BOOK I.
OF IDEAS IN GENERAL.
Quæ adhuc inventa sunt in Scientiis, ea hujusmodi sunt ut Notionibus Vulgaribus fere subjaceant: ut vero ad interiora et remotiora Naturæ penetretur, necesse est ut tam Notiones quam Axiomata magis certâ et munitâ viâ a particularibus abstrahantur; atque omnino melior et certior intellectûs adoperatio in usum veniat.
Bacon, Nov. Org., Lib. 1. Aphor. xviii.
BOOK I.
OF IDEAS IN GENERAL.
CHAPTER I.
Of the Fundamental Antithesis of Philosophy.
Sect. 1.—Thoughts and Things.
IN order that we may do something towards determining the nature and conditions of human knowledge, (which I have already stated as the purpose of this work,) I shall have to refer to an antithesis or opposition, which is familiar and generally recognized, and in which the distinction of the things opposed to each other is commonly considered very clear and plain. I shall have to attempt to make this opposition sharper and stronger than it is usually conceived, and yet to shew that the distinction is far from being so clear and definite as it is usually assumed to be: I shall have to point the contrast, yet shew that the things which are contrasted cannot be separated:—I must explain that the antithesis is constant and essential, but yet that there is no fixed and permanent line dividing its members. I may thus appear, in different parts of my discussion, to be proceeding in opposite directions, but I hope that the reader who gives me a patient attention will see that both steps lead to the point of view to which I wish to lead him.
The antithesis or opposition of which I speak is denoted, with various modifications, by various pairs of terms: I shall endeavour to shew the connexion of these different modes of expression, and I will begin with that form which is the simplest and most idiomatic. [24]
The simplest and most idiomatic expression of the antithesis to which I refer is that in which we oppose to each other Things and Thoughts. The opposition is familiar and plain. Our thoughts are something which belongs to ourselves; something which takes place within us; they are what we think; they are actions of our minds. Things, on the contrary, are something different from ourselves and independent of us; something which is without us; they are; we see them, touch them, and thus know that they exist; but we do not make them by seeing or touching them, as we make our Thoughts by thinking them; we are passive, and Things act upon our organs of perception.
Now what I wish especially to remark is this: that in all human Knowledge both Thoughts and Things are concerned. In every part of my knowledge there must be some thing about which I know, and an internal act of me who know. Thus, to take simple yet definite parts of our knowledge, if I know that a solar year consists of 365 days, or a lunar month of 30 days, I know something about the sun or the moon; namely, that those objects perform certain revolutions and go through certain changes, in those numbers of days; but I count such numbers and conceive such revolutions and changes by acts of my own thoughts. And both these elements of my knowledge are indispensable. If there were not such external Things as the sun and the moon I could not have any knowledge of the progress of time as marked by them. And however regular were the motions of the sun and moon, if I could not count their appearances and combine their changes into a cycle, or if I could not understand this when done by other men, I could not know anything about a year or a month. In the former case I might be conceived as a human being, possessing the human powers of thinking and reckoning, but kept in a dark world with nothing to mark the progress of existence. The latter is the case of brute animals, which see the sun and moon, but do not know how many days make a month or a year, because they have not human powers of thinking and reckoning. [25]
The two elements which are essential to our knowledge in the above cases, are necessary to human knowledge in all cases. In all cases, Knowledge implies a combination of Thoughts and Things. Without this combination, it would not be Knowledge. Without Thoughts, there could be no connexion; without Things, there could be no reality. Thoughts and Things are so intimately combined in our Knowledge, that we do not look upon them as distinct. One single act of the mind involves them both; and their contrast disappears in their union.
But though Knowledge requires the union of these two elements, Philosophy requires the separation of them, in order that the nature and structure of Knowledge may be seen. Therefore I begin by considering this separation. And I now proceed to speak of another way of looking at the antithesis of which I have spoken; and which I may, for the reasons which I have just mentioned, call the Fundamental Antithesis of Philosophy.
Sect. 2.—Necessary and Experiential Truths.
Most persons are familiar with the distinction of necessary and contingent truths. The former kind are Truths which cannot but be true; as that 19 and 11 make 30;—that parallelograms upon the same base and between the same parallels are equal;—that all the angles in the same segment of a circle are equal. The latter are Truths which it happens (contingit) are true; but which, for anything which we can see, might have been otherwise; as that a lunar month contains 30 days, or that the stars revolve in circles round the pole. The latter kind of Truths are learnt by experience, and hence we may call them Truths of Experience, or, for the sake of convenience, Experiential Truths, in contrast with Necessary Truths.
Geometrical propositions are the most manifest examples of Necessary Truths. All persons who have read and understood the elements of geometry, know that the propositions above stated (that parallelograms [26] upon the same base and between the same parallels are equal; that all the angles in the same segment of a circle are equal,) are necessarily true; not only they are true, but they must be true. The meaning of the terms being understood, and the proof being gone through, the truth of the propositions must be assented to. We learn these propositions to be true by demonstrations deduced from definitions and axioms; and when we have thus learnt them, we see that they could not be otherwise. In the same manner, the truths which concern numbers are necessary truths: 19 and 11 not only do make 30, but must make that number, and cannot make anything else. In the same manner, it is a necessary truth that half the sum of two numbers added to half their difference is equal to the greater number.
It is easy to find examples of Experiential Truths;—propositions which we know to be true, but know by experience only. We know, in this way, that salt will dissolve in water; that plants cannot live without light;—in short, we know in this way all that we do know in chemistry, physiology, and the material sciences in general. I take the Sciences as my examples of human knowledge, rather than the common truths of daily life, or moral or political truths; because, though the latter are more generally interesting, the former are much more definite and certain, and therefore better starting-points for our speculations, as I have already said. And we may take elementary astronomical truths as the most familiar examples of Experiential Truths in the domain of science.
With these examples, the distinction of Necessary and Experiential Truths is, I hope, clear. The former kind, we see to be true by thinking about them, and see that they could not be otherwise. The latter kind, men could never have discovered to be true without looking at them; and having so discovered them, still no one will pretend to say they might not have been otherwise. For aught we can see, the astronomical truths which express the motions and periods of the sun, moon and stars, might have been otherwise. If we had been placed in another part of the solar system, our [27] experiential truths respecting days, years, and the motions of the heavenly bodies, would have been other than they are, as we know from astronomy itself.
It is evident that this distinction of Necessary and Experiential Truths involves the same antithesis which we have already considered;—the antithesis of Thoughts and Things. Necessary Truths are derived from our own Thoughts: Experiential truths are derived from our observation of Things about us. The opposition of Necessary and Experiential Truths is another aspect of the Fundamental Antithesis of Philosophy.
Sect. 3.—Deduction and Induction.
I have already stated that geometrical truths are established by demonstrations deduced from definitions and axioms. The term Deduction is specially applied to such a course of demonstration of truths from definitions and axioms. In the case of the parallelograms upon the same base and between the same parallels, we prove certain triangles to be equal, by supposing them placed so that their two bases have the same extremities; and hence, referring to an Axiom respecting straight lines, we infer that the bases coincide. We combine these equal triangles with other equal spaces, and in this way make up both the one and the other of the parallelograms, in such a manner as to shew that they are equal. In this manner, going on step by step, deducing the equality of the triangles from the axiom, and the equality of the parallelograms from that of the triangles, we travel to the conclusion. And this process of successive deduction is the scheme of all geometrical proof. We begin with Definitions of the notions which we reason about, and with Axioms, or self-evident truths, respecting these notions; and we get, by reasoning from these, other truths which are demonstratively evident; and from these truths again, others of the same kind, and so on. We begin with our own Thoughts, which supply us with Axioms to start from; and we reason from these, till we come to propositions [28] which are applicable to the Things about us; as for instance, the propositions respecting circles and spheres applicable to the motions of the heavenly bodies. This is Deduction, or Deductive Reasoning.
Experiential truths are acquired in a very different way. In order to obtain such truths, we begin with Things. In order to learn how many days there are in a year, or in a lunar month, we must begin by observing the sun and the moon. We must observe their changes day by day, and try to make the cycle of change fit into some notion of number which we supply from our own Thoughts. We shall find that a cycle of 30 days nearly will fit the changes of phase of the moon;—that a cycle of 365 days nearly will fit the changes of daily motion of the sun. Or, to go on to experiential truths of which the discovery comes within the limits of the history of science—we shall find (as Hipparchus found) that the unequal motion of the sun among the stars, such as observation shews it to be, may be fitly represented by the notion of an eccentric;—a circle in which the sun has an equable annual motion, the spectator not being in the center of the circle. Again, in the same manner, at a later period, Kepler started from more exact observations of the sun, and compared them with a supposed motion in a certain ellipse; and was able to shew that, not a circle about an eccentric point, but an ellipse, supplied the mode of conception which truly agreed with the motion of the sun about the earth; or rather, as Copernicus had already shewn, of the earth about the sun. In such cases, in which truths are obtained by beginning from observation of external things and by finding some notion with which the Things, as observed, agree, the truths are said to be obtained by Induction. The process is an Inductive Process.
The contrast of the Deductive and Inductive process is obvious. In the former, we proceed at each step from general truths to particular applications of them; in the latter, from particular observations to a general truth which includes them. In the former case we may be said to reason downwards, in the latter case, [29] upwards; for general notions are conceived as standing above particulars. Necessary truths are proved, like arithmetical sums, by adding together the portions of which they consist. An inductive truth is proved, like the guess which answers a riddle, by its agreeing with the facts described. Demonstration is irresistible in its effect on the belief, but does not produce surprize, because all the steps to the conclusion are exhibited, before we arrive at the conclusion. Inductive inference is not demonstrative, but it is often more striking than demonstrative reasoning, because the intermediate links between the particulars and the inference are not shewn. Deductive truths are the results of relations among our own Thoughts. Inductive truths are relations which we discern among existing Things; and thus, this opposition of Deduction and Induction is again an aspect of the Fundamental Antithesis already spoken of.
Sect. 4.—Theories and Facts.
General experiential Truths, such as we have just spoken of, are called Theories, and the particular observations from which they are collected, and which they include and explain, are called Facts. Thus Hipparchus’s doctrine, that the sun moves in an eccentric about the earth, is his Theory of the Sun, or the Eccentric Theory. The doctrine of Kepler, that the Earth moves in an Ellipse about the Sun, is Kepler’s Theory of the Earth, the Elliptical Theory. Newton’s doctrine that this elliptical motion of the Earth about the Sun is produced and governed by the Sun’s attraction upon the Earth, is the Newtonian theory, the Theory of Attraction. Each of these Theories was accepted, because it included, connected and explained the Facts; the Facts being, in the two former cases, the motions of the Sun as observed; and in the other case, the elliptical motion of the Earth as known by Kepler’s Theory. This antithesis of Theory and Fact is included in what has just been said of Inductive Propositions. A Theory is an Inductive Proposition, and the Facts [30] are the particular observations from which, as I have said, such Propositions are inferred by Induction. The Antithesis of Theory and Fact implies the fundamental Antithesis of Thoughts and Things; for a Theory (that is, a true Theory) may be described as a Thought which is contemplated distinct from Things and seen to agree with them; while a Fact is a combination of our Thoughts with Things in so complete agreement that we do not regard them as separate.
Thus the antithesis of Theory and Fact involves the antithesis of Thoughts and Things, but is not identical with it. Facts involve Thoughts, for we know Facts only by thinking about them. The Fact that the year consists of 365 days; the Fact that the month consists of 30 days, cannot be known to us, except we have the Thoughts of Time, Number and Recurrence. But these Thoughts are so familiar, that we have the fact in our mind as a simple Thing without attending to the Thought which it involves. When we mould our Thoughts into a Theory, we consider the thought as distinct from the Facts; but yet, though distinct, not independent of them; for it is a true Theory, only by including and agreeing with the Facts.
Sect. 5.—Ideas and Sensations.
We have just seen that the antithesis of Theory and Fact, although it involves the antithesis of Thoughts and Things, is not identical with it. There are other modes of expression also, which involve the same Fundamental Antithesis, more or less modified. Of these, the pair of words which in their relations appear to separate the members of the antithesis most distinctly are Ideas and Sensations. We see and hear and touch external things, and thus perceive them by our senses; but in perceiving them, we connect the impressions of sense according to relations of space, time, number, likeness, cause, &c. Now some at least of these kinds of connexion, as space, time, number, may be contemplated distinct from the things to which they are applied; and so contemplated, I term them Ideas. And [31] the other element, the impressions upon our senses which they connect, are called Sensations.
I term space, time, cause, &c., Ideas, because they are general relations among our sensations, apprehended by an act of the mind, not by the senses simply. These relations involve something beyond what the senses alone could furnish. By the sense of sight we see various shades and colours and shapes before us, but the outlines by which they are separated into distinct objects of definite forms, are the work of the mind itself. And again, when we conceive visible things, not only as surfaces of a certain form, but as solid bodies, placed at various distances in space, we again exert an act of the mind upon them. When we see a body move, we see it move in a path or orbit, but this orbit is not itself seen; it is constructed by the mind. In like manner when we see the motions of a needle towards a magnet, we do not see the attraction or force which produces the effects; but we infer the force, by having in our minds the Idea of Cause. Such acts of thought, such Ideas, enter into our perceptions of external things.
But though our perceptions of external things involve some act of the mind, they must involve something else besides an act of the mind. If we must exercise an act of thought in order to see force exerted, or orbits described by bodies in motion, or even in order to see bodies existing in space, and to distinguish one kind of object from another, still the act of thought alone does not make the Bodies. There must be something besides, on which the thought is exerted. A colour, a form, a sound, are not produced by the mind, however they may be moulded, combined, and interpreted by our mental acts. A philosophical poet has spoken of
All the world
Of eye and ear, both what they half create,
And what perceive.
But it is clear, that though they half create, they do not wholly create: there must be an external world of colour and sound to give impressions to the eye and ear, as well as internal powers by which we perceive [32] what is offered to our organs. The mind is in some way passive as well as active: there are objects without as well as faculties within;—Sensations, as well as acts of Thought.
Indeed this is so far generally acknowledged, that according to common apprehension, the mind is passive rather than active in acquiring the knowledge which it receives concerning the material world. Its sensations are generally considered more distinct than its operations. The world without is held to be more clearly real than the faculties within. That there is something different from ourselves, something external to us, something independent of us, something which no act of our minds can make or can destroy, is held by all men to be at least as evident, as that our minds can exert any effectual process in modifying and appreciating the impressions made upon them. Most persons are more likely to doubt whether the mind be always actively applying Ideas to the objects which it perceives, than whether it perceive them passively by means of Sensations.
But yet a little consideration will show us that an activity of the mind, and an activity according to certain Ideas, is requisite in all our knowledge of external objects. We see objects, of various solid forms, and at various distances from us. But we do not thus perceive them by sensation alone. Our visual impressions cannot, of themselves, convey to us a knowledge of solid form, or of distance from us. Such knowledge is inferred from what we see:—inferred by conceiving the objects as existing in space, and by applying to them the Idea of Space. Again:—day after day passes, till they make up a year: but we do not know that the days are 365, except we count them; and thus apply to them our Idea of Number. Again:—we see a needle drawn to a magnet: but, in truth, the drawing is what we cannot see. We see the needle move, and infer the attraction, by applying to the fact our Idea of Force, as the cause of motion. Again:—we see two trees of different kinds; but we cannot know that they are so, except by applying to them our Idea of the resemblance [33] and difference which makes kinds. And thus Ideas, as well as Sensations, necessarily enter into all our knowledge of objects: and these two words express, perhaps more exactly than any of the pairs before mentioned, that Fundamental Antithesis, in the union of which, as I have said, all knowledge consists.
Sect. 6.—Reflexion and Sensation.
It will hereafter be my business to show what the Ideas are, which thus enter into our knowledge; and how each Idea has been, as a matter of historical fact, introduced into the Science to which it especially belongs. But before I proceed to do this, I will notice some other terms, besides the phrases already noticed, which have a reference, more or less direct, to the Fundamental Antithesis of Ideas and Sensations. I will mention some of these, in order that if they should come under the reader’s notice, he may not be perplexed as to their bearing upon the view here presented to him.
The celebrated doctrine of Locke, that all our ‘Ideas,’ (that is, in his use of the word, all our objects of thinking,) come from Sensation or Reflexion, will naturally occur to the reader as connected with the antithesis of which I have been speaking. But there is a great difference between Locke’s account of Sensation and Reflexion, and our view of Sensation and Ideas. He is speaking of the origin of our knowledge;—we, of its nature and composition. He is content to say that all the knowledge which we do not receive directly by Sensation, we obtain by Reflex Acts of the mind, which make up his Reflexion. But we hold that there is no Sensation without an act of the mind, and that the mind’s activity is not only reflexly exerted upon itself, but directly upon objects, so as to perceive in them connexions and relations which are not Sensations. He is content to put together, under the name of Reflexion, everything in our knowledge which is not Sensation: we are to attempt to analyze all that is not Sensation; not only to say it consists of Ideas, but [34] to point out what those Ideas are, and to show the mode in which each of them enters into our knowledge. His purpose was, to prove that there are no Ideas, except the reflex acts of the mind: our endeavour will be to show that the acts of the mind, both direct and reflex, are governed by certain Laws, which may be conveniently termed Ideas. His procedure was, to deny that any knowledge could be derived from the mind alone: our course will be, to show that in every part of our most certain and exact knowledge, those who have added to our knowledge in every age have referred to principles which the mind itself supplies. I do not say that my view is contrary to his: but it is altogether different from his. If I grant that all our knowledge comes from Sensation and Reflexion, still my task then is only begun; for I want further to determine, in each science, what portion comes, not from mere Sensation, but from those Ideas by the aid of which either Sensation or Reflexion can lead to Science.
Locke’s use of the word ‘idea’ is, as the reader will perceive, different from ours. He uses the word, as he says, which ‘serves best to stand for whatsoever is the object of the understanding when a man thinks.’ ‘I have used it,’ he adds, ‘to express whatever is meant by phantasm, notion, species, or whatever it is to which the mind can be employed about in thinking.’ It might be shown that this separation of the mind itself from the ideal objects about which it is employed in thinking, may lead to very erroneous results. But it may suffice to observe that we use the word Ideas, in the manner already explained, to express that element, supplied by the mind itself, which must be combined with Sensation in order to produce knowledge. For us, Ideas are not Objects of Thought, but rather Laws of Thought. Ideas are not synonymous with Notions; they are Principles which give to our Notions whatever they contain of truth. But our use of the term Idea will be more fully explained hereafter. [35]
Sect. 7.—Subjective and Objective.
The Fundamental Antithesis of Philosophy of which I have to speak has been brought into great prominence in the writings of modern German philosophers, and has conspicuously formed the basis of their systems. They have indicated this antithesis by the terms subjective and objective. According to the technical language of old writers, a thing and its qualities are described as subject and attributes; and thus a man’s faculties and acts are attributes of which he is the subject. The mind is the subject in which ideas inhere. Moreover, the man’s faculties and acts are employed upon external objects; and from objects all his sensations arise. Hence the part of a man’s knowledge which belongs to his own mind, is subjective: that which flows in upon him from the world external to him, is objective. And as in man’s contemplation of nature, there is always some act of thought which depends upon himself, and some matter of thought which is independent of him, there is, in every part of his knowledge, a subjective and an objective element. The combination of the two elements, the subjective or ideal, and the objective or observed, is necessary, in order to give us any insight into the laws of nature. But different persons, according to their mental habits and constitution, may be inclined to dwell by preference upon the one or the other of these two elements. It may perhaps interest the reader to see this difference of intellectual character illustrated in two eminent men of genius of modern times, Göthe and Schiller.
Göthe himself gives us the account to which I refer, in his history of the progress of his speculations concerning the Metamorphosis of Plants; a mode of viewing their structure by which he explained, in a very striking and beautiful manner, the relations of the different parts of a plant to each other; as has been narrated in the History of the Inductive Sciences. Göthe felt a delight in the passive contemplation of nature, unmingled with the desire of reasoning and theorizing; a delight such as naturally belongs to those poets who [36] merely embody the images which a fertile genius suggests, and do not mix with these pictures, judgments and reflexions of their own. Schiller, on the other hand, both by his own strong feeling of the value of a moral purpose in poetry, and by his adoption of a system of metaphysics in which the subjective element was made very prominent, was well disposed to recognize fully the authority of ideas over external impressions.
Göthe for a time felt a degree of estrangement towards Schiller, arising from this contrariety in their views and characters. But on one occasion they fell into discussion on the study of natural history; and Göthe endeavoured to impress upon his companion his persuasion that nature was to be considered, not as composed of detached and incoherent parts, but as active and alive, and unfolding herself in each portion, in virtue of principles which pervade the whole. Schiller objected that no such view of the objects of natural history had been pointed out by observation, the only guide which the natural historians recommended; and was disposed on this account to think the whole of their study narrow and shallow. ‘Upon this,’ says Göthe, ‘I expounded to him, in as lively a way as I could, the metamorphosis of plants, drawing on paper for him, as I proceeded, a diagram to represent that general form of a plant which shows itself in so many and so various transformations. Schiller attended and understood; and, accepting the explanation, he said, “This is not observation, but an idea.” I replied,’ adds Göthe, ‘with some degree of irritation; for the point which separated us was most luminously marked by this expression: but I smothered my vexation, and merely said, “I was happy to find that I had got ideas without knowing it; nay, that I saw them before my eyes.”’ Göthe then goes on to say, that he had been grieved to the very soul by maxims promulgated by Schiller, that no observed fact ever could correspond with an idea. Since he himself loved best to wander in the domain of external observation, he had been led to look with repugnance and hostility upon anything which professed to depend upon ideas. ‘Yet,’ he [37] observes, ‘it occurred to me that if my Observation was identical with his Idea, there must be some common ground on which we might meet.’ They went on with their mutual explanations, and became intimate and lasting friends. ‘And thus,’ adds the poet, by means of that mighty and interminable controversy between object and subject, we two concluded an alliance which remained unbroken, and produced much benefit to ourselves and others.’
The general diagram of a plant, of which Göthe here speaks, must have been a combination of lines and marks expressing the relations of position and equivalence among the elements of vegetable forms, by which so many of their resemblances and differences may be explained. Such a symbol is not an Idea in that general sense in which we propose to use the term, but is a particular modification of the general Ideas of symmetry, developement, and the like; and we shall hereafter see, according to the phraseology which we shall explain in the next chapter, how such a diagram might express the ideal conception of a plant.
The antithesis of subjective and objective is very familiar in the philosophical literature of Germany and France; nor is it uncommon in any age of our own literature. But though efforts have recently been made to give currency among us to this phraseology, it has not been cordially received, and has been much complained of as not of obvious meaning. Nor is the complaint without ground: for when we regard the mind as the subject in which ideas inhere, it becomes for us an object, and the antithesis vanishes. We are not so much accustomed to use subject in this sense, as to make it a proper contrast to object. The combination ‘ideal and objective,’ would more readily convey to a modern reader the opposition which is intended between the ideas of the mind itself, and the objects which it contemplates around it.
To the antitheses already noticed—Thoughts and Things; Necessary and Experiential Truths; Deduction and Induction; Theory and Fact; Ideas and Sensations; Reflexion and Sensation; Subjective and [38] Objective; we may add others, by which distinctions depending more or less upon the fundamental antithesis have been denoted. Thus we speak of the internal and external sources of our knowledge; of the world within and the world without us; of Man and Nature. Some of the more recent metaphysical writers of Germany have divided the universe into the Me and Not-me (Ich and Nicht-ich). Upon such phraseology we may observe, that to have the fundamental antithesis of which we speak really understood, is of the highest consequence to philosophy, but that little appears to be gained by expressing it in any novel manner. The most weighty part of the philosopher’s task is to analyze the operations of the mind; and in this task, it can aid us but little to call it, instead of the mind, the subject, or the me.
Sect. 8.—Matter and Form.
There are some other ways of expressing, or rather of illustrating, the fundamental antithesis, which I may briefly notice. The antithesis has been at different times presented by means of various images. One of the most ancient of these, and one which is still very instructive, is that which speaks of Sensations as the Matter, and Ideas as the Form, of our knowledge; just as ivory is the matter, and a cube the form, of a die. This comparison has the advantage of showing that two elements of an antithesis which cannot be separated in fact, may yet be advantageously separated in our reasonings. For Matter and Form cannot by any means be detached from each other. All matter must have some form; all form must be the form of some material thing. If the ivory be not a cube, it must have a spherical or some other form. And the cube, in order to be a cube, must be of some material;—if not of ivory, of wood, or stone, for instance, A figure without matter is merely a geometrical conception;—a modification of the idea of space. Matter without figure is a mere abstract term;—a supposed union of certain sensible qualities which, so insulated [39] from others, cannot exist. Yet the distinction of Matter and Form is real; and, as a subject of contemplation, clear and plain. Nor is the distinction by any means useless. The speculations which treat of the two subjects, Matter and Figure, are very different. Matter is the subject of the sciences of Mechanics and Chemistry; Figure, of Geometry. These two classes of Sciences have quite different sets of principles. If we refuse to consider the Matter and the Form of bodies separately, because we cannot exhibit Matter and Form separately, we shut the door to all philosophy on such subjects. In like manner, though Sensations and Ideas are necessarily united in all our knowledge, they can be considered as distinct; and this distinction is the basis of all philosophy concerning knowledge.
This illustration of the relation of Ideas and Sensations may enable us to estimate a doctrine which has been put forwards at various times. In a certain school of speculators there has existed a disposition to derive all our Ideas from our Sensations, the term Idea, being, in this school, used in its wider sense, so as to include all modifications and limitations of our Fundamental Ideas. The doctrines of this school have been summarily expressed by saying that ‘Every Idea is a transformed Sensation.’ Now, even supposing this assertion to be exactly true, we easily see, from what has been said, how little we are likely to answer the ends of philosophy by putting forward such a maxim as one of primary importance. For we might say, in like manner, that every statue is but a transformed block of marble, or every edifice but a collection of transformed stones. But what would these assertions avail us, if our object were to trace the rules of art by which beautiful statues were formed, or great works of architecture erected? The question naturally occurs, What is the nature, the principle, the law of this Transformation? In what faculty resides the transforming power? What train of ideas of beauty, and symmetry, and stability, in the mind of the statuary or the architect, has produced those great works which [40] mankind look upon as among their most valuable possessions;—the Apollo of the Belvidere, the Parthenon, the Cathedral of Cologne? When this is what we want to know, how are we helped by learning that the Apollo is of Parian marble, or the Cathedral of basaltic stone? We must know much more than this, in order to acquire any insight into the principles of statuary or of architecture. In like manner, in order that we may make any progress in the philosophy of knowledge, which is our purpose, we must endeavour to learn something further respecting ideas than that they are transformed sensations, even if they were this.
But, in reality, the assertion that our ideas are transformed sensations, is erroneous as well as frivolous. For it conveys, and is intended to convey, the opinion that our sensations have one form which properly belongs to them; and that, in order to become ideas, they are converted into some other form. But the truth is, that our sensations, of themselves, without some act of the mind, such as involves what we have termed an Idea, have no form. We cannot see one object without the idea of space; we cannot see two without the idea of resemblance or difference; and space and difference are not sensations. Thus, if we are to employ the metaphor of Matter and Form, which is implied in the expression to which I have referred, our sensations, from their first reception, have their Form not changed, but given by our Ideas. Without the relations of thought which we here term Ideas, the sensations are matter without form. Matter without form cannot exist: and in like manner sensations cannot become perceptions of objects, without some formative power of the mind. By the very act of being received as perceptions, they have a formative power exercised upon them, the operation of which might be expressed, by speaking of them, not as transformed, but simply as formed;—as invested with form, instead of being the mere formless material of perception. The word inform, according to its Latin etymology, at first implied this process by which matter is [41] invested with form. Thus Virgil[1] speaks of the thunderbolt as informed by the hands of Brontes, and Steropes, and Pyracmon. And Dryden introduces the word in another place:—
Let others better mould the running mass
Of metals, or inform the breathing brass.
Even in this use of the word, the form is something superior to the brute manner, and gives it a new significance and purpose. And hence the term is again used to denote the effect produced by an intelligent principle of a still higher kind:—
. . . . He informed
This ill-shaped body with a daring soul.
And finally even the soul itself, in its original condition, is looked upon as matter, when viewed with reference to education and knowledge, by which it is afterwards moulded; and hence these are, in our language, termed information. If we confine ourselves to the first of these three uses of the term, we may correct the erroneous opinion of which we have just been speaking, and retain the metaphor by which it is expressed, by saying, that ideas are not transformed, but informed sensations.
Ferrum exercebant vasto Cyclopes in Antro
Brontesque Steropesque et nudus membra Pyracmon;
His informatum manibus, jam parte polita
Fulmen erat.—Æn. viii. 424.
Sect. 9.—Man the Interpreter of Nature.
There is another image by which writers have represented the acts of thought through which knowledge is obtained from the observation of the external world. Nature is the Book, and Man is the Interpreter. The facts of the external world are marks, in which man discovers a meaning, and so reads them. Man is the Interpreter of Nature, and Science is the right Interpretation. And this image also is, in many respects, [42] instructive. It exhibits to us the necessity of both elements;—the marks which man has to look at, and the knowledge of the alphabet and language which he must possess and apply before he can find any meaning in what he sees. Moreover this image presents to us, as the ideal element, an activity of the mind of that very kind which we wish to point out. Indeed the illustration is rather an example than a comparison of the composition of our knowledge. The letters and symbols which are presented to the Interpreter are really objects of sensation: the notion of letters as signs of words, the notion of connexions among words by which they have meaning, really are among our Ideas;—Signs and Meaning are Ideas, supplied by the mind, and added to all that sensation can disclose in any collection of visible marks. The Sciences are not figuratively, but really, Interpretations of Nature. But this image, whether taken as example or comparison, may serve to show both the opposite character of the two elements of knowledge, and their necessary combination, in order that there may be knowledge.
This illustration may also serve to explain another point in the conditions of human knowledge which we shall have to notice:—namely, the very different degrees in which, in different cases, we are conscious of the mental act by which our sensations are converted into knowledge. For the same difference occurs in reading an inscription. If the inscription were entire and plain, in a language with which we were familiar, we should be unconscious of any mental act in reading it. We should seem to collect its meaning by the sight alone. But if we had to decipher an ancient inscription, of which only imperfect marks remained, with a few entire letters among them, we should probably make several suppositions as to the mode of reading it, before we found any mode which was quite successful; and thus, our guesses, being separate from the observed facts, and at first not fully in agreement with them, we should be clearly aware that the conjectured meaning, on the one hand, and the observed marks on the other, were distinct things, though these [43] two things would become united as elements of one act of knowledge when we had hit upon the right conjecture.
Sect. 10.—The Fundamental Antithesis inseparable.
The illustration just referred to, as well as other ways of considering the subject, may help us to get over a difficulty which at first sight appears perplexing. We have spoken of the common opposition of Theory and Fact as important, and as involving what we have called the Fundamental Antithesis of Philosophy. But after all, it may be asked, Is this distinction of Theory and Fact really tenable? Is it not often difficult to say whether a special part of our knowledge is a Fact or a Theory? Is it a Fact or a Theory that the stars revolve round the pole? Is it a Fact or a Theory that the earth is a globe revolving on its axis? Is it a Fact or a Theory that the earth travels in an ellipse round the sun? Is it a Fact or a Theory that the sun attracts the earth? Is it a Fact or a Theory that the loadstone attracts the needle? In all these cases, probably some persons would answer one way, and some persons the other. There are many persons by whom the doctrine of the globular form of the earth, the doctrine of the earth’s elliptical orbit, the doctrine of the sun’s attraction on the earth, would be called theories, even if they allowed them to be true theories. But yet if each of these propositions be true, is it not a fact? And even with regard to the simpler facts, as the motion of the stars round the pole, although this may be a Fact to one who has watched and measured the motions of the stars, one who has not done this, and who has only carelessly looked at these stars from time to time, may naturally speak of the circles which the astronomer makes them describe as Theories. It would seem, then, that we cannot in such cases expect general assent, if we say, This is a Fact and not a Theory, or This is a Theory and not a Fact. And the same is true in a vast range of cases. It would seem, therefore, that we cannot rest any reasoning upon this distinction of Theory [44] and Fact; and we cannot avoid asking whether there is any real distinction in this antithesis, and if so, what it is.
To this I reply: the distinction between Theory (that is, true Theory) and Fact, is this: that in Theory the Ideas are considered as distinct from the Facts: in Facts, though Ideas may be involved, they are not, in our apprehension, separated from the sensations. In a Fact, the Ideas are applied so readily and familiarly, and incorporated with the sensations so entirely, that we do not see them, we see through them. A person who carefully notes the motion of a star all night, sees the circle which it describes, as he sees the star, though the circle is, really, a result of his own Ideas. A person who has in his mind the measures of different lines and countries on the earth’s surface, and who can put them, together into one conception, finds that they can make no figure but a globular one: to him, the earth’s globular form is a Fact, as much as the square form of his chamber. A person to whom the grounds of believing the earth to travel round the sun are as familiar as the grounds for believing the movements of the mail-coaches in this country, looks upon the former event as a Fact, just as he looks upon the latter events as Facts. And a person who, knowing the Fact of the earth’s annual motion, refers it distinctly to its mechanical cause, conceives the sun’s attraction as a Fact, just as he conceives as a Fact, the action of the wind which turns the sails of a mill. He cannot see the force in either case; he supplies it out of his own Ideas. And thus, a true Theory is a Fact; a Fact is a familiar Theory. That which is a Fact under one aspect, is a Theory under another. The most recondite Theories when firmly established are Facts: the simplest Facts involve something of the nature of Theory. Theory and Fact correspond, in a certain degree, with Ideas and Sensations, as to the nature of their opposition. But the Facts are Facts, so far as the Ideas have been combined with the Sensations and absorbed in them: the Theories are Theories, so far as the Ideas are kept distinct from the Sensations, and so far as it is [45] considered still a question whether those can be made to agree with these.
We may, as I have said, illustrate this matter by considering man as interpreting the phenomena which he sees. He often interprets without being aware that he does so. Thus when we see the needle move towards the magnet, we assert that the magnet exercises an attractive force on the needle. But it is only by an interpretative act of our own minds that we ascribe this motion to attraction. That, in this case, a force is exerted—something of the nature of the pull which we could apply by our own volition—is our interpretation of the phenomena; although we may be conscious of the act of interpretation, and may then regard the attraction as a Fact.
Nor is it in such cases only that we interpret phenomena in our own way, without being conscious of what we do. We see a tree at a distance, and judge it to be a chestnut or a lime; yet this is only an inference from the colour or form of the mass according to preconceived classifications of our own. Our lives are full of such unconscious interpretations. The farmer recognizes a good or a bad soil; the artist a picture of a favourite master; the geologist a rock of a known locality, as we recognize the faces and voices of our friends; that is, by judgments formed on what we see and hear; but judgments in which we do not analyze the steps, or distinguish the inference from the appearance. And in these mixtures of observation and inference, we speak of the judgment thus formed, as a Fact directly observed.
Even in the case in which our perceptions appear to be most direct, and least to involve any interpretations of our own,—in the simple process of seeing,—who does not know how much we, by an act of the mind, add to that which our senses receive? Does any one fancy that he sees a solid cube? It is easy to show that the solidity of the figure, the relative position of its faces and edges to each other, are inferences of the spectator; no more conveyed to his conviction by the eye alone, than they would be if he were looking at [46] a painted representation of a cube. The scene of nature is a picture without depth of substance, no less than the scene of art; and in the one case as in the other, it is the mind which, by an act of its own, discovers that colour and shape denote distance and solidity. Most men are unconscious of this perpetual habit of reading the language of the external world, and translating as they read. The draughtsman, indeed, is compelled, for his purposes, to return back in thought from the solid bodies which he has inferred, to the shapes of surface which he really sees. He knows that there is a mask of theory over the whole face of nature, if it be theory to infer more than we see. But other men, unaware of this masquerade, hold it to be a fact that they see cubes and spheres, spacious apartments and winding avenues. And these things are facts to them, because they are unconscious of the mental operation by which they have penetrated nature’s disguise.
And thus, we still have an intelligible distinction of Fact and Theory, if we consider Theory as a conscious, and Fact as an unconscious inference, from the phenomena which are presented to our senses.
But still, Theory and Fact, Inference and Perception, Reasoning and Observation, are antitheses in none of which can we separate the two members by any fixed and definite line.
Even the simplest terms by which the antithesis is expressed cannot be separated. Ideas and Sensations, Thoughts and Things, Subject and Object, cannot in any case be applied absolutely and exclusively. Our Sensations require Ideas to bind them together, namely, Ideas of space, time, number, and the like. If not so bound together, Sensations do not give us any apprehension of Things or Objects. All Things, all Objects, must exist in space and in time—must be one or many. Now space, time, number, are not Sensations or Things. They are something different from, and opposed to Sensations and Things. We have termed them Ideas. It may be said they are Relations of Things, or of Sensations. But granting this form of expression, still a Relation is not a Thing or a [47] Sensation; and therefore we must still have another and opposite element, along with our Sensations. And yet, though we have thus these two elements in every act of perception, we cannot designate any portion of the act as absolutely and exclusively belonging to one of the elements. Perception involves Sensation, along with Ideas of time, space, and the like; or, if any one prefers the expression, we may say, Perception involves Sensations along with the apprehension of Relations. Perception is Sensation, along with such Ideas as make Sensation into an apprehension of Things or Objects.
And as Perception of Objects implies Ideas,—as Observation implies Reasoning;—so, on the other hand, Ideas cannot exist where Sensation has not been; Reasoning cannot go on when there has not been previous Observation. This is evident from the necessary order of developement of the human faculties. Sensation necessarily exists from the first moments of our existence, and is constantly at work. Observation begins before we can suppose the existence of any Reasoning which is not involved in Observation. Hence, at whatever period we consider our Ideas, we must consider them as having been already engaged in connecting our Sensations, and as having been modified by this employment. By being so employed, our Ideas are unfolded and defined; and such developement and definition cannot be separated from the Ideas themselves. We cannot conceive space, without boundaries or forms; now Forms involve Sensations. We cannot conceive time, without events which mark the course of time; but events involve Sensations. We cannot conceive number, without conceiving things which are numbered; and Things imply sensations. And the forms, things, events, which are thus implied in our Ideas, having been the objects of Sensation constantly in every part of our life, have modified, unfolded, and fixed our Ideas, to an extent which we cannot estimate, but which we must suppose to be essential to the processes which at present go on in our minds. We cannot say that Objects create Ideas; for to perceive Objects we must already have Ideas. But we may [48] say, that Objects and the constant Perception of Objects have so far modified our Ideas, that we cannot, even in thought, separate our Ideas from the perception of Objects.
We cannot say of any Ideas, as of the Idea of space, or time, or number, that they are absolutely and exclusively Ideas. We cannot conceive what space, or time, or number, would be in our minds, if we had never perceived any Thing or Things in space or time. We cannot conceive ourselves in such a condition as never to have perceived any Thing or Things in space or time. But, on the other hand, just as little can we conceive ourselves becoming acquainted with space and time or numbers as objects of Sensation. We cannot reason without having the operations of our minds affected by previous Sensations; but we cannot conceive Reasoning to be merely a series of Sensations. In order to be used in Reasoning, Sensation must become Observation; and, as we have seen, Observation already involves Reasoning. In order to be connected by our Ideas, Sensations must be Things or Objects, and Things or Objects already include Ideas. And thus, none of the terms by which the fundamental antithesis is expressed can be absolutely and exclusively applied.
I will make a remark suggested by the views which have thus been presented. Since, as we have just seen, none of the terms which express the fundamental antithesis can be applied absolutely and exclusively, the absolute application of the antithesis in any particular case can never be a conclusive or immoveable principle. This remark is the more necessary to be borne in mind, as the terms of this antithesis are often used in a vehement and peremptory manner. Thus we are often told that such a thing is a Fact; a Fact and not a Theory, with all the emphasis which, in speaking or writing, tone or italics or capitals can give. We see from what has been said, that when this is urged, before we can estimate the truth, or the value of the assertion, we must ask to whom is it a Fact? what habits of thought, what previous information, what Ideas does it imply, to conceive the Fact as a Fact? [49] Does not the apprehension of the Fact imply assumptions which may with equal justice be called Theory, and which are perhaps false Theory? in which case, the Fact is no Fact. Did not the ancients assert it as a Fact, that the earth stood still, and the stars moved? and can any Fact have stronger apparent evidence to justify persons in asserting it emphatically than this had?
These remarks are by no means urged in order to show that no Fact can be certainly known to be true; but only, to show that no Fact can be certainly shown to be a Fact, merely by calling it a Fact, however emphatically. There is by no means any ground of general skepticism with regard to truth, involved in the doctrine of the necessary combination of two elements in all our knowledge. On the contrary, Ideas are requisite to the essence, and Things to the reality of our knowledge in every case. The proportions of Geometry and Arithmetic are examples of knowledge respecting our Ideas of space and number, with regard to which there is no room for doubt. The doctrines of Astronomy are examples of truths not less certain respecting the Facts of the external world.
Sect. 11.—Successive Generalization.
In the preceding pages we have been led to the doctrine, that though, in the Antithesis of Theory and Fact, there is involved an essential opposition; namely the opposition of the thoughts within us and the phenomena without us; yet that we cannot distinguish and define the members of this antithesis separately. Theories become Facts, by becoming certain and familiar: and thus, as our knowledge becomes more sure and more extensive, we are constantly transferring to the class of facts, opinions which were at first regarded as theories.
Now we have further to remark, that in the progress of human knowledge respecting any branch of speculation, there may be several such steps in succession, each depending upon and including the preceding. [50] The theoretical views which one generation of discoverers establishes, become the facts from which the next generation advances to new theories. As men rise from the particular to the general, so, in the same manner, they rise from what is general to what is more general. Each induction supplies the materials of fresh inductions; each generalization, with all that it embraces in its circle, may be found to be but one of many circles, comprehended within the circuit of some wider generalization.
This remark has already been made, and illustrated, in the History of the Inductive Sciences[2]; and, in truth, the whole of the history of science is full of suggestions and exemplifications of this course of things. It may be convenient, however, to select a few instances which may further explain and confirm this view of the progress of scientific knowledge.
[2] Hist. Inductive Sciences, b. vii. c. ii. sect. 5.
The most conspicuous instance of this succession is to be found in that science which has been progressive from the beginning of the world to our own times, and which exhibits by far the richest collection of successive discoveries: I mean Astronomy. It is easy to see that each of these successive discoveries depended on those antecedently made, and that in each, the truths which were the highest point of the knowledge of one age were the fundamental basis of the efforts of the age which came next. Thus we find, in the days of Greek discovery, Hipparchus and Ptolemy combining and explaining the particular facts of the motion of the sun, moon, and planets, by means of the theory of epicycles and eccentrics;—a highly important step, which gave an intelligible connexion and rule to the motions of each of these luminaries. When these cycles and epicycles, thus truly representing the apparent motions of the heavenly bodies, had accumulated to an inconvenient amount, by the discovery of many inequalities in the observed motions, Copernicus showed that their effects might all be more simply included, by making the sun the center of motion of the planets, instead of [51] the earth. But in this new view, he still retained the epicycles and eccentrics which governed the motion of each body. Tycho Brahe’s observations, and Kepler’s calculations, showed that, besides the vast number of facts which the epicyclical theory could account for, there were some which it would not exactly include, and Kepler was led to the persuasion that the planets move in ellipses. But this view of motion was at first conceived by Kepler as a modification of the conception of epicycles. On one occasion he blames himself for not sooner seeing that such a modification was possible. ‘What an absurdity on my part!’ he cries[3]; ‘as if libration in the diameter of the epicycle might not come to the same thing as motion in the ellipse.’ But again; Kepler’s laws of the elliptical motion of the planets were established; and these laws immediately became the facts on which the mathematicians had to found their mechanical theories. From these facts, Newton, as we have related, proved that the central force of the sun retains the planets in their orbits, according to the law of the inverse square of the distance. The same law was shown to prevail in the gravitation of the earth. It was shown, too, by induction from the motions of Jupiter and Saturn, that the planets attract each other; by calculations from the figure of the earth, that the parts of the earth attract each other; and, by considering the course of the tides, that the sun and moon attract the waters of the ocean. And all these curious discoveries being established as facts, the subject was ready for another step of generalization. By an unparalleled rapidity in the progress of discovery in this case, not only were all the inductions which we have first mentioned made by one individual, but the new advance, the higher flight, the closing victory, fell to the lot of the same extraordinary person.
[3] Hist. Inductive Sciences, b. v. c. iv. sect. 3.
The attraction of the sun upon the planets, of the moon upon the earth, of the planets on each other, of the parts of the earth on themselves, of the sun and [52] moon upon the ocean;—all these truths, each of itself a great discovery, were included by Newton in the higher generalization, of the universal gravitation of matter, by which each particle is drawn to every other according to the law of the inverse square: and thus this long advance from discovery to discovery, from truths to truths, each justly admired when new, and then rightly used as old, was closed in a worthy and consistent manner, by a truth which is the most worthy admiration, because it includes all the researches of preceding ages of Astronomy.
We may take another example of a succession of this kind from the history of a science, which, though it has made wonderful advances, has not yet reached its goal, as physical astronomy appears to have done, but seems to have before it a long prospect of future progress. I now refer to Chemistry, in which I shall try to point out how the preceding discoveries afforded the materials of the succeeding; although this subordination and connexion is, in this case, less familiar to men’s minds than in Astronomy, and is, perhaps, more difficult to present in a clear and definite shape. Sylvius saw, in the facts which occur, when an acid and an alkali are brought together, the evidence that they neutralize each other. But cases of neutralization, and acidification, and many other effects of mixture of the ingredients of bodies, being thus viewed as facts, had an aspect of unity and law given them by Geoffroy and Bergman[4], who introduced the conception of the Chemical Affinity or Elective Attraction, by which certain elements select other elements, as if by preference. That combustion, whether a chemical union or a chemical separation of ingredients, is of the same nature with acidification, was the doctrine of Beccher and Stahl, and was soon established as a truth which must form a part of every succeeding physical theory. That the rules of affinity and chemical composition may include gaseous elements, was established by Black and Cavendish. And all these truths, thus brought to light by [53] chemical discoverers,—affinity, the identity of acidification and combustion, the importance of gaseous elements,—along with all the facts respecting the weight of ingredients and compounds which the balance disclosed,—were taken up, connected, and included as particulars in the oxygen theory of Lavoisier. Again, the results of this theory, and the quantity of the several ingredients which entered into each compound—(such results, for the most part, being now no longer mere theoretical speculations, but recognized facts)—were the particulars from which Dalton derived that wide law of chemical combination which we term the Atomic Theory. And this law, soon generally accepted among chemists, is already in its turn become one of the facts included in Faraday’s Theory of the identity of Chemical Affinity and Electric Attraction.
[4] Hist. Inductive Sciences, b. xiv. c. iii.
It is unnecessary to give further exemplifications of this constant ascent from one step to a higher; this perpetual conversion of true theories into the materials of other and wider theories. It will hereafter be our business to exhibit, in a more full and formal manner, the mode in which this principle determines the whole scheme and structure of all the most exact sciences. And thus, beginning with the facts of sense, we gradually climb to the highest forms of human knowledge, and obtain from experience and observation a vast collection of the most wide and elevated truths.
There are, however, truths of a very different kind, to which we must turn our attention, in order to pursue our researches respecting the nature and grounds of our knowledge. But before we do this, we must notice one more feature in that progress of science which we have already in part described.
CHAPTER II.
Of Technical Terms.
1. IT has already been stated that we gather knowledge from the external world, when we are able to apply, to the facts which we observe, some ideal conception, which gives unity and connexion to multiplied and separate perceptions. We have also shown that our conceptions, thus verified by facts, may themselves be united and connected by a new bond of the same nature; and that man may thus have to pursue his way from truth to truth through a long progression of discoveries, each resting on the preceding, and rising above it.
Each of these steps, in succession, is recorded, fixed, and made available, by some peculiar form of words; and such words, thus rendered precise in their meaning, and appropriated to the service of science, we may call Technical Terms. It is in a great measure by inventing such Terms that men not only best express the discoveries they have made, but also enable their followers to become so familiar with these discoveries, and to possess them so thoroughly, that they can readily use them in advancing to ulterior generalizations.
Most of our ideal conceptions are described by exact and constant words or phrases, such as those of which we here speak. We have already had occasion to employ many of these. Thus we have had instances of technical Terms expressing geometrical conceptions, as Ellipsis, Radius Vector, Axis, Plane, the Proportion of the Inverse Square, and the like. Other Terms have described mechanical conceptions, as Accelerating Force and Attraction. Again, chemistry exhibits (as do all sciences) a series of Terms which mark the steps of our [55] progress. The views of the first real founders of the science are recorded by the Terms which are still in use, Neutral Salts, Affinity, and the like. The establishment of Dalton’s theory has produced the use of the word Atom in a peculiar sense, or of some other word, as Proportion, in a sense equally technical. And Mr. Faraday has found it necessary, in order to expound his electro-chemical theory, to introduce such terms as Anode and Cathode, Anïon and Cathïon.
2. I need not adduce any further examples, for my object at present is only to point out the use and influence of such language: its rules and principles I shall hereafter try, in some measure, to fix. But what we have here to remark is, the extraordinary degree in which the progress of science is facilitated, by thus investing each new discovery with a compendious and steady form of expression. These terms soon become part of the current language of all who take an interest in speculation. However strange they may sound at first, they soon grow familiar in our ears, and are used without any effort, or any recollection of the difficulty they once involved. They become as common as the phrases which express our most frequent feelings and interests, while yet they have incomparably more precision than belongs to any terms which express feelings; and they carry with them, in their import, the results of deep and laborious trains of research. They convey the mental treasures of one period to the generations that follow; and laden with this, their precious freight, they sail safely across gulfs of time in which empires have suffered shipwreck, and the languages of common life have sunk into oblivion. We have still in constant circulation among us the Terms which belong to the geometry, the astronomy, the zoology, the medicine of the Greeks, and the algebra and chemistry of the Arabians. And we can in an instant, by means of a few words, call to our own recollection, or convey to the apprehension of another person, phenomena and relations of phenomena in optics, mineralogy, chemistry, which are so complex and abstruse, that it might seem to require the utmost subtlety of the human mind to [56] grasp them, even if that were made the sole object of its efforts. By this remarkable effect of Technical Language, we have the results of all the labours of past times not only always accessible, but so prepared that we may (provided we are careful in the use of our instrument) employ what is really useful and efficacious for the purpose of further success, without being in any way impeded or perplexed by the length and weight of the chain of past connexions which we drag along with us.
By such means,—by the use of the Inductive Process, and by the aid of Technical Terms,—man has been constantly advancing in the path of scientific truth. In a succeeding part of this work we shall endeavour to trace the general rules of this advance, and to lay down the maxims by which it may be most successfully guided and forwarded. But in order that we may do this to the best advantage, we must pursue still further the analysis of knowledge into its elements; and this will be our employment in the first part of the work.
CHAPTER III.
Of Necessary Truths.
1. EVERY advance in human knowledge consists, as we have seen, in adapting new ideal conceptions to ascertained facts, and thus in superinducing the Form upon the Matter, the active upon the passive processes of our minds. Every such step introduces into our knowledge an additional portion of the ideal element, and of those relations which flow from the nature of Ideas. It is, therefore, important for our purpose to examine more closely this element, and to learn what the relations are which may thus come to form part of our knowledge. An inquiry into those Ideas which form the foundations of our sciences;—into the reality, independence, extent, and principal heads of the knowledge which we thus acquire; is a task on which we must now enter, and which will employ us for several of the succeeding Books.
In this inquiry our object will be to pass in review all the most important Fundamental Ideas which our sciences involve; and to prove more distinctly in reference to each, what we have already asserted with regard to all, that there are everywhere involved in our knowledge acts of the mind as well as impressions of sense; and that our knowledge derives, from these acts, a generality, certainty, and evidence which the senses could in no degree have supplied. But before I proceed to do this in particular cases, I will give some account of the argument in its general form.
We have already considered the separation of our knowledge into its two elements,—Impressions of Sense and Ideas,—as evidently indicated by this; that all knowledge possesses characters which neither of these [58] elements alone could bestow. Without our ideas, our sensations could have no connexion; without external impressions, our ideas would have no reality; and thus both ingredients of our knowledge must exist.
2. There is another mode in which the distinction of the two elements of knowledge appears, as I have already said (c. i. [sect. 2]): namely in the distinction of necessary, and contingent or experiential, truths. For of these two classes of truths, the difference arises from this;—that the one class derives its nature from the one, and the other from the other, of the two elements of knowledge. I have already stated briefly the difference of these two kinds of truths:—namely, that the former are truths which, we see, must be true:—the latter are true, but so far as we can see, might be otherwise. The former are true necessarily and universally: the latter are learnt from experience and limited by experience. Now with regard to the former kind of truths, I wish to show that the universality and necessity which distinguish them can by no means be derived from experience; that these characters do in reality flow from the ideas which these truths involve; and that when the necessity of the truth is exhibited in the way of logical demonstration, it is found to depend upon certain fundamental principles, (Definitions and Axioms,) which may thus be considered as expressing, in some measure, the essential characters of our ideas. These fundamental principles I shall afterwards proceed to discuss and to exhibit in each of the principal departments of science.
I shall begin by considering Necessary Truths more fully than I have yet done. As I have already said, necessary truths are those in which we not only learn, that the proposition is true, but see that it must be true; in which the negation of the truth is not only false, but impossible; in which we cannot, even by an effort of imagination, or in a supposition, conceive the reverse of that which is asserted.
3. That there are such truths cannot be doubted. We may take, for example, all relations of number. Three and Two added together make Five. We cannot [59] conceive it to be otherwise. We cannot, by any freak of thought, imagine Three and Two to make Seven.
It may be said that this assertion merely expresses what we mean by our words; that it is a matter of definition; that the proposition is an identical one.
But this is by no means so. The definition of Five is not Three and Two, but Four and One. How does it appear that Three and Two is the same number as Four and One? It is evident that it is so; but why is it evident?—not because the proposition is identical; for if that were the reason, all numerical propositions must be evident for the same reason. If it be a matter of definition that 3 and 2 make 5, it must be a matter of definition that 39 and 27 make 66. But who will say that the definition of 66 is 39 and 27? Yet the magnitude of the numbers can make no difference in the ground of the truth. How do we know that the product of 13 and 17 is 4 less than the product of 15 and 15? We see that it is so, if we perform certain operations by the rules of arithmetic; but how do we know the truth of the rules of arithmetic? If we divide 123375 by 987 according to the process taught us at school, how are we assured that the result is correct, and that the number 125 thus obtained is really the number of times one number is contained in the other?
The correctness of the rule, it may be replied, can be rigorously demonstrated. It can be shown that the process must inevitably give the true quotient.
Certainly this can be shown to be the case. And precisely because it can be shown that the result must be true, we have here an example of a necessary truth; and this truth, it appears, is not therefore necessary because it is itself evidently identical, however it may be possible to prove it by reducing it to evidently identical propositions. And the same is the case with all other numerical propositions; for, as we have said, the nature of all of them is the same.
Here, then, we have instances of truths which are not only true, but demonstrably and necessarily true. Now such truths are, in this respect at least, altogether [60] different from truths, which, however certain they may be, are learnt to be so only by the evidence of observation, interpreted, as observation must be interpreted, by our own mental faculties. There is no difficulty in finding examples of these merely observed truths. We find that sugar dissolves in water, and forms a transparent fluid, but no one will say that we can see any reason beforehand why the result must be so. We find that all animals which chew the cud have also the divided hoof; but could any one have predicted that this would be universally the case? or supposing the truth of the rule to be known, can any one say that he cannot conceive the facts as occurring otherwise? Water expands when it crystallizes, some other substances contract in the same circumstances; but can any one know that this will be so otherwise than by observation? We have here propositions rigorously true, (we will assume,) but can any one say they are necessarily true? These, and the great mass of the doctrines established by induction, are actual, but so far as we can see, accidental laws; results determined by some unknown selection, not demonstrable consequences of the essence of things, inevitable and perceived to be inevitable. According to the phraseology which has been frequently used by philosophical writers, they are contingent, not necessary truths.
It is requisite to insist upon this opposition, because no insight can be obtained into the true nature of knowledge, and the mode of arriving at it, by any one who does not clearly appreciate the distinction. The separation of truths which are learnt by observation, and truths which can be seen to be true by a pure act of thought, is one of the first and most essential steps in our examination of the nature of truth, and the mode of its discovery. If any one does not clearly comprehend this distinction of necessary and contingent truths, he will not be able to go along with us in our researches into the foundations of human knowledge; nor, indeed, to pursue with success any speculation on the subject. But, in fact, this distinction is one that can hardly fail to be at once understood. It [61] is insisted upon by almost all the best modern, as well as ancient, metaphysicians[5], as of primary importance. And if any person does not fully apprehend, at first, the different kinds of truth thus pointed out, let him study, to some extent, those sciences which have necessary truth for their subject, as geometry, or the properties of numbers, so as to obtain a familiar acquaintance with such truth; and he will then hardly fail to see how different the evidence of the propositions which occur in these sciences, is from the evidence of the facts which are merely learnt from experience. That the year goes through its course in 365 days, can only be known by observation of the sun or stars: that 365 days is 52 weeks and a day, it requires no experience, but only a little thought to perceive. That bees build their cells in the form of hexagons, we cannot know without looking at them; that regular hexagons may be arranged so as to fill space, may be proved with the utmost rigour, even if there were not in existence such a thing as a material hexagon.
[5] Aristotle, Dr Whately, Dugald Stewart, &c.
4. As I have already said, one mode in which we may express the difference of necessary truths and truths of experience, is, that necessary truths are those of which we cannot distinctly conceive the contrary. We can very readily conceive the contrary of experiential truths. We can conceive the stars moving about the pole or across the sky in any kind of curves with any velocities; we can conceive the moon always appearing during the whole month as a luminous disk, as she might do if her light were inherent and not borrowed. But we cannot conceive one of the parallelograms on the same base and between the same parallels larger than the other; for we find that, if we attempt to do this, when we separate the parallelograms into parts, we have to conceive one triangle larger than another, both having all their parts equal; which we cannot conceive at all, if we conceive the triangles distinctly. We make this impossibility more clear by conceiving [62] the triangles to be placed so that two sides of the one coincide with two sides of the other; and it is then seen, that in order to conceive the triangles unequal, we must conceive the two bases which have the same extremities both ways, to be different lines, though both straight lines. This it is impossible to conceive: we assent to the impossibility as an axiom, when it is expressed by saying, that two straight lines cannot inclose a space; and thus we cannot distinctly conceive the contrary of the proposition just mentioned respecting parallelograms.
But it is necessary, in applying this distinction, to bear in mind the terms of it;—that we cannot distinctly conceive the contrary of a necessary truth. For in a certain loose, indistinct way, persons conceive the contrary of necessary geometrical truths, when they erroneously conceive false propositions to be true. Thus, Hobbes erroneously held that he had discovered a means of geometrically ‘doubling the cube,’ as it is called, that is, finding two mean proportionals between two given lines; a problem which cannot be solved by plane geometry. Hobbes not only proposed a construction for this purpose, but obstinately maintained that it was right, when it had been proved to be wrong. But then, the discussion showed how indistinct the geometrical conceptions of Hobbes were; for when his critics had proved that one of the lines in his diagram would not meet the other in the point which his reasoning supposed, but in another point near to it; he maintained, in reply, that one of these points was large enough to include the other, so that they might be considered as the same point. Such a mode of conceiving the opposite of a geometrical truth, forms no exception to the assertion, that this opposite cannot be distinctly conceived.
In like manner, the indistinct conceptions of children and of rude savages do not invalidate the distinction of necessary and experiential truths. Children and savages make mistakes even with regard to numbers; and might easily happen to assert that 27 and 38 are equal to 63 or 64. But such mistakes cannot [63] make arithmetical truths cease to be necessary truths. When any person conceives these numbers and their addition distinctly, by resolving them into parts, or in any other way, he sees that their sum is necessarily 65. If, on the ground of the possibility of children and savages conceiving something different, it be held that this is not a necessary truth, it must be held on the same ground, that it is not a necessary truth that 7 and 4 are equal to 11; for children and savages might be found so unfamiliar with numbers as not to reject the assertion that 7 and 4 are 10, or even that 4 and 3 are 6, or 8. But I suppose that no persons would on such grounds hold that these arithmetical truths are truths known only by experience.
5. I have taken examples of necessary truths from the properties of number and space; but such truths exist no less in other subjects, although the discipline of thought which is requisite to perceive them distinctly, may not be so usual among men with regard to the sciences of mechanics and hydrostatics, as it is with regard to the sciences of geometry and arithmetic. Yet every one may perceive that there are such truths in mechanics. If I press the table with my hand, the table presses my hand with an equal force: here is a self-evident and necessary truth. In any machine, constructed in whatever manner to increase the force which I can exert, it is certain that what I gain in force I must lose in the velocity which I communicate. This is not a contingent truth, borrowed from and limited by observation; for a man of sound mechanical views applies it with like confidence, however novel be the construction of the machine. When I come to speak of the ideas which are involved in our mechanical knowledge, I may, perhaps, be able to bring more clearly into view the necessary truth of general propositions on such subjects. That reaction is equal and opposite to action, is as necessarily true as that two straight lines cannot inclose a space; it is as impossible theoretically to make a perpetual motion by mere mechanism as to make the diagonal of a square commensurable with the side. [64]
6. Necessary truths must be universal truths. If any property belong to a right-angled triangle necessarily, it must belong to all right-angled triangles. And it shall be proved in the following Chapter, that truths possessing these two characters, of Necessity and Universality, cannot possibly be the mere results of experience.
[Necessary truths are not considered as a portion of the Inductive Sciences. They are Deductions from our Ideas. Thus the necessary truths which constitute the Science of Geometry are Deductions from our Idea of Space: the necessary truths which constitute the Science of Arithmetic are Deductions from our notions of Number; which perhaps involves necessarily the Idea of Time. But though we do not call those Sciences Inductive which involve properties of Space, Number and Time alone, the properties of Space, Time and Number enter in many very important ways into the Inductive Sciences; and therefore the Ideas of Space, Time and Number require to be considered in the first place. And moreover the examination of these Ideas is an essential step towards the examination of other Ideas: and the conditions of the possibility and certainty of truth, which are exemplified in Geometry and Arithmetic, open to us important views respecting the conditions of the possibility and certainty of all Scientific Truth. We shall therefore in the next [Book] examine the Ideas on which the Pure Sciences, Geometry and Arithmetic, are founded. But we must first say a little more of Ideas in general.]
CHAPTER IV.
Of Experience.
1. I HERE employ the term Experience in a more definite and limited sense than that which it possesses in common usage; for I restrict it to matters belonging to the domain of science. In such cases, the knowledge which we acquire, by means of experience, is of a clear and precise nature; and the passions and feelings and interests, which make the lessons of experience in practical matters so difficult to read aright, no longer disturb and confuse us. We may, therefore, hope, by attending to such cases, to learn what efficacy experience really has, in the discovery of truth.
That from experience (including intentional experience, or observation,) we obtain much knowledge which is highly important, and which could not be procured from any other source, is abundantly clear. We have already taken several examples of such knowledge. We know by experience that animals which ruminate are cloven-hoofed; and we know this in no other manner. We know, in like manner, that all the planets and their satellites revolve round the sun from west to east. It has been found by experience that all meteoric stones contain chrome. Many similar portions of our knowledge might be mentioned.
Now what we have here to remark is this;—that in no case can experience prove a proposition to be necessarily or universally true. However many instances we may have observed of the truth of a proposition, yet if it be known merely by observation, there is nothing to assure us that the next case shall not be an exception to the rule. If it be strictly true that every ruminant animal yet known has cloven hoofs, we [66] still cannot be sure that some creature will not hereafter be discovered which has the first of these attributes without having the other. When the planets and their satellites, as far as Saturn, had been all found to move round the sun in one direction, it was still possible that there might be other such bodies not obeying this rule; and, accordingly, when the satellites of Uranus were detected, they appeared to offer an exception of this kind. Even in the mathematical sciences, we have examples of such rules suggested by experience, and also of their precariousness. However far they may have been tested, we cannot depend upon their correctness, except we see some reason for the rule. For instance, various rules have been given, for the purpose of pointing out prime numbers; that is, those which cannot be divided by any other number. We may try, as an example of such a rule, this one—any odd power of the number two, diminished by one. Thus the third power of two, diminished by one, is seven; the fifth power, diminished by one, is thirty-one; the seventh power so diminished is one hundred and twenty-seven. All these are prime numbers: and we might be led to suppose that the rule is universal. But the next example shows us the fallaciousness of such a belief. The ninth power of two, diminished by one, is five hundred and eleven, which is not a prime, being divisible by seven.
Experience must always consist of a limited number of observations. And, however numerous these may be, they can show nothing with regard to the infinite number of cases in which the experiment has not been made. Experience being thus unable to prove a fact to be universal, is, as will readily be seen, still more incapable of proving a truth to be necessary. Experience cannot, indeed, offer the smallest ground for the necessity of a proposition. She can observe and record what has happened; but she cannot find, in any case, or in any accumulation of cases, any reason for what must happen. She may see objects side by side; but she cannot see a reason why they must ever be side by side. She finds certain events to occur in succession; but the succession supplies, in its occurrence, no [67] reason for its recurrence. She contemplates external objects; but she cannot detect any internal bond, which indissolubly connects the future with the past, the possible with the real. To learn a proposition by experience, and to see it to be necessarily true, are two altogether different processes of thought.
2. But it may be said, that we do learn by means of observation and experience many universal truths; indeed, all the general truths of which science consists. Is not the doctrine of universal gravitation learnt by experience? Are not the laws of motion, the properties of light, the general principles of chemistry, so learnt? How, with these examples before us, can we say that experience teaches no universal truths?
To this we reply, that these truths can only be known to be general, not universal, if they depend upon experience alone. Experience cannot bestow that universality which she herself cannot have, and that necessity of which she has no comprehension. If these doctrines are universally true, this universality flows from the ideas which we apply to our experience, and which are, as we have seen, the real sources of necessary truth. How far these ideas can communicate their universality and necessity to the results of experience, it will hereafter be our business to consider. It will then appear, that when the mind collects from observation truths of a wide and comprehensive kind, which approach to the simplicity and universality of the truths of pure science; she gives them this character by throwing upon them the light of her own Fundamental Ideas.
But the truths which we discover by observation of the external world, even when most strikingly simple and universal, are not necessary truths. Is the doctrine of universal gravitation necessarily true? It was doubted by Clairaut (so far as it refers to the moon), when the progression of the apogee in fact appeared to be twice as great as the theory admitted. It has been doubted, even more recently, with respect to the planets, their mutual perturbations appearing to indicate a deviation from the law. It is doubted still, by some [68] persons, with respect to the double stars. But suppose all these doubts to be banished, and the law to be universal; is it then proved to be necessary? Manifestly not: the very existence of these doubts proves that it is not so. For the doubts were dissipated by reference to observation and calculation, not by reasoning on the nature of the law. Clairaut’s difficulty was removed by a more exact calculation of the effect of the sun’s force on the motion of the apogee. The suggestion of Bessel, that the intensity of gravitation might be different for different planets, was found to be unnecessary, when Professor Airy gave a more accurate determination of the mass of Jupiter. And the question whether the extension of the law of the inverse square to the double stars be true, (one of the most remarkable questions now before the scientific world,) must be answered, not by any speculations concerning what the laws of attraction must necessarily be, but by carefully determining the actual laws of the motion of these curious objects, by means of the observations such as those which Sir John Herschel has collected for that purpose, by his unexampled survey of both hemispheres of the sky. And since the extent of this truth is thus to be determined by reference to observed facts, it is clear that no mere accumulation of them can make its universality certain, or its necessity apparent.
Thus no knowledge of the necessity of any truths can result from the observation of what really happens. This being clearly understood, we are led to an important inquiry.
The characters of universality and necessity in the truths which form part of our knowledge, can never be derived from experience, by which so large a part of our knowledge is obtained. But since, as we have seen, we really do possess a large body of truths which are necessary, and because necessary, therefore universal, the question still recurs, from what source these characters of universality and necessity are derived.
The answer to this question we will attempt to give in the next chapter.
CHAPTER V.
Of the Grounds of Necessary Truths.
1. TO the question just stated, I reply, that the necessity and universality of the truths which form a part of our knowledge, are derived from the Fundamental Ideas which those truths involve. These ideas entirely shape and circumscribe our knowledge; they regulate the active operations of our minds, without which our passive sensations do not become knowledge. They govern these operations, according to rules which are not only fixed and permanent, but which may be expressed in plain and definite terms; and these rules, when thus expressed, may be made the basis of demonstrations by which the necessary relations imparted to our knowledge by our Ideas may be traced to their consequences in the most remote ramifications of scientific truth.
These enunciations of the necessary and evident conditions imposed upon our knowledge by the Fundamental Ideas which it involves, are termed Axioms. Thus the Axioms of Geometry express the necessary conditions which result from the Idea of Space; the Axioms of Mechanics express the necessary conditions which flow from the Ideas of Force and Motion; and so on.
2. It will be the office of several of the succeeding Books of this work to establish and illustrate in detail what I have thus stated in general terms. I shall there pass in review many of the most important fundamental ideas on which the existing body of our science depends; and I shall endeavour to show, for each such idea in succession, that knowledge involves an active as well as a passive element; that it is not possible without an act of the mind, regulated by certain [70] laws. I shall further attempt to enumerate some of the principal fundamental relations which each idea thus introduces into our thoughts, and to express them by means of definitions and axioms, and other suitable forms.
I will only add a remark or two to illustrate further this view of the ideal grounds of our knowledge.
3. To persons familiar with any of the demonstrative sciences, it will be apparent that if we state all the Definitions and Axioms which are employed in the demonstrations, we state the whole basis on which those reasonings rest. For the whole process of demonstrative or deductive reasoning in any science, (as in geometry, for instance,) consists entirely in combining some of these first principles so as to obtain the simplest propositions of the science; then combining these so as to obtain other propositions of greater complexity; and so on, till we advance to the most recondite demonstrable truths; these last, however intricate and unexpected, still involving no principles except the original definitions and axioms. Thus, by combining the Definition of a triangle, and the Definitions of equal lines and equal angles, namely, that they are such as when applied to each other, coincide, with the Axiom respecting straight lines (that two such lines cannot inclose a space,) we demonstrate the equality of triangles, under certain assumed conditions. Again, by combining this result with the Definition of parallelograms, and with the Axiom that if equals be taken from equals the wholes are equal, we prove the equality of parallelograms between the same parallels and upon the same base. From this proposition, again, we prove the equality of the square on the hypotenuse of a triangle to the squares on the two sides containing the right angle. But in all this there is nothing contained which is not rigorously the result of our geometrical Definitions and Axioms. All the rest of our treatises of geometry consists only of terms and phrases of reasoning, the object of which is to connect those first principles, and to exhibit the effects of their combination in the shape of demonstration. [71]
4. This combination of first principles takes place according to the forms and rules of Logic. All the steps of the demonstration may be stated in the shape in which logicians are accustomed to exhibit processes of reasoning in order to show their conclusiveness, that is, in Syllogisms. Thus our geometrical reasonings might be resolved into such steps as the following:—
All straight lines drawn from the centre of a circle to its circumference are equal:
But the straight lines ab, ac, are drawn from the centre of a circle to its circumference:
Therefore the straight lines ab, ac, are equal.
Each step of geometrical, and all other demonstrative reasoning, may be resolved into three such clauses as these; and these three clauses are termed respectively, the major premiss, the minor premiss, and the conclusion; or, more briefly, the major, the minor, and the conclusion.
The principle which justifies the reasoning when exhibited in this syllogistic form, is this:—that a truth which can be asserted as generally, or rather as universally true, can be asserted as true also in each particular case. The minor only asserts a certain particular case to be an example of such conditions as are spoken of in the major; and hence the conclusion, which is true of the major by supposition, is true of the minor by consequence; and thus we proceed from syllogism to syllogism, in each one employing some general truth in some particular instance. Any proof which occurs in geometry, or any other science of demonstration, may thus be reduced to a series of processes, in each of which we pass from some general proposition to the narrower and more special propositions which it includes. And this process of deriving truths by the mere combination of general principles, applied in particular hypothetical cases, is called deduction; being opposed to induction, in which, as we have seen (chap. i. [sect. 3]), a new general principle is introduced at every step.
5. Now we have to remark that, this being so, however far we follow such deductive reasoning, we can [72] never have, in our conclusion any truth which is not virtually included in the original principles from which the reasoning started. For since at any step we merely take out of a general proposition something included in it, while at the preceding step we have taken this general proposition out of one more general, and so on perpetually, it is manifest that our last result was really included in the principle or principles with which we began. I say principles, because, although our logical conclusion can only exhibit the legitimate issue of our first principles, it may, nevertheless, contain the result of the combination of several such principles, and may thus assume a great degree of complexity, and may appear so far removed from the parent truths, as to betray at first sight hardly any relationship with them. Thus the proposition which has already been quoted respecting the squares on the sides of a right-angled triangle, contains the results of many elementary principles; as, the definitions of parallels, triangle, and square; the axioms respecting straight lines, and respecting parallels; and, perhaps, others. The conclusion is complicated by containing the effects of the combination of all these elements; but it contains nothing, and can contain nothing, but such elements and their combinations.
This doctrine, that logical reasoning produces no new truths, but only unfolds and brings into view those truths which were, in effect, contained in the first principles of the reasoning, is assented to by almost all who, in modern times, have attended to the science of logic. Such a view is admitted both by those who defend, and by those who depreciate the value of logic. ‘Whatever is established by reasoning, must have been contained and virtually asserted in the premises[6].’ ‘The only truth which such propositions can possess consists in conformity to the original principles.’
[6] Whately’s Logic, pp. 237, 238.
In this manner the whole substance of our geometry is reduced to the Definitions and Axioms which we employ in our elementary reasonings; and in like [73] manner we reduce the demonstrative truths of any other science to the definitions and axioms which we there employ.
6. But in reference to this subject, it has sometimes been said that demonstrative sciences do in reality depend upon Definitions only; and that no additional kind of principle, such as we have supposed Axioms to be, is absolutely required. It has been asserted that in geometry, for example, the source of the necessary truth of our propositions is this, that they depend upon definitions alone, and consequently merely state the identity of the same thing under different aspects.
That in the sciences which admit of demonstration, as geometry, mechanics, and the like, Axioms as well as Definitions are needed, in order to express the grounds of our necessary convictions, must be shown hereafter by an examination of each of these sciences in particular. But that the propositions of these sciences, those of geometry for example, do not merely assert the identity of the same thing, will, I think, be generally allowed, if we consider the assertions which we are enabled to make. When we declare that ‘a straight line is the shortest distance between two points,’ is this merely an identical proposition? the definition of a straight line in another form? Not so: the definition of a straight line involves the notion of form only, and does not contain anything about magnitude; consequently, it cannot contain anything equivalent to ‘shortest.’ Thus the propositions of geometry are not merely identical propositions; nor have we in their general character anything to countenance the assertion, that they are the results of definitions alone. And when we come to examine this and other sciences more closely, we shall find that axioms, such as are usually in our treatises made the fundamental principles of our demonstrations, neither have ever been, nor can be, dispensed with. Axioms, as well as Definitions, are in all cases requisite, in order properly to exhibit the grounds of necessary truth.
7. Thus the real logical basis of every body of demonstrated truths are the Definitions and Axioms [74] which are the first principles of the reasonings. But when we are arrived at this point, the question further occurs, what is the ground of the truth of these Axioms? It is not the logical, but the philosophical, not the formal, but the real foundation of necessary truth, which we are seeking. Hence this inquiry necessarily comes before us, What is the ground of the Axioms of Geometry, of Mechanics, and of any other demonstrable science?
The answer which we are led to give, by the view which we have taken of the nature of knowledge, has already been stated. The ground of the axioms belonging to each science is the Idea which the axiom involves. The ground of the Axioms of Geometry is the Idea of Space: the ground of the Axioms of Mechanics is the Idea of Force, of Action and Reaction, and the like. And hence these Ideas are Fundamental Ideas; and since they are thus the foundations, not only of demonstration but of truth, an examination into their real import and nature is of the greatest consequence to our purpose.
8. Not only the Axioms, but the definitions which form the basis of our reasonings, depend upon our Fundamental Ideas. And the Definitions are not arbitrary definitions, but are determined by a necessity no less rigorous than the Axioms themselves. We could not think of geometrical truths without conceiving a circle; and we could not reason concerning such truths without defining a circle in some mode equivalent to that which is commonly adopted. The Definitions of parallels, of right angles, and the like, are quite as necessarily prescribed by the nature of the case, as the Axioms which these Definitions bring with them. Indeed we may substitute one of these kinds of principles for another. We cannot always put a Definition in the place of an Axiom; but we may always find an Axiom which shall take the place of a Definition. If we assume a proper Axiom respecting straight lines, we need no Definition of a straight line. But in whatever shape the principle appear, as Definition or as Axiom, it has about it nothing casual or [75] arbitrary, but is determined to be what it is, as to its import, by the most rigorous necessity, growing out of the Idea of Space.
9. These principles,—Definitions, and Axioms,—thus exhibiting the primary developments of a fundamental idea, do in fact express the idea, so far as its expression in words forms part of our science. They are different views of the same body of truth; and though each principle, by itself, exhibits only one aspect of this body, taken together they convey a sufficient conception of it for our purposes. The Idea itself cannot be fixed in words; but these various lines of truth proceeding from it, suggest sufficiently to a fitly-prepared mind, the place where the idea resides, its nature, and its efficacy.
It is true that these principles,—our elementary Definitions and Axioms,—even taken all together, express the Idea incompletely. Thus the Definitions and Axioms of Geometry, as they are stated in our elementary works, do not fully express the Idea of Space as it exists in our minds. For, in addition to these, other Axioms, independent of these, and no less evident, can be stated; and are in fact stated when we come to the Higher Geometry. Such, for instance, is the Axiom of Archimedes—that a curve line which joins two points is less than a broken line which joins the same points and includes the curve. And thus the Idea is disclosed but not fully revealed, imparted but not transfused, by the use we make of it in science. When we have taken from the fountain so much as serves our purpose, there still remains behind a deep well of truth, which we have not exhausted, and which we may easily believe to be inexhaustible.
CHAPTER VI.
The Fundamental Ideas are not Derived from Experience.
1. BY the course of speculation contained in the last three Chapters, we are again led to the conclusion which we have already stated, that our knowledge contains an ideal element, and that this element is not derived from experience. For we have seen that there are propositions which are known to be necessarily true; and that such knowledge is not, and cannot be, obtained by mere observation of actual facts. It has been shown, also, that these necessary truths are the results of certain fundamental ideas, such as those of space, number, and the like. Hence it follows inevitably that these ideas and others of the same kind are not derived from experience. For these ideas possess a power of infusing into their developments that very necessity which experience can in no way bestow. This power they do not borrow from the external world, but possess by their own nature. Thus we unfold out of the Idea of Space the propositions of geometry, which are plainly truths of the most rigorous necessity and universality. But if the idea of space were merely collected from observation of the external world, it could never enable or entitle us to assert such propositions: it could never authorize us to say that not merely some lines, but all lines, not only have, but must have, those properties which geometry teaches. Geometry in every proposition speaks a language which experience never dares to utter; and indeed of which she but half comprehends the meaning. Experience sees that the assertions are true, but she sees not how profound and absolute is their truth. [77] She unhesitatingly assents to the laws which geometry delivers, but she does not pretend to see the origin of their obligation. She is always ready to acknowledge the sway of pure scientific principles as a matter of fact, but she does not dream of offering her opinion on their authority as a matter of right; still less can she justly claim to be herself the source of that authority.
David Hume asserted[7], that we are incapable of seeing in any of the appearances which the world presents anything of necessary connexion; and hence he inferred that our knowledge cannot extend to any such connexion. It will be seen from what we have said that we assent to his remark as to the fact, but we differ from him altogether in the consequence to be drawn from it. Our inference from Hume’s observation is, not the truth of his conclusion, but the falsehood of his premises;—not that, therefore, we can know nothing of natural connexion, but that, therefore, we have some other source of knowledge than experience:—not, that we can have no idea of connexion or causation, because, in his language, it cannot be the copy of an impression; but that since we have such an idea, our ideas are not the copies of our impressions.
[7] Essays, vol. ii. p. 70.
Since it thus appears that our fundamental ideas are not acquired from the external world by our senses, but have some separate and independent origin, it is important for us to examine their nature and properties, as they exist in themselves; and this it will be our business to do through a portion of the following pages. But it may be proper first to notice one or two objections which may possibly occur to some readers.
2. It may be said that without the use of our senses, of sight and touch, for instance, we should never have any idea of space; that this idea, therefore, may properly be said to be derived from those senses. And to this I reply, by referring to a parallel instance. Without light we should have no perception of visible [78] figure; yet the power of perceiving visible figure cannot be said to be derived from the light, but resides in the structure of the eye. If we had never seen objects in the light, we should be quite unaware that we possessed a power of vision; yet we should not possess it the less on that account. If we had never exercised the senses of sight and touch (if we can conceive such a state of human existence) we know not that we should be conscious of an idea of space. But the light reveals to us at the same time the existence of external objects and our own power of seeing. And in a very similar manner, the exercise of our senses discloses to us, at the same time, the external world, and our own ideas of space, time, and other conditions, without which the external world can neither be observed nor conceived. That light is necessary to vision, does not, in any degree, supersede the importance of a separate examination of the laws of our visual powers, if we would understand the nature of our own bodily faculties and the extent of the information they can give us. In like manner, the fact that intercourse with the external world is necessary for the conscious employment of our ideas, does not make it the less essential for us to examine those ideas in their most intimate structure, in order that we may understand the grounds and limits of our knowledge. Even before we see a single object, we have a faculty of vision; and in like manner, if we can suppose a man who has never contemplated an object in space or time, we must still assume him to have the faculties of entertaining the ideas of space and time, which faculties are called into play on the very first occasion of the use of the senses.
3. In answer to such remarks as the above, it has sometimes been said that to assume separate faculties in the mind for so many different processes of thought, is to give a mere verbal explanation, since we learn nothing concerning our idea of space by being told that we have a faculty of forming such an idea. It has been said that this course of explanation leads to an endless multiplication of elements in man’s nature, without any advantage to our knowledge of his true [79] constitution. We may, it is said, assert man to have a faculty of walking, of standing, of breathing, of speaking; but what, it is asked, is gained by such assertions? To this I reply, that we undoubtedly have such faculties as those just named; that it is by no means unimportant to consider them; and that the main question in such cases is, whether they are separate and independent faculties, or complex and derivative ones; and, if the latter be the case, what are the simple and original faculties by the combination of which the others are produced. In walking, standing, breathing, for instance, a great part of the operation can be reduced to one single faculty; the voluntary exercise of our muscles. But in breathing this does not appear to be the whole of the process. The operation is, in part at least, involuntary; and it has been held that there is a certain sympathetic action of the nerves, in addition to the voluntary agency which they transmit, which is essential to the function. To determine whether or no this sympathetic faculty is real and distinct, and if so, what are its laws and limits, is certainly a highly philosophical inquiry, and well deserving the attention which has been bestowed upon it by eminent physiologists. And just of the same nature are the inquiries with respect to man’s intellectual constitution, on which we propose to enter. For instance, man has a faculty of apprehending time, and a faculty of reckoning numbers: are these distinct, or is one faculty derived from the other? To analyze the various combinations of our ideas and observations into the original faculties which they involve; to show that these faculties are original, and not capable of further analysis: to point out the characters which mark these faculties and lead to the most important features of our knowledge;—these are the kind of researches on which we have now to enter, and these, we trust, will be found to be far from idle or useless parts of our plan. If we succeed in such attempts, it will appear that it is by no means a frivolous or superfluous step to distinguish separate faculties in the mind. If we do not learn much by being told that we have a faculty [80] of forming the idea of space, we at least, by such a commencement, circumscribe a certain portion of the field of our investigations, which, we shall afterwards endeavour to show, requires and rewards a special examination. And though we shall thus have to separate the domain of our philosophy into many provinces, these are, as we trust it will appear, neither arbitrarily assigned, nor vague in their limits, nor infinite in number.
CHAPTER VII.
Of the Philosophy of the Sciences.
WE proceed, in the ensuing Books, to the closer examination of a considerable number of those Fundamental Ideas on which the sciences, hitherto most successfully cultivated, are founded. In this task, our objects will be to explain and analyze such Ideas so as to bring into view the Definitions and Axioms, or other forms, in which we may clothe the conditions to which our speculative knowledge is subjected. I shall also try to prove, for some of these Ideas in particular, what has been already urged respecting them in general, that they are not derived from observation, but necessarily impose their conditions upon that knowledge of which observation supplies the materials. I shall further, in some cases, endeavour to trace the history of these Ideas as they have successively come into notice in the progress of science; the gradual development by which they have arrived at their due purity and clearness; and, as a necessary part of such a history, I shall give a view of some of the principal controversies which have taken place with regard to each portion of knowledge.
An exposition and discussion of the Fundamental Ideas of each Science may, with great propriety, be termed the Philosophy of such Science. These ideas contain in themselves the elements of those truths which the science discovers and enunciates; and in the progress of the sciences, both in the world at large and in the mind of each individual student, the most important steps consist in apprehending these ideas clearly, and in bringing them into accordance with the observed facts. I shall, therefore, in a series of Books, [82] treat of the Philosophy of the Pure Sciences, the Philosophy of the Mechanical Sciences, the Philosophy of Chemistry, and the like, and shall analyze and examine the ideas which these sciences respectively involve.
In this undertaking, inevitably somewhat long, and involving many deep and subtle discussions, I shall take, as a chart of the country before me, by which my course is to be guided, the scheme of the sciences which I was led to form by travelling over the history of each in order[8]. Each of the sciences of which I then narrated the progress, depends upon several of the Fundamental Ideas of which I have to speak: some of these Ideas are peculiar to one field of speculation, others are common to more. A previous enumeration of Ideas thus collected may serve both to show the course and limits of this part of our plan, and the variety of interest which it offers.
[8] History of the Inductive Sciences.
I shall, then, successively, have to speak Of the Ideas which are the foundation of Geometry and Arithmetic, (and which also regulate all sciences depending upon these, as Astronomy and Mechanics;) namely, the Ideas of Space, Time, and Number ([Book ii].):
Of the Ideas on which the Mechanical Sciences (as Mechanics, Hydrostatics, Physical Astronomy) more peculiarly rest; the ideas of Force and Matter, or rather the idea of Cause, which is the basis of these ([Book iii].):
Of the Ideas which the Secondary Mechanical Sciences (Acoustics, Optics, and Thermotics) involve; namely, the Ideas of the Externality of objects, and of the Media by which we perceive their qualities ([Book iv].):
Of the Ideas which are the basis of Mechanico-chemical and Chemical Science; Polarity, Chemical Affinity, and Substance; and the Idea of Symmetry, a necessary part of the Philosophy of Crystallography (Books [v.] [vi].):
Of the Ideas on which the Classificatory Sciences proceed (Mineralogy, Botany, and Zoology); namely, [83] the Ideas of Resemblance, and of its gradations, and of Natural Affinity (Books [vii.] [viii.]):
Finally, of those Ideas on which the Physiological Sciences are founded; the Ideas of separate Vital Powers, such as Assimilation and Irritability; and the Idea of Final Cause ([Book ix].):
We have, besides these, the Palætiological Sciences, which proceed mainly on the conception of Historical Causation ([Book x].):
It is plain that when we have proceeded so far as this, we have advanced to the verge of those speculations which have to do with mind as well as body. The extension of our philosophy to such a field, if it can be justly so extended, will be one of the most important results of our researches; but on that very account we must fully study the lessons which we learn in those fields of speculation where our doctrines are most secure, before we venture into a region where our principles will appear to be more precarious, and where they are inevitably less precise.
We now proceed to the examination of the above Ideas, and to such essays towards the philosophy of each Science as this course of investigation may suggest.