14. Ideal Cases.

Each experience may generally be considered under an indefinite number of various concepts, all of which may be abstracted from that experience by corresponding observations. Accordingly an indefinite number of natural laws would be required for prophesying that experience in all its parts. Likewise the indefinite number of premises must be known through the application of which those natural laws acquire a certain content. Thus it seems as if it were altogether impossible to apply natural laws for the determination of a single experience to come, and in a certain sense this is true ([p. 30]). For example, when a child is born, we are quite incapable of foretelling the peculiar events that will occur in its life. Beyond the statement that it will live a while and then die, we can make only the broadest assertions qualified by numerous "ifs" and "buts."

If, in spite of this, we arrange a very great part of our life and activity according to the prophecies we make in regard to numerous details in life, basing them upon natural laws, the question arises, how we get over the difficulty, or, rather, the impossibility just referred to.

The answer is, that we repeatedly so find or can form our experiences that certain natural relations preponderatingly determine the experience, while the other parts that remain undetermined fall into the background. The prophecy will cover so considerable a part of the experience that we can forego previous knowledge of the rest. We can foretell enough to render a practical construction of life possible, and increasing experience, whether the personal experience of the individual or the general experience of science, constantly enlarges this controllable part of future experiences.

The procedure of science is similar to that of practical life, though freer. Whenever an investigator seeks to test a natural law of the form: if A is so, then B is so, he endeavors to choose or formulate the experiences in such a way that the fewest possible extraneous elements are present, and that those that are unavoidable should exert the least possible influence upon the relation in question. He never succeeds completely. In order, nevertheless, to reach a conclusion as to the form the relation will take without extraneous influences, the following general method is applied.

A series of instances are investigated which are so adjusted that the influence of the extraneous elements grows less and less. Then the relation investigated approaches a limit which is never quite reached, but to which it draws nearer and nearer, the less the influence of the extraneous elements. And the conclusion is drawn that if it were possible to exclude the extraneous elements entirely, the limit of the relation would be reached.

A case in which none of the extraneous elements of experience operate is called an ideal case, and the inference from a series of values leading to the limit-value is an extrapolation. Such extrapolations to the ideal case are a quite natural procedure in science, and a very large part of natural laws, especially all quantitative laws, that is, such as express a relation between measurable values, have precise validity only in ideal cases.

We here confront the fact that many natural laws, and among them the most important, are expressed as, and taken to be, conditions which never occur in reality. This seemingly absurd procedure is, as a matter of fact, the best fitted for scientific purposes, since ideal cases are to be distinguished by this, that with them the natural laws take on the simplest forms. This is the result of the fact that in ideal cases we intentionally and arbitrarily overlook every complication of the determining factors, and in describing ideal cases we describe the simplest conceivable form of the class of experiences in question. The real cases are then constructed from the ideal cases by representing them as the sum of all the elements that have an influence on the experience or the result. Just as we can represent the unlimited multitude of finite numbers by the figures up to ten, so we can represent an unlimited quantity of complicated events by a finite number of natural laws, and so reach a highly serviceable approximation to reality.

Thus geometry deals with absolutely straight lines, absolutely flat surfaces, and perfect spheres, though such have never been observed, and the results of geometry come the closer to truth, the more nearly the real lines, surfaces, and spheres correspond to the ideal demands. Similarly, in physics, there are no ideal gases or mirrors, or in chemistry ideally pure substances, though the expressed simple laws in these sciences are valid for only such bodies. The non-ideal bodies of these sciences, which reality presents in various degrees of approximation, correspond the more closely to these laws, the slighter the deviation of the real from the ideal. And the same method is applied in the so-called mental sciences, psychology and sociology, in which the "normal eye" and a "state with an entirely closed door" are examples of such idealized limit-concepts.