut the specimens into two-inch cubes, with flat sides and sharp edges and corners, mark each specimen with a number, either by ink or scratching, and enter in a book all particulars concerning it. Make a saturated solution of the sulphate of soda in rain or distilled water, by adding the salt until no more will dissolve; perfect saturation being shown by finding, after repeated stirring, that a little of the salt remains at the bottom an hour or two after the solution was made. Heat this solution in a suitable vessel, and when it boils put in the marked specimens one by one, and keep them immersed in the boiling solution for half an hour. Take out the specimens separately and suspend them by threads, each over a separate vessel containing some of the liquid in which they were boiled, but which has been carefully strained to free it from any solid particles. In the course of a day or two, as the cubes dry, they will become covered with an efflorescence of snow-like crystals; wash these away by simply plunging the specimen into the vessel below, and repeat this two or three times daily for four or five days or longer. The most suitable vessel for the purpose is a glass “beaker,” sold by vendors of chemical apparatus.

In comparing competing samples, be careful to treat all alike, i.e., boil them together in the same solution, and dip them an equal number of times at equal intervals.

Having done this, the result is now to be examined. If the stone is completely resistant the cube will remain smooth on its surfaces and sharp at its edges and corners, and there will be no particles at the bottom of the vessel. Otherwise, the inability of the stone to resist the test will be shown by the disfigurement of the cube or the small particles wedged off and lying at the bottom of the liquid. Care must be taken not to confound these with crystals of the salt which may also be deposited. These crystals are easily removed by adding a little more water or warming the solution.

For strict comparison the fragments thus separated should be weighed in a delicate balance, such as is used in chemical analysis.