The Cost of Speed
Since the whole resistance, in either type of flying machine, is approximately proportional to the square of the velocity; and since horse-power (work) is the product of resistance and velocity, the horse-power of an air craft of any sort varies about as the cube of the speed. To increase present speeds of dirigible balloons from thirty to sixty miles per hour would then mean eight times as much horse-power, eight times as much motor weight, eight times as rapid a rate of fuel consumption, and (since the speed has been doubled) four times as rapid a consumption of fuel in proportion to the distance traveled. Either the radius of action must be decreased, or the weight of fuel carried must be greatly increased, if higher velocities are to be attained. Present (independent) aeroplane speeds are usually about fifty miles per hour, and there is not the necessity for a great increase which exists with the lighter-than-air machines. We have already succeeded in carrying and propelling fifty pounds of total load or fifteen pounds of passenger load per horse-power of motor, with aeroplanes; the ratio of net load to horse-power in the dirigible is considerably lower; but the question of weight in relation to power is of relatively smaller importance in the latter machine, where support is afforded by the gas and not by the engine.