The Extensive Distribution of Neurones of the “Sympathetic” Division and Their Arrangement for Diffuse Action

The fibres of the sympathetic division differ from those of the other two divisions in being distributed through the body very widely. They go to the eyes, causing dilation of the pupils. They go to the heart and, when stimulated, they cause it to beat rapidly. They carry impulses to arteries and arterioles of the skin, the abdominal viscera, and other parts, keeping the smooth muscles of the vessel walls in a state of slight contraction or tone, and thus serving to maintain an arterial pressure sufficiently high to meet sudden demands in any special region; or, in times of special discharge of impulses, to increase the tone and thus also the arterial pressure. They are distributed extensively to the smooth muscle attached to the hairs; and when they cause this muscle to contract, the hairs are erected. They go to sweat glands, causing the outpouring of sweat. These fibres pass also to the entire length of the gastro-intestinal canal. And the inhibition of digestive activity which, as we have learned, occurs in pain and emotional states, is due to impulses which are conducted outward by the splanchnic nerves—the preganglionic fibres that reach to the great ganglia in the upper abdomen (see [Fig. 1])—and thence are spread by postganglionic fibres all along the gut.[3] They innervate likewise the genito-urinary tracts, causing contraction of the smooth muscle of the internal genital organs, and usually relaxation of the bladder. Finally they affect the liver, releasing the storage of material there in a manner which may be of great service to the body in time of need. The extensiveness of the distribution of the fibres of the sympathetic division is one of its most prominent characteristics.

Another typical feature of the sympathetic division is an arrangement of neurones for diffuse discharge of the nerve impulses. As shown diagrammatically in [Fig. 1], the preganglionic fibres from the central nervous system may extend through several of the sympathetic ganglia and give off in each of them connections to cell bodies of the outlying neurones. Although the neurones which transmit sensory impulses from the skin into spinal cord have similar relations to nerve cells lying at different levels of the cord, the operation in the two cases is quite different. In the spinal cord the sensory impulse produces directed and closely limited effects, as, for example, when reflexes are being evoked in a “spinal” animal (i. e., an animal with the spinal cord isolated from the rest of the central nervous system), the left hind limb is nicely lifted, in response to a harmful stimulus applied to the left foot, without widespread marked involvement of the rest of the body in the response.[4] In the action of the sympathetic division, on the contrary, the connection of single preganglionic fibres with numerous outlying neurones seems to be not at all arranged for specific effects in this or that particular region. There are, to be sure, in different circumstances variations in the degree of activity of different parts; for example, it is probable that dilation of the pupil in the cat occurs more readily than erection of the hairs. It may be in this instance, however, that specially direct pathways to the eye are present for common use in non-emotional states (in dim light, e. g.), and that only slight general disturbance in the central nervous system, therefore, would be necessary to send impulses by these well-worn courses. Thus for local reasons (dust, e. g.) tears might flow from excitation of the tear glands by sympathetic impulses, although other parts innervated by this same division might be but little disturbed. We have no means of voluntarily wearing these pathways, however, and both from anatomical and physiological evidence the neurone relations in the sympathetic division of the autonomic system seem devised for widespread diffusion of nervous impulses.