THE “GREAT ICE AGE” AND THE ORIGIN OF THE “TILL.”

The growth of science is becoming so overwhelming that the old subdivisions of human knowledge are no longer sufficient for the purpose of dividing the labor of experts. It is scarcely possible now for any man to become a naturalist, a chemist, or a physicist in the full sense of either term; he must, if he aims at thoroughness, be satisfied with a general knowledge of the great body of science, and a special and a full acquaintance with only one or two of its minor subdivisions. Thus geology, though but a branch of natural history, and the youngest of its branches, has now become so extensive that its ablest votaries are compelled to devote their best efforts to the study of sections which but a few years ago were scarcely definable.

Glaciation is one of these, which now demands its own elementary text-books over and above the monographs of original investigators. This demand has been well supplied by Mr. James Geikie in the “The Great Ice Age,”[15] of which a second edition has just been issued. Every student of glacial phenomena owes to Mr. Geikie a heavy debt of gratitude for the invaluable collection of facts and philosophy which this work presents. It may now be fairly described as a standard treatise on the subject which it treats.

One leading feature of the work offers a very aggressive invitation to criticism. Scotchmen are commonly accused of looking upon the whole universe through Scotch spectacles, and here we have a Scotchman treating a subject which affects nearly the whole of the globe, and devoting about half of his book to the details of Scottish glacial deposits; while England has but one-third of the space allowed to Scotland, Ireland but a thirtieth, Scandinavia less than a tenth, North America a sixth, and so on with the rest of the world. Disproportionate as this may appear at first glance, further acquaintance with the work justifies the pre-eminence which Mr. Geikie gives to the Scotch glacial deposits. Excepting Norway, there is no country in Europe which affords so fine a field for the study of the vestiges of extinct glaciers as Scotland, and Scotland has an advantage even over Norway in being much better known in geological detail. Besides this, we must always permit the expounder of any subject to select his own typical illustrations, and welcome his ability to find them in a region which he himself has directly explored.

Mr. Geikie’s connection with the geological survey of Scotland has afforded him special facilities for making good use of Scottish typical material, and he has turned these opportunities to such excellent account that no student after reading “The Great Ice Age” will find fault with its decided nationality.

The leading feature—the basis, in fact—of this work deserves especial notice, as it gives it a peculiar and timely value of its own. This feature is that the subject—as compared with its usual treatment by other leading writers—is turned round and presented, so to speak, bottom upwards. De Saussure, Charpentier, Agassiz, Humboldt, Forbes, Hopkins, Whewell, Stark, Tyndall, etc., have studied the living glaciers, and upon the data thus obtained have identified the work of extinct glaciers. Chronologically speaking, they have proceeded backwards, a method absolutely necessary in the early stages of the inquiry, and which has yielded admirable results. Geikie, in the work before us, proceeds exactly in the opposite order. Availing himself of the means of identifying glacial deposits which the retrogressive method affords, he plunges at once to the lowest and oldest of these deposits, which he presents the most prominently, and then works upwards and onwards to recent glaciation.

The best illustration I can offer of the timely advantage of this reversed treatment is (with due apology for necessary egotism) to state my own case. In 1841, when the “glacial hypothesis,” as it was then called, was in its infancy, Professor Jamieson, although very old and nearly at the end of his career, took up the subject with great enthusiasm, and devoted to it a rather disproportionate number of lectures during his course on Natural History. Like many of his pupils, I became infected by his enthusiasm, and went from Edinburgh to Switzerland, where I had the good fortune to find Agassiz and his merry men at the “Hotel des Neufchatelois”—two tents raised upon a magnificent boulder floating on the upper part of the Aar glacier. After a short but very active sojourn there I “did,” not without physical danger, many other glaciers in Switzerland and the Tyrol, and afterwards practically studied the subject in Norway, North Wales, and wherever else an opportunity offered, reading in the meantime much of its special literature; but, like many others, confining my reading chiefly to authors who start with living glaciers and describe their doings most prominently. When, however, I read the first edition of Mr. Geikie’s “Great Ice Age,” immediately after its publication, his mode of presenting the phenomena, bottom upwards, suggested a number of reflections that had never occurred before, leading to other than the usual explanations of many glacial phenomena, and correcting some errors into which I had fallen in searching for the vestiges of ancient glaciers. As these suggestions and corrections may be interesting to others, as they have been to myself, I will here state them in outline.

The most prominent and puzzling reflection or conclusion suggested by reading Mr. Geikie’s description of the glacial deposits of Scotland was, that the great bulk of them are quite different from the deposits of existing glaciers. This reminded me of a previous puzzle and disappointment that I had met in Norway, where I had observed such abundance of striation, such universality of polished rocks and rounded mountains, and so many striking examples of perched blocks, with scarcely any decent vestiges of moraines. This was especially the case in Arctic Norway. Coasting from Trondhjem to Hammerfest, winding round glaciated islands, in and out of fjords banked with glaciated rock-slopes, along more than a thousand miles of shore line, displaying the outlets of a thousand ancient glacier valleys, scanning eagerly throughout from sea to summit, landing at several stations, and climbing the most commanding hills, I saw only one ancient moraine—that at the Oxfjord station described in “Through Norway with Ladies.”[16]

But this negative anomaly is not all. The ancient glacial deposits are not only remarkable on account of the absence of the most characteristic of modern glacial deposits, but in consisting mainly of something which is quite different from any of the deposits actually formed by any of the modern glaciers of Switzerland or any other country within the temperate zones.

I have seen nothing either at the foot or the sides of any living Alpine or Scandinavian glacier that even approximately represents the “till” or “boulder clay,” nor any description of such a formation by any other observer; and have met with no note of this very suggestive anomaly by any writer on glaciers. Yet the till and boulder clay form vast deposits, covering thousands of square miles even of the limited area of the British Isles, and constitute the main evidence upon which we base all our theories respecting the existence and the vast extent and influence of the “Great Ice Age.”

Although so different from anything at present produced by the Alpine or Scandinavian glaciers, this great deposit is unquestionably of glacial origin. The evidences upon which this general conclusion rests are fully stated by Mr. Geikie, and may safely be accepted as incontrovertible. Whence, then, the great difference?

One of the suggestions to which I have already alluded as afforded by reading Mr. Geikie’s book was a hypothetical solution of this difficulty, but the verification of the hypothesis demanded a re-visit to Norway. An opportunity for this was afforded in the summer of 1874, during which I traveled round the coast from Stavanger to the Arctic frontier of Russia, and through an interesting inland district. The observations there made and strengthened by subsequent reflections, have so far confirmed my original speculative hypothesis that I now venture to state it briefly as follows:

That the period appropriately designated by Mr. Geikie as the “Great Ice Age” includes at least two distinct periods or epochs—the first of very great intensity or magnitude, during which the Arctic regions of our globe were as completely glaciated as the Antarctic now are, and the British islands and a large portion of Northern Europe were glaciated as completely, and nearly in the same manner, as Greenland is at the present time; that long after this, and immediately preceding the present geological epoch, there was a minor glacial period, when only the now existing valleys, favorably shaped and situated for glacial accumulations, were partially or wholly filled with ice. There may have been many intermediate fluctuations of climate and glaciation, and probably were such, but as these do not affect my present argument they need not be here considered.

So far I agree with the general conclusions of Mr. Geikie as I understand them, and with the generally received hypotheses, but in what follows I have ventured to diverge materially.

It appears to me that the existing Antarctic glaciers and some of the glaciers of Greenland are essentially different in their conformation from the present glaciers of the Alps, and from those now occupying some of the fjelds and valleys of Norway; and that the glaciers of the earlier or greater glacial epoch were similar to those now forming the Antarctic barrier, while the glaciers of the later or minor glacial epoch resembled those now existing in temperate climates, or were intermediate between these and the Antarctic glaciers. The nature of the difference which I suppose to exist between the two classes of glaciers is this: The glaciers (properly so called) of temperate climates are the overflow of the nevé (the great reservoir of ice and snow above the snow line). They are composed of ice which is protruded below the snow-line into the region where the summer thaw exceeds the winter snow-fall. This ice is necessarily subject to continual thinning or wasting from its upper or exposed surface, and thus finally becomes liquefied, and is terminated by direct solar action.

Many of the characteristic phenomena of Alpine glaciers depend upon this; among the more prominent of which are the superficial extrusion of boulders or rock fragments that have been buried in the nevé or have fallen into the crevasses of the upper part of the true glacier, and the final deposit of these same boulders of fragments at the foot of the glaciers forming ordinary moraines.

But this is not all. The thawing which extrudes, and finally deposits the larger fragments of rock, sifts from them the smaller particles, the aggregate bulk of which usually exceeds very largely that of the larger fragments. This fine silt or sand thus washed away is carried by the turbid glacier torrent to considerable distances, and deposited as an alluvium wherever the agitated waters find a resting-place.

Thus the débris of the ordinary modern glacier is effectively separated into two or more very distinct deposits; the moraine at the glacier foot consisting of rock fragments of considerable size with very little sand or clay or other fine deposit between them, and a distant deposit of totally different character, consisting of gravel, sand, clay, or mud, according to the length and conditions of its journey. The “chips,” as they have been well called, are thus separated from what I may designate the filings or sawdust of the glacier.

The filings from the existing glaciers of the Bernese Alps are gradually filling up the lake-basins of Geneva and Constance, repairing the breaches made by the erosive action of their gigantic predecessors; those of the southern slope of the Alps are doing a large share in filling up the Adriatic; while the chips of all merely rest upon the glacier beds forming the comparatively insignificant terminal moraine deposits.

The same in Scandinavia. The Storelv of the Jostedal is fed by the melting of the Krondal, Nygaard, Bjornestegs, and soldal glaciers. It has filled up a branch of the deep Sogne fjord, forming an extensive fertile plain at the mouth of its wild valley, and is depositing another subaqueous plain beyond, while the moraines of the glaciers are but inconsiderable and comparatively insignificant heaps of loose boulders, spread out on the present and former shores of the above-named glaciers, which are overflows from one side of the great nevé, the Jostedal Sneefond. All of these glaciers flow down small lateral valleys, spread out, and disappear in the main valley, which has now no glacier of its own, though it was formerly glaciated throughout.

What must have been the condition of this and the other great Scandinavian valleys when such was the case? To answer this question rationally we must consider the meteorological conditions of that period. Either the climate must have been much colder, or the amount of precipitation vastly greater than at present, in order to produce the general glaciation that rounded the mountains up to a height of some thousands of feet above the present sea-level. Probably both factors co-operated to effect this vast glaciation, the climate colder, and the snow-fall also greater. The whole of Scandinavia, or as much as then stood above the sea, must have been a nevé or sneefond on which the annual snow-fall exceeded the annual thaw.

This is the case at present on the largest nevé of Europe, the 500 square miles of the great plateau of the Jostedals and Nordfjords Sneefond, on all the overflowing nevé or snow-fields of the Alps above the snow-line; over the greater part of Greenland; and (as the structure of the southern icebergs prove) everywhere within the great Antarctic ice barrier.

What, then, must happen when the snow-line comes down, or nearly down, to the sea-level? It is evident that the out-thrust glaciers, the overflow down the valleys, cannot come to an end like the present Swiss and Scandinavian glaciers, by the direct melting action of the sun. They may be somewhat thinned from below by the heat of the earth, and that generated by their own friction on the rocks, but these must be quite inadequate to overcome the perpetual accumulation due to the snow-fall upon their own surface and the vast overflow from the great snow-fields above. They must go on and on, ever increasing, until they meet some new condition of climate or some other powerful agent of dissipation—something that can effectively melt them.

This agent is very near at hand in the case of the Scandinavian valleys and those of Scotland. It is the sea. I think I may safely say that the valley glaciers of these countries during the great ice age must have reached the sea, and there have terminated their existence, just as the Antarctic glaciers terminate at the present Antarctic ice-wall.

What must happen when a glacier is thus thrust out to sea? This question is usually answered by assuming that it slides along the bottom until it reaches such a depth that flotation commences and then it breaks off or “calves” as icebergs. This view is strongly expressed by Mr. Geikie (p. 47) when he says that—“The seaward portion of an Arctic glacier cannot by any possibility be floated up without sundering its connection with the frozen mass behind. So long as the bulk of the glacier much exceeds the depth of the sea, the ice will of course rest upon the bed of the fjord or bay without being subjected to any strain or tension. But when the glacier creeps outwards to greater depths, then the superior specific gravity of the sea-water will tend to press the ice upward. That ice, however, is a hard continuous mass, with sufficient cohesion to oppose for a time this pressure, and hence the glacier crawls on to a depth far beyond the point at which, had it been free, it would have risen to the surface and floated. If at this great depth the whole mass of the glacier could be buoyed up without breaking off, it would certainly go to prove that the ice of Arctic regions, unlike ice anywhere else, had the property of yielding to mechanical strain without rupturing. But the great tension to which it is subjected takes effect in the usual way, and the ice yields, not by bending and stretching, but by breaking.” Mr. Geikie illustrates this by a diagram showing the “calving” of an iceberg.

In spite of my respect for Mr. Geikie as a geological authority, I have no hesitation in contradicting some of the physical assumptions included in the above.

Ice has no such rigidity as here stated. It does possess in a high degree “the property of yielding to mechanical strain without rupturing.” We need not go far for evidence of this. Everybody who has skated or seen others skating on ice that is but just thick enough to “bear” must have felt or seen it yield to the mechanical strain of the skater’s weight. Under these conditions it not only bends under him, but it afterwards yields to the reaction of the water below, rising and falling in visible undulations, demonstrating most unequivocally a considerable degree of flexibility. It may be said that in this case the flexibility is due to the thinness of the ice; but this argument is unsound, inasmuch as the manifestation of such flexibility does not depend upon absolute thickness or thinness, but upon the relation of thickness to superficial extension. If a thin sheet of ice can be bent to a given arc, a thick sheet may be bent in the same degree, but the thicker ice demands a greater radius and proportionate extension of circumference. But we have direct evidence that ice of great thickness—actual glaciers—may bend to a considerable curvature before breaking. This is seen very strikingly when the uncrevassed ice-sheet of a slightly inclined nevé suddenly reaches a precipice and is thrust over it. If Mr. Geikie were right, the projecting cornice thus formed should stand straight out, and then, when the transverse strain due to the weight of this rigid overhang exceeded the resistance of tenacity, it should break off short, exposing a face at right angles to the general surface of the supported body of ice. Had Mr. Geikie ever seen and carefully observed such an overhang or cornice of ice, I suspect that the above-quoted passage would not have been written.

Some very fine examples of such ice-cornices are well seen from the ridge separating the Handspikjen Fjelde from the head of the Jostedal, where a view of the great nevé or sneefond is obtained. This side of the nevé terminates in precipitous rock-walls; at the foot of one of these is a dreary lake, the Styggevand. The overflow of the nevé here forms great bending sheets that reach a short way down, and then break off and drop as small icebergs into the lake.[17]

The ordinary course of glaciers affords abundant illustrations of the plasticity of such masses of ice. They spread out where the valley widens, contract where the valley narrows, and follow all the convexities or concavities of the axial line of its bed. If the bending thus enforced exceeds a certain degree of abruptness crevasses are formed, but a considerable bending occurs before the rupture is effected, and crevasses of considerable magnitude are commonly formed without severing one part of a glacier from another. They are usually V-shaped, in vertical section, and in many the rupture does not reach the bottom of the glacier. Very rarely indeed does a crevasse cross the whole breadth of a glacier in such a manner as to completely separate, even temporarily, the lower from the upper part of the glacier.

If a glacier can thus bend downwards without “sundering its connection with the frozen mass behind,” surely it may bend upwards in a corresponding degree, either with or without the formation of crevasses, according to the thickness of the ice and the degree of curvature.

A glacier reaching the sea by a very steep incline would probably break off, in accordance with Mr. Geikie’s description, just as an Alpine glacier is ruptured fairly across when it makes a cascade over a suddenly precipitous bend of its path. One entering the sea at an inclination somewhat less precipitous than the minor limit of the effective rupture gradient would be crevassed in a contrary manner to the crevassing of Alpine glaciers. Its crevasses would gape downwards instead of upwards—have Λ-shaped instead of a V-shaped section.

With a still more moderate slope, the up-floating of the termination of the glacier, and a concurrent general up-lifting or upbending of the whole of its submerged portion might occur without even a partial rupture or crevasse formation occurring.

Let us now follow out some of the necessary results of these conditions of glacier existence and glacial prolongation. The first and most notable, by its contrast with ordinary glaciers, is the absence of lateral, medial, or terminal moraines. The larger masses of débris, the chippings that may have fallen from the exposed escarpments of the mountains upon the surface of the upper regions of the glacier, instead of remaining on the surface of the ice and standing above its general level by protecting the ice on which they rest from the general snow-thaw, would become buried by the upward accretion of the ice due to the unthawed stratum of each year’s snow-fall.

The thinning agency at work upon such glaciers during their journey over the terra firma being the outflow of terrestrial heat and that due to their friction upon their beds, this thinning must all take place from below, and thus, as the glaciers proceed downwards, these rock fragments must be continually approaching the bottom instead of continually approaching the top, as in the case of modern Alpine glaciers flowing below the snow-line, and thawing from surface downwards.

It follows, therefore, that such glaciers could not deposit any moraines such as are in course of deposition by existing Alpine and Scandinavian glaciers.

What, then, must become of the chips and filings of these outfloating glaciers? They must be carried along with the ice so long as that ice rests upon the land; for this débris must consist partly of fragments imbedded in the ice, and partly of ground and re-ground excessively subdivided particles, that must either cake into what I may call ice-mud, and become a part of the glacier, or flow as liquid mud or turbid water beneath it, as with ordinary glaciers. The quantity of water being relatively small under the supposed conditions, the greater part would be carried forward to the sea by the ice rather than by the water.

An important consequence of this must be that the erosive power of these ancient glaciers was, cæteris paribus, greater than that of modern Alpine glaciers, especially if we accept those theories which ascribe an actual internal growth or regeneration of glaciers by the relegation below of some of the water resulting from the surface-thaw.

As the glacier with its lower accumulation advances into deeper and deeper water, its pressure upon its bed must progressively diminish until it reaches a line where it would just graze the bottom with a touch of feathery lightness. Somewhere before reaching this it would begin to deposit its burden on the sea-bottom, the commencement of this deposition being determined by the depth whereat the tenacity of the deposit, or its friction against the sea-bottom, or both combined, becomes sufficient to overpower the now-diminished pressure and forward thrusting, or erosive power of the glacier.

Further forward, in deeper water, where the ice becomes fairly floated above the original sea-bottom, a rapid under-thawing must occur by the action of the sea-water, and if any communication exists between this ice covered sea and the waters of warmer latitudes this thawing must be increased by the currents that would necessarily be formed by the interchange of water of varying specific gravities. Deposition would thus take place in this deeper water, continually shallowing it or bringing up the sea-bottom nearer to the ice-bottom.

This raising of the sea-bottom must occur not only here, but farther back, i.e., from the limit at which deposition commenced. This neutral ground, whereat the depth is just sufficient to allow the ice to rest lightly on its own deposit and slide over it without either sweeping it forward or depositing any more upon it, becomes an interesting critical region, subject to continuous forward extension during the lifetime of the glacier, as the deposition beyond it must continually raise the sea-bottom until it reaches the critical depth at which the deposition must cease. This would constitute what I may designate the normal depth of the glaciated sea, or the depth towards which it would be continually tending, during a great glacial epoch, by the formation of a submarine bank or plain of glacier deposit, over which the glacier would slide without either grinding it lower by erosion or raising it higher by deposition.

But what must be the nature of this deposit? It is evident that it cannot be a mere moraine consisting only of the larger fragments of rock such as are now deposited at the foot of glaciers that die out before reaching the sea. Neither can it correspond to the glacial silt which is washed away and separated from these larger fragments by glacial streams, and deposited at the outspreadings of glacier torrents and rivers. It will correspond to neither the assorted gravel, sand, nor mud of these alluvial deposits, but must be an agglomeration of all the infusible solid matter the glacier is capable of carrying.

It must contain, in heterogeneous admixture, the great boulders, the lesser rock fragments, the gravel chips, the sand, and the slimy mud; these settling down quietly in the cold, gloomy waters, overshadowed by the great ice-sheet, must form just such an agglomeration as we find in the boulder clay and tills, and lie just in those places where these deposits abound, provided the relative level of land and sea during the glacial epoch were suitable.

I should make one additional remark relative to the composition of this deposit, viz., that under the conditions supposed, the original material detached from the rocks around the upper portions of the glaciers would suffer a far greater degree of attrition at the glacier bottom than it obtains in modern Alpine glaciers, inasmuch as in these it is removed by the glacier torrent when it has attained a certain degree of fineness, while in the greater glaciers of the glacial epoch it would be carried much further in association with the solid ice, and be subjected to more grinding and regrinding against the bottom. Hence a larger proportion of slimy mud would be formed, capable of finally induring into stiff clay such as forms the matrix of the till and boulder clay.

The long journey of the bottom débris stratum of the glacier, and its final deposition when in a state of neutral equilibrium between its own tendency to repose and the forward thrust of the glacier, would obviously tend to arrange the larger fragments of rock in the manner in which they are found imbedded in the till, i.e., the oblong fragments lying with their longer axes and their best marked striæ in the direction of the motion of the glacier. The “striated pavements” of the till are thus easily explained; they are the surface upon which the ice advanced when its deposits had reached the critical or neutral height. Such a pavement would continually extend outwards.

The only sorting of the material likely to occur under these conditions would be that due to the earlier deposition and entanglement of the larger fragments, thus producing a more stony deposit nearer inland, just as Mr. Geikie describes the actual deposits of till where, “generally speaking, the stones are most numerous in the till of hilly districts; while at the lower levels of the country the clayey character of the mass is upon the whole more pronounced.” These “hilly districts,” upon the supposition of greater submergence, would be the near shore regions, and the lower levels the deeper sea where the glacier floated freely.

The following is Mr. Geikie’s description of the distribution of the till (page 13):—“It is in the lower-lying districts of the country where till appears in greatest force. Wide areas of the central counties are covered up with it continuously, to a depth varying from two or three feet up to one hundred feet and more. But as we follow it towards the mountain regions it becomes thinner and more interrupted—the naked rock ever and anon peering through, until at last we find only a few shreds and patches lying here and there in sheltered hollows of the hills. Throughout the Northern Highlands it occurs but rarely, and only in little isolated patches. It is not until we get way from the steep rocky declivities and narrow glens and gorges, and enter upon the broader valleys that open out from the base of the highland mountains to the low-lying districts beyond, that we meet with any considerable deposits of stony clay. The higher districts of the Southern Uplands are almost equally free from any covering of till.”

This description is precisely the same as I must have written, had I so far continued my imaginary sketch of the results of ancient glaciation as to picture what must remain after the glaciers had all melted away, and the sea had receded sufficiently to expose their submarine deposits.

Throughout the above I have assumed a considerable submergence of the land as compared with the present sea-level on the coasts of Scotland, Scandinavia, etc.

The universality of the terraces in all the Norwegian valleys opening westward proves a submergence of at least 600 or 700 feet. When I first visited Norway in 1856, I accepted the usual description of these as alluvial deposits; was looking for glacial vestiges in the form of moraines, and thus quite failed to observe the true nature of these vast accumulations, which was obvious enough when I re-examined them in the light of more recent information. Some few are alluvial, but they are exceptional and of minor magnitude. As an example of such alluvial terraces I may mention those near the mouth of the Romsdal, that are well seen from the Aak Hotel, and which a Russian prince, or other soldier merely endowed with military eyes, might easily mistake for artificial earthworks erected for the defence of the valley.

In this case, as in the others where the terraces are alluvial, the valley is a narrow one, occupied by a relatively wide river loaded with recent glacial débris. It evidently filled the valley during the period of glacial recession.

The ordinary wider valleys, with a river that has cut a narrow channel through the outspread terrace-flats, display a different formation. Near the mouth of such valleys I have seen cuttings of more than a hundred feet in depth, through an unbroken terrace of most characteristic till, with other traces rising above it. This is the ordinary constitution of the lower portions of most of the Scandinavian terraces.

These terraces are commonly topped with quite a different stratum, which at first I regarded as a subsequent alluvial or estuarine deposit, but further examination suggested another explanation of the origin of some portions of this superficial stratum, to which I shall refer hereafter.

Such terraces prove a rise of sea or depression of land, during the glacial epoch, to the extent of 600 feet as a minimum, while the well-known deposits of Arctic shells at Moel Tryfaen and the accompanying drift have led Prof. Ramsay to estimate “the probable amount of submergence during some part of the glacial period at about 2300 feet.”[18]

It would be out of place here to reproduce the data upon which geologists have based their rather divergent opinions respecting the actual extent of the submergence of the western coast of North Europe. All agree that a great submergence occurred, but differ only as to its extent, their estimates varying between 1,000 and 3,000 feet.

There is one important consideration that must not be overlooked, viz., that—if my view of the submarine origin of the till be correct—the mere submergence of the land at the glacial period does not measure the difference between the depth of the sea at that and the present time, seeing that the deposits from the glaciers must have shallowed it very materially.

It is only after contemplating thoroughly the present form of the granitic and metamorphic hills of Scandinavia,—hills that are always angular when subjected only to subaerial weathering,—that one can form an adequate conception of the magnitude of this shallowing deposit. The rounding, shaving, grinding, planing, and universal abrasion everywhere displayed appear to me to justify the conclusion that if the sea were now raised to the level of the terraces, i.e., 600 feet higher than at present, the mass of matter abraded from the original Scandinavian mountains, and lying under the sea, would exceed the whole mass of mountain left standing above it.

The first question suggested by reading Mr. Geikie’s book was whether the terraces are wholly or partially formed of till, and more especially whether their lower portions are thus composed. This, as already stated, was easily answered by the almost unanimous reply of all the many Norwegian valleys I traversed. Any tourist may verify this. The next question was whether this same till extends below the sea. This was not so easily answered by the means at my disposal, as I travelled hastily round the coast from Stavanger via the North Cape to the frontier of Russian Lapland in ordinary passenger steam-packets, which made their stoppages to suit other requirements than mine. Still, I was able to land at many stations, and found, wherever there was a gently sloping strand at the mouth of an estuary, or of a valley whose river had already deposited its suspended matter (a common case hereabouts, where so many rivers terminate in long estuaries or open out into bag-shaped lakes near the coast), and where the bottom had not been modified by secondary glaciation, that the receding tide displayed a sea-bottom of till, covered with a thin stratum of loose stones and shells. In some cases the till was so bare that it appeared like a stiff mud deposited but yesterday.

At Bodö, an arctic coast station on the north side of the mouth of the Salten fjord (lat. 67° 20´), where the packets make a long halt, is a very characteristic example of this; a deposit of very tough till forming an extensive plain just on the sea-level. The tide rises over this, and the waves break upon it, forming a sort of beach by washing away some of the finer material, and leaving the stones behind. The ground being so nearly level, the reach of the tide is very great, and thus a large area is exposed at low tide. Continuous with this, and beyond the limit of high tide, is an extensive inland plain covered with coarse grass and weeds growing directly upon the surface of the original flat pavement of till.

There is no river at Bodö; the sea is clear, leaves no appreciable deposit, and the degree of denudation of the clayey matrix of the till is very much smaller than might be expected. The limit of high water is plainly shown by a beach of shells and stones, but at low tide the ground over which the sea has receded is a bare and scarcely modified surface of till. I have observed the same at low water at many other arctic stations. In the Tromsö Sund there are shallows at some distance from the shore which are just covered with water at low tide. I landed and waded on these, and found the bottom to consist of till covered with a thin layer of shells, odd fragments of earthenware, and other rubbish thrown overboard from vessels. It is evident that breakers of considerable magnitude are necessary for the loosening of this tough compact deposit—that it is very slightly, if at all, affected by the mere flow of running water.

I specify these instances as characteristic and easy of verification, as the packets all stop at these stations; but a yachtsman sailing at leisure amidst the glorious coast scenery of the Arctic Ocean might multiply such observations a hundredfold by stopping wherever such strands are indicated in passing. I saw a multitude of these in places where I was unable to go ashore and examine them.

A further question in this direction suggested itself on the spot, viz., what is the nature of the “banks” which constitute the fishing-grounds of Norway, Iceland, Newfoundland, etc. They are submarine plains unquestionably—they must have a high degree of fertility in order to supply food for the hundreds of millions of voracious cod-fish, coal-fish, haddocks, hallibut, etc., that people them. These large fishes all feed on the bottom, their chief food being mollusca and crustacea, which must find, either directly or indirectly, some pasture of vegetable origin. The banks are, in fact, great meadows or feeding grounds for the lower animals which support the higher.

From the Lofoten bank alone twenty millions of cod-fish are taken annually, besides those devoured by the vast multitude of sea-birds. Now this bank is situated precisely where, according to the above-stated view of the origin of the till, there should be a huge deposit. It occupies the Vest fjord, i.e., the opening between the mainland and the Lofoden Islands, extending from Moskenes, to Lodingen on Hindö, just where the culminating masses of the Kjolen Mountains must have poured their greatest glaciers into the sea by a westward course, and these glaciers must have been met by another stream pouring from the north, formed by the glaciers of Hindö and Senjenö, and both must have coalesced with a third flood pouring through the Ofoten fjord, the Tys fjord, etc., from the mainland. The Vest fjord is about sixty miles wide at its mouth, and narrows northward till it terminates in the Ofoten fjord, which forks into several branches eastward. A glance at a good map will show that here, according to my explanation of the origin of the till, there should be the greatest of all the submarine plains of till which the ancient Scandinavian glaciers have produced, and of which the plains of till I saw on the coast at Bodö (which lies just to the mouth of the Vest fjord, where the Salten fjord flows into it), are but the slightly inclined continuation.

Some idea of this bank may be formed from the fact that outside of the Lofodens the sea is 100 to 200 fathoms in depth, that it suddenly shoals up to 16 or 20 fathoms on the east side of these rocks, and this shallow plain extends across the whole 50 or 60 miles between these islands and the mainland.[19] It must not be supposed the fjords or inlets of Scandinavia are usually shallower than the open sea; the contrary is commonly the case, especially with the narrowest and those which run farthest inland. They are very much deeper than the open sea.

If space permitted I could show that the great Storregen bank, opposite Aalesund and Molde, where the Stor fjord, Mold fjord, etc., were the former outlets of the glaciers from the highest of all the Scandinavian mountains, and the several banks of Finmark, etc., from which, in the aggregate, are taken another 20 or 30 millions of cod-fish annually, are all situated just where theoretically they ought to be found. The same is the case with the great bank of Newfoundland and the banks around Iceland, which are annually visited by large numbers of French fishermen from Dunkerque, Boulogne, and other ports.

Whenever the packet halted over these banks during our coasting trip we demonstrated their fertility by casting a line or two over the bulwark. No bait was required, merely a double hook with a flat shank attached to a heavy leaden plummet. The line was sunk till the lead touched the bottom, a few jerks were given, and then a tug was felt: the line was hauled in with a cod-fish or hallibut hooked, not inside the mouth, but externally by the gill-plates, the back, the tail, or otherwise. The mere jerking of a hook near the bottom was sufficient to bring it in contact with some of the population. There is a very prolific bank lying between the North Cape and Nordkyn, where the Porsanger and Laxe fjords unite their openings. Here we were able, with only three lines, to cover the fore-deck of the packet with struggling victims in the course of short halts of fifteen to thirty minutes. Not having any sounding apparatus by which to fairly test the nature of the sea-bottom in these places, I cannot offer any direct proof that it was composed of till. By dropping the lead I could feel it sufficiently to be certain that it was not rock in any case, but a soft deposit, and the marks upon the bottom of the lead, so far as they went, afforded evidence in favor of its clayey character. A further investigation of this would be very interesting.

But the most striking—I may say astounding—evidence of the fertility of these banks, one which appeals most powerfully to the senses, is the marvelous colony of sea-birds at Sverholtklubben, the headland between the two last-named fjords. I dare not estimate the numbers that rose from the rocks and darkened the sky when we blew the steam-whistle in passing. I doubt whether there is any other spot in the world where an equal amount of animal life is permanently concentrated. All these feed on fish, and an examination of the map will show why—in accordance with the above speculations—they should have chosen Sverholtklubben as the best fishing-ground on the arctic face of Europe.

I am fully conscious of the main difficulty that stands in the way of my explanation of the formation of the till, viz., that of finding sufficient water to float the ice, and should have given it up had I accepted Mr. Geikie’s estimate of the thickness of the great ice-sheet of the great ice age.

He says (page 186) that “The ice which covered the low grounds of Scotland during the early cold stages of the glacial epoch was certainly more than 2000 feet in thickness, and it must have been even deeper than this between the mainland and the Outer Hebrides. To cause such a mass to float, the sea around Scotland would require to become deeper than now by 1400 or 1500 feet at least.”

I am unable to understand by what means Mr. Geikie measured this depth of the ice which covered these low grounds, except by assuming that its surface was level with that of the upper ice-marks of the hills beyond. The following passage on page 63 seems to indicate that he really has measured it thus:—

“Now the scratches may be traced from the islands and the coast-line up to an elevation of at least 3,500 feet; so that ice must have covered the country to that height at least. In the Highlands the tide of ice streamed out from the central elevations down all the main straths and glens; and by measuring the height attained by the smoothed and rounded rocks we are enabled to estimate roughly the probable thickness of the old ice-sheet. But it can only be a rough estimate, for so long a time has elapsed since the ice disappeared, the rain and frost together have so split up and worn down the rocks of these highland mountains that much of the smoothing and polishing has vanished. But although the finer marks of the ice-chisel have thus frequently been obliterated, yet the broader effects remain conspicuous enough. From an extensive examination of these we gather that the ice could not have been less, and was probably more than 3,000 feet thick in its deepest parts.”

Page 80 he says: “Bearing in mind the vast thickness reached by the Scotch ice-sheet, it becomes very evident that the ice would flow along the bottom of the sea with as much ease as it poured across the land, and every island would be surmounted and crushed, and scored and polished just as readily as the hills of the mainland were.”

Mr. Geikie describes the Scandinavian ice-sheet in similar terms, but ascribes to it a still greater thickness. He says (page 404)—“The whole country has been moulded and rubbed and polished by an immense sheet of ice, which could hardly have been less than 6,000 or even 7,000 feet thick,” and he maintains that this spread over the sea and coalesced with the ice-sheet of Scotland.

My recollection of the Lofoden Islands, which from their position afford an excellent crucial test of this question, led me to believe that their configuration presented a direct refutation of Mr. Geikie’s remarkable inference; but a mere recollection of scenery being too vague, a second visit was especially desirable in reference to this point. The result of the special observations I made during this second visit fully confirmed the impression derived from memory.

I found in the first place that all along the coast from Stavanger to the Varanger fjord every rock near the shore is glaciated; among the thousands of low-lying ridges that peer above the water to various heights none near the mainland are angular. The general character of these is shown in the sketch of “My Sea Serpent,” in the last edition of “Through Norway with a Knapsack.”

The rocks which constitute the extreme outlying limits of the Lofoden group, and which are between 60 and 70 miles from the shore, although mineralogically corresponding with those near the shore, are totally different in their conformation, as the sketch of three characteristic specimens plainly shows. Mr. Everest very aptly compares them to shark’s teeth. Proceeding northward, these rocks gradually progress in magnitude, until they become mountains of 3,000 to 4,000 feet in height; their outspread bases form large islands, and the Vest fjord gradually narrows.

The remarkably angular and jagged character of these rocks when weathered in the air renders it very easy to trace the limits of glaciation on viewing them at a distance. The outermost and smallest rocks show from a distance no signs of glaciation. If submerged, the ice of the great ice age was then enough to float over without touching them; if they stood above the sea, as at present, they suffered no more glaciation than would be produced by such an ice-sheet as that of the “paleocrystic” ice recently found by Captain Nares on the north of Greenland. Progressing northward, the glaciation begins to become visible, running up to about 100 feet above the sea-level on the islands lying westward and southward of Ost Vaagen. Further northward along the coast of Ost Vaagen and Hindö, the level gradually rises to about 500 feet on the northern portion of Ost Vaagen, and up to more than 1,000 feet on Hindö, while on the mainland it reaches 3,000 to 4,000 feet.

A remarkable case of such variation, or descent of ice-level, as the ice-sheet proceeded seaward, is shown at Tromsö. This small oblong island (lat. 69° 40´), on which is the capital town of Finmark, lies between the mainland and the large mountainous island of Kvalö, with a long sea-channel on each side, the Tromösund and the Sandesund; the total width of these two channels and the island itself being about four or five miles. The general line of glaciation from the mainland crosses the broad side of these channels and the island, which has evidently been buried and ground down to its present moderate height of two or three hundred feet. Both of the channels are till-paved. On the east or inland side the mountains near the coast are glaciated to their summits—are simply roches moutonnées, over which the reindeer of the Tromsdal Lapps range and feed. On the west the mountains are dark, pyramidal, non-glaciated peaks, with long vertical snow-streaks marking their angular masses.

The contrast is very striking when seen from the highest part of the island, and is clearly due to a decline in the thickness of the ice-sheet in the course of its journey across this narrow channel. Speaking roughly from my estimation, I should say that this thinning or lowering of the limits of glaciation exceeds 500 feet between the opposite sides of the channel, which, allowing for the hill slopes, is a distance of about 6 miles. This very small inclination would bring a glacier of 3,000 feet in thickness on the shore down to the sea-level in an outward course of 30 miles, or about half the distance between the mainland and the outer rocks of the Lofodens shown in the engraving.

I am quite at a loss to understand the reasoning upon which Mr. Geikie bases his firm conviction respecting the depth of the ice-sheet on the low grounds of Scotland and Scandinavia. He seems to assume that the glaciers of the great ice age had little or no superficial down slope corresponding to the inclination of the base on which they rested. I have considerable hesitation in attributing this assumption to Mr. Geikie, and would rather suppose that I have misunderstood him, as it is a conclusion so completely refuted by all we know of glacier phenomena and the physical laws concerned in their production; but the passages I have quoted, and several others, are explicit and decided.

Those geologists who contend for the former existence of a great polar ice-cap radiating outwards and spreading into the temperate zones, might adopt this mode of measuring its thickness, but Mr. Geikie rejects this hypothesis, and shows by his map of “The Principal Lines of Glacial Erosion in Sweden, Norway, and Finland,” that the glaciation of the extreme north of Europe proceeded from south to north; that the ice was formed on land, and proceeded seawards in all directions.

I may add to this testimony that presented by the North Cape, Sverholt, Nordkyn, and the rest of the magnificent precipitous headlands that constitute the characteristic feature of the arctic-face of Europe. They stand forth defiantly as a phalanx of giant heralds proclaiming aloud the fallacy of this idea of southward glacial radiation; and in concurrence with the structure and striation of the great glacier troughs that lie between them, and the planed table-land at their summits, they establish the fact that during the greatest glaciation of the glacial epoch the ice-streams were formed on land and flowed out to sea, just as they now do at Greenland, or other parts of the world where the snow line touches or nearly approaches the level of the sea.

All such streams must have followed the slope of the hill-sides upon which they rested and down which they flowed, and thus the upper limits of glaciation afford no measure whatever of the thickness of the ice upon “the low grounds of Scotland,” or of any other glaciated country. As an example, I may refer to Mont Blanc. In climbing this mountain the journey from the lower ice-wall of the Glacier de Bessons up to the bergschrund above the Grand Plateau is over one continuous ice-field, the level of the upper part of which is more than 10,000 feet above its terminal ice-wall. Thus, if we take the height of the striations or smoothings of the upper nevé above the low grounds on which the ice-sheet rests, and adopt Mr. Geikie’s reasoning, the lower ice-wall of the Glacier de Bessons should be 10,000 feet thick. Its actual thickness, as nearly as I can remember, is about 10 or 12 feet.

Every other known glacier presents the same testimony. The drawing of a Greenland glacier opposite page 47 of Mr. Geikie’s book shows the same under arctic conditions, and where the ice-wall terminates in the sea.

I have not visited the Hebrides, but the curious analogy of their position to that of the Lofodens suggests the desirability of similar observations to those I have made in the latter. If the ice between the mainland and the Outer Hebrides was, as Mr. Geikie maintains, “certainly more than 2000 feet in thickness,” and this stretched across to Ireland, besides uniting with the still thicker ice-sheet of Scandinavia, these islands should all be glaciated, especially the smaller rocks. If I am right, the smaller outlying islands, those south of Barra, should, like the corresponding rocks of the Lofodens, display no evidence of having been overswept by a deep “mer de glace.”

I admit the probability of an ice-sheet extending as Mr. Geikie describes, but maintain that it thinned out rapidly seaward, and there became a mere ice-floe, such as now impedes the navigation of Smith’s Sound and other portions of the Arctic Ocean. The Orkneys and Shetlands, with which I am also unacquainted, must afford similar crucial instances, always taking into account the fact that the larger islands may have been independently glaciated by the accumulations due to their own glacial resources. It is the small rocks standing at considerable distance from the shores of larger masses of land that supply the required test-conditions.

From the above it will be seen that I agree with Mr. Geikie in regarding the till as a “moraine profonde,” but differ as to the mode and place of its deposition. He argues that it was formed under glaciers of the thickness he describes, while their whole weight rested upon it.

This appears to me to be physically impossible. If such glaciers are capable of eroding solid rocks, the slimy mud of their own deposits could not possibly have resisted them. The only case where this might have happened is where a mountain-wall has blocked the further downward progress of a glacier, or in pockets, or steep hollows which a glacier might have bridged over and filled up; but such pockets are by no means the characteristic localities of till, though the till of Switzerland may possibly show examples of the first case. The great depth of the inland lakes of Norway, their bottoms being usually far below that of the present sea-bottom, is in direct contradiction of this.[20] They should, before all places, be filled with till, if the till were a ground moraine formed on land; but all we know of them confirms the belief that the glaciers deepened them by erosion instead of shallowing them by deposition.

Mr. Geikie’s able defence of Ramsay’s theory of lake-basin erosion is curiously inconsistent with his arguments in favor of the ground moraine.

I fully concur with Mr. Geikie’s arguments against the iceberg theory of the formation of the till. This, I think, he has completely refuted.

Before concluding I must say a few words on those curious lenticular beds of sand and gravel in the till which appear so very puzzling. A simple explanation is suggested in connection with the above-sketched view of the formation of the till. All glaciers, whether in arctic or temperate climates, are washed by streamlets during summer, and these commonly terminate in the form of a stream or cascade pouring down a “moulin”—a well bored by themselves and reaching the bottom of the glacier. Now what must be the action of such a downflow of water upon my supposed submarine bed of till just grazing the bottom of the glacier? Obviously, to wash away the fine clayey particles, and leave behind the coarser sand or gravel. It must form just such a basin or lenticular cavity as Mr. Geikie describes. The oblong shape of these, their longer axis coinciding with the general course of the glacier, would be produced by the onward progress of the moulin. The accordance of their other features with this explanation will be seen on reading Mr. Geikie’s description (pp. 18, 19, etc).

The general absence of marine animals and their occasional exceptional occurrence in the intercalated beds is just what might be expected under the conditions I have sketched. In the gloomy subglacial depths of the sea, drenched with continual supplies of fresh water and cooled below the freezing-point by the action of salt water on the ice, ordinary marine life would be impossible; while, on the other hand, any recession of the glacial limit would restore the conditions of arctic animal life, to be again obliterated with the renewed outward growth of the floating skirts of the inland ice-mantle.

But I must now refrain from the further discussion of these and other collateral details, but hope to return to them in another paper.

In “Through Norway with Ladies” I have touched lightly upon some of these, and have more particularly described some curious and very extensive evidences of secondary glaciation that quite escaped my attention on my first visit, and which, too, have been equally overlooked by other observers. In the above I have endeavored to keep as nearly as possible to the main subject of the origin of the till and the character of the ancient ice-sheet.