The Orthopter

The aviplane, ornithoptère or orthopter is a flying machine with bird-like flapping wings, which has received occasional attention from time to time, as the result of a too blind adherence to Nature’s analogies. Every mechanical principle is in favor of the screw as compared with any reciprocating method of propulsion. There have been few actual examples of this type: a model was exhibited at the Grand Central Palace in New York in January of this year.

The mechanism of an orthopter would be relatively complex, and the flapping wings would have to “feather” on their return stroke. The flapping speed would have to be very high or the surface area very great. This last requirement would lead to structural difficulties. Propulsion would not be uniform, unless additional complications were introduced. The machine would be the most difficult of any type to balance. The motion of a bird’s wing is extremely complicated in its details—one that it would be as difficult to imitate in a mechanical device as it would be for us to obtain the structural strength of an eagle’s wing in fabric and metal, with anything like the same extent of surface and limit of weight. According to Pettigrew, the efficiency of bird and insect flight depends largely upon the elasticity of the wing. Chatley gives the ratio of area to weight as varying from fifty (gnat) to one-half (Australian crane) square feet per pound. The usual ratio in aeroplanes is from one-third to one-half.

About the only advantages perceptible with the orthopter type of machine would be, first, the ability “to start from rest without a preliminary surface glide”; and second, more independence of irregularity in air currents, since the propulsive force is exerted over a greater extent than is that of a screw propeller.