BOOK V.
THE PHILOSOPHY OF THE MECHANICO-CHEMICAL SCIENCES.
CHAPTER I.
Attempts at the Scientific Application of the Idea of Polarity.
1. IN some of the mechanical sciences, as Magnetism and Optics, the phenomena are found to depend upon position (the position of the magnet, or of the ray of light,) in a peculiar alternate manner. This dependence, as it was first apprehended, was represented by means of certain conceptions of space and force, as for instance by considering the two Poles of a magnet. But in all such modes of representing these alternations by the conceptions borrowed from other ideas, a closer examination detected something superfluous and something defective; and in proportion as the view which philosophers took of this relation was gradually purified from these incongruous elements, and was rendered more general and abstract by the discovery of analogous properties in new cases, it was perceived that the relation could not be adequately apprehended without considering it as involving a peculiar and independent Idea, which we may designate by the term Polarity.
We shall trace some of the forms in which this Idea has manifested itself in the history of science. In doing so we shall not begin, as in other Books of this work we have done, by speaking of the notion as it is [360] employed in common use: for the relation of Polarity is of so abstract and technical a nature, that it is not employed, at least in any distinct and obvious manner, on any ordinary or practical occasions. The idea belongs peculiarly to the region of speculation: in persons of common habits of thought it is probably almost or quite undeveloped; and even most of those whose minds have been long occupied by science, find a difficulty in apprehending it in its full generality and abstraction, and stript of all irrelevant hypothesis.
2. Magnetism.—The name and the notion of Poles were first adopted in the case of a magnet. If we have two magnets, their extremities attract and repel each other alternatively. If the first end of the one attract the first end of the other, it repels the second end, and conversely. In order to express this rule conveniently, the two ends of each magnet are called the north pole and the south pole respectively, the denominations being borrowed from the poles of the earth and heavens. ‘These poles,’ as Gilbert says[1], ‘regulate the motions of the celestial spheres and of the earth. In like manner the magnet has its poles, a northern and a southern one; certain and determined points constituted by nature in the stone, the primary terms of its motions and effects, the limits and governors of many actions and virtues.’
[1] De Magn. lib. i. c. iii.
The nature of the opposition of properties of which we speak may be stated thus:
The North pole of one magnet attracts the South pole of another magnet.
The North pole of one magnet repels the North pole of another magnet.
The South pole of one magnet repels the South pole of another magnet.
The South pole of one magnet attracts the North pole of another magnet.
It will be observed that the contrariety of position which is indicated by putting the South pole for the North pole in either magnet, is accompanied by the [361] opposition of mechanical effect which is expressed by changing attraction into repulsion and repulsion into attraction: and thus we have the general feature of Polarity,—A contrast of properties corresponding to a contrast of positions.
3. Electricity.—When the phenomena of Electricity came to be studied, it appeared that they involved relations in some respects Analogous to those of magnetism.
Two kinds of electricity were distinguished, the positive and the negative; and it appeared that two bodies electrized positively, or two electrized negatively, repelled each other, like two north or two south magnetic poles; while a positively and a negatively electrized body attracted each other, like the north and south poles of two magnets. In conductors of an oblong form, the electricity could easily be made to distribute itself so that one end should be positively and one end negatively electrized; and then such conductors acted on each other exactly as magnets would do.
But in conductors, however electrized, there is no peculiar point which can permanently be considered as the pole. The distribution of electricity in the conductor depends upon external circumstances: and thus, although the phenomena offer the general character of polarity—alternative results corresponding to alternative positions,—they cannot be referred to poles. Some other mode of representing the forces must be adopted than that which makes them emanate from permanent points as in a magnet.
The phenomena of attraction and repulsion in electrized bodies were conveniently represented by means of the hypothesis of two electric fluids, a positive and a negative one, which were supposed to be distributed in the bodies. Of these fluids, it was supposed that each repelled its own parts and attracted those of the opposite fluid: and it was found that this hypothesis explained all the obvious laws of electric action. Here then we have the phenomena of polarization explained by a new kind of machinery:—two opposite fluids [362] distributed in bodies, and supplying them, so to speak, with their polar forces. This hypothesis not only explains electrical attraction, but also the electrical spark: namely, thus: when two bodies, of which the neighbouring surfaces are charged with the two opposite fluids, approach near to each other, the mutual attraction of the fluids becomes more and more intense, till at last the excess of fluid on the one body breaks through the air and rushes to the other body, in a form accompanied by light and noise. When this transfer has taken place, the attraction ceases, the positive and the negative fluid having neutralized each other. Their effort was to unite; and this union being effected, there is no longer any force in action. Bodies in their natural unexcited condition may be considered as occupied by a combination of the two fluids: and hence we see how the production of either kind of electricity is necessarily accompanied with the production of an equivalent amount of the opposite kind.
4. Voltaic Electricity.—Such is the case in Franklinic electricity,—that which is excited by the common electrical machine. In studying Voltaic electricity, we are led to the conviction that the fluid which is in a condition of momentary equilibrium in electrized conductors, exists in the state of a Current in the voltaic circuit. And here we find polar relations of a new kind existing among the forces. Two voltaic Currents attract each other when they are moving in the same, and repel each other when they are moving in opposite, directions.
But we find, in addition to these, other polar relations of a more abstruse kind, and which the supposition of two fluids does not so readily explain. For instance, if such fluids existed, distinct from each other, it might be expected that it would be possible to exhibit one of them separate from the other. Yet in all the phenomena of electromotive currents, we attempt in vain to obtain one kind of electricity separately. ‘I have not,’ says Mr. Faraday[2], ‘been able to find a [363] single fact which could be adduced to prove the theory of two electricities rather than one, in electric currents; or, admitting the hypothesis of two electricities, have I been able to perceive the slightest grounds that one electricity can be more powerful than the other, or that it can be present without the other, or that it can be varied or in the slightest degree affected without a corresponding variation in the other.’ ‘Thus,’ he adds, ‘the polar character of the powers is rigorous and complete.’ Thus, we too may remark, all the superfluous and precarious parts gradually drop off from the hypothesis which we devise in order to represent polar phenomena; and the abstract notion of Polarity—of equal and opposite powers called into existence by a common condition—remains unincumbered with extraneous machinery.
[2] Researches, 516.
5. Light.—Another very important example of the application of the Idea of Polarity is that supplied by the discovery of the polarization of light. A ray of light may, by various processes, be modified, so that it has different properties according to its different sides, although this difference is not perceptible by any common effects. If, for instance, a ray thus modified, pass perpendicularly through a circular glass, and fall upon the eye, we may turn the glass round and round in its frame, and we shall make no difference in the brightness of the spot which we see. But if, instead of a glass, we look through a longitudinal slice of tourmaline, the spot is alternately dark and bright as we turn the crystal through successive quadrants. Here we have a contrast of Properties (dark and bright) corresponding to a contrast of positions, (the position of a line east and west being contrasted with the position north and south,) which, as we have said, is the general character of Polarity. It was with a view of expressing this character that the term Polarization was originally introduced. Malus was forced by his discoveries into the use of this expression. ‘We find,’ he says, in 1811, ‘that light acquires properties which are relative only to the sides of the ray,—which are the same for the north and south sides of the ray, (using [364] the points of the compass for description’s sake only,) and which are different when we go from the north and south to the east or to the west sides of the ray. I shall give the name of poles to these sides of the ray, and shall call polarization the modification which gives to light these properties relative to these poles. I have put off hitherto the admission of this term into the description of the physical phenomena with which we have to do: I did not dare to introduce it into the Memoirs in which I published my last observations: but the variety of forms in which this new phenomenon appears, and the difficulty of describing them, compel me to admit this new expression; which signifies simply the modification which light has undergone in acquiring new properties which are not relative to the direction of the ray, but only to its sides considered at right angles to each other, and in a plane perpendicular to its direction.’
The theory which represents light as an emission of particles was in vogue at the time when Malus published his discoveries; and some of his followers in optical research conceived that the phenomena which he thus described rendered it necessary to ascribe poles and an axis to each particle of light. On this hypothesis, light would be polarized when the axes of all the particles were in the same direction: and, making such a supposition, it may easily be conceived capable of transmission through a crystal whose axis is parallel to that of the luminous particles, and intransmissible when the axis of the crystal is in a position transverse to that of the particles.
The hypothesis of particles possessing poles is a rude and arbitrary assumption, in this as in other cases; but it serves to convey the general notion of polarity, which is the essential feature of the phenomena. The term ‘polarization of light has sometimes been complained of in modern times as hypothetical and obscure. But the real cause of obscurity was, that the Idea of Polarity was, till lately, very imperfectly developed in men’s minds. As we have seen, the general notion of Polarity,—opposite properties in opposite [365] directions,—exactly describes the character of the optical phenomena to which the term is applied.
It is to be recollected that in optics we never speak of the poles, but of the plane of polarization of a ray. The word sides, which Newton and Malus have used, neither of them appears to have been satisfied with; Newton, in employing it, had recourse to the strange Gallicism of speaking of the coast of usual and of unusual refraction of a crystal.
The modern theory of optics represents the plane of polarization of light as depending, not on the position in which the axes of the luminiferous particles lie, but on the direction of those transverse vibrations in which light consists. This theory is, as we have stated in the History, recommended by an extraordinary series of successes in accounting for the phenomena. And this hypothesis of transverse vibrations shows us another mechanical mode, (besides the hypothesis of particles with axes,) by which we may represent the polarity of a ray. But we may remark that the general notion of Polarity, as applied to light in such cases, would subsist, even if the undulatory theory were rejected. The idea is, as we have before said, independent of all hypothetical machinery.
I need not here refer to the various ways in which light may be polarized; as, for instance, by being reflected from the surface of water, or of glass, at certain angles, by being transmitted, through crystals, and in other ways. In all cases the modification produced, the polarization, is identically the same property. Nor need I mention the various kinds of phenomena which appear as contrasts in the result; for these are not merely light and dark, or white and black, but red and green, and generally, a colour and its complementary colour, exhibited in many complex and varied configurations. These multiplied modes in which polarized light presents itself add nothing to the original conception of Polarization: and I shall therefore pass on to another subject.
6. Crystallization.—Bodies which are perfectly crystallized exhibit the most complete regularity and [366] symmetry of form; and this regularity not only appears in their outward shape, but pervades their whole texture, and manifests itself in their cleavage, their transparency, and in the uniform and determinate optical properties which exist in every part, even in the smallest fragment of the mass. If we conceive crystals as composed of particles, we must suppose these particles to be arranged in the most regular manner; for example, if we suppose each particle to have an axis, we must suppose all these axes to be parallel; for the direction of the axis of the particles is indicated by the physical and optical properties of the crystal, and therefore this direction must be the same for every portion of the crystal. This parallelism of the axes of the particles may be conceived to result from the circumstance of each particle having poles, the opposite poles attracting each other. In virtue of forces acting as this hypothesis assumes, a collection of small magnetic particles would arrange themselves in parallel positions; and such a collection of magnetic particles offers a sort of image of a crystal. Thus we are led to conceive the particles of crystals as polarized, and as determined in their crystalline positions by polar forces. This mode of apprehending the constitution of crystals has been adopted by some of our most eminent philosophers. Thus Berzelius says[3], ‘It is demonstrated, that the regular forms of bodies presuppose an effort of their atoms to touch each other by preference in certain points; that is, they are founded upon a Polarity;’—he adds, ‘a polarity which can be no other than an electric or magnetic polarity.’ In this latter clause we have the identity of different kinds of polarity asserted; a principle which we shall speak of in the next chapter. But we may remark, that even without dwelling upon this connexion, any notion which we can form of the structure of Crystals necessarily involves the idea of Polarity. Whether this polarity necessarily requires us to believe crystals to be composed of Atoms which exert an effort to touch [367] each other in certain points by preference, is another question. And, in agreement with what has been said respecting other kinds of polarity, we shall probably find, on a more profound examination of the subject, that while the Idea of Polarity is essential, the machinery by which it is thus expressed is precarious and superfluous.
[3] Essay on the Theory of Chemical Properties, 1820, p. 113.
7. Chemical Affinity.—We shall have, in the next [Book], to speak of Chemical Affinity at some length; but since the ultimate views to which philosophers have been led, induce them to consider the forces of Affinity as Polar Forces, we must enumerate these among the examples of Polarity. In chemical processes, opposites tend to unite, and to neutralize each other by their union. Thus an acid or an alkali combine with vehemence, and form a compound, a neutral salt, which is neither acid nor alkaline.
This conception of contrariety and mutual neutralization, involves the Idea of Polarity. In the conception as entertained by the earlier chemists, the Idea enters very obscurely: but in the attempts which have more recently been made to connect this relation (of acid and base), with other relations, the chemical elements have been conceived as composed of particles which possess poles; like poles repelling, and unlike attracting each other, as they do in magnetic and electric phenomena. This is, however, a rude and arbitrary way of expressing Polarity, and, as may be easily shown, involves many difficulties which do not belong to the Idea itself. Mr. Faraday, who has been led by his researches to a conviction of the polar nature of the forces of chemical affinity, has expressed their character in a more general manner, and without any of the machinery of particles indued with poles. According to his view, chemical synthesis and analysis must always be conceived as taking place in virtue of equal and opposite forces, by which the particles are united or separated. These forces, by the very circumstance of their being polar, may be transferred from point to point. For if we conceive a string of particles, and if the positive force of the first particle [368] be liberated and brought into action, its negative force also must be set free: this negative force neutralizes the positive force of the next particle, and therefore the negative force of this particle (before employed in neutralizing its positive force) is set free: this is in the same way transferred to the next particle, and so on. And thus we have a positive force active at one extremity of a line of particles, corresponding to a negative force at the other extremity, all the intermediate particles reciprocally neutralizing each other’s action. This conception of the transfer of chemical action was indeed at an earlier period introduced by Grotthus[4], and confirmed by Davy. But in Mr. Faraday’s hands we see it divested of all that is superfluous, and spoken of, not as a line of particles, but as ‘an axis of power, having [at every point] contrary forces, exactly equal, in opposite directions.’
[4] Dumas, Leçons sur la Philosophie Chimique, p. 401.
8. General Remarks.—Thus, as we see, the notion of Polarity is applicable to many large classes of phenomena. Yet the Idea in a distinct and general form is only of late growth among philosophers. It has gradually been abstracted and refined from many extraneous hypotheses which were at first supposed to be essential to it. We have noticed some of these hypotheses;—as the poles of a body; the poles of the particles of a fluid; two opposite fluids; a single fluid in excess and defect; transverse vibrations. To these others might be added. Thus Dr. Prout[5] assumes that the polarity of molecules results from their rotation on their axes, the opposite motions of contiguous molecules being the cause of opposite (positive and negative) polarities.
[5] Bridgewater Treatise, p. 559.
But none of these hypotheses can be proved by the fact of Polarity alone; and they have been in succession rejected when they had been assumed on that ground. Thus Davy, in 1826, speaking of chemical forces says[6], ‘In assuming the idea of two ethereal, subtile, elastic [369] fluids, attractive of the particles of each other, and repulsive as to their own particles, capable of combining in different proportions with bodies, and according to their proportions giving them their specific qualities and rendering them equivalent masses, it would be natural to refer the action of the poles to the repulsions of the substances combined with the excess of one fluid, and the attractions of those united to the excess of the other fluid; and a history of the phenomena, not unsatisfactory to the reason, might in this way be made out. But as it is possible likewise to take an entirely different view of the subject, on the idea of the dependence of the results upon the primary attractive powers of the parts of the combination on a single subtile fluid, I shall not enter into any discussion on this obscure part of the theory.’ Which of these theories will best represent the case, will depend upon the consideration of other facts, in combination with the polar phenomena, as we see in the history of optical theory. In like manner Mr. Faraday proved by experiment[7] the errour of all theories which ascribe electro-chemical decomposition to the attraction of the poles of the voltaic battery.
[6] Phil. Tr. 1826, p. 415.
[7] Researches, p. 495, &c.
In order that they may distinctly image to themselves the Idea of Polarity, men clothe it in some of the forms of machinery above spoken of; yet every new attempt shows them the unnecessary difficulties in which they thus involve themselves. But on the other hand it is difficult to apprehend this Idea divested of all machinery; and to entertain it in such a form that it shall apply at the same time to magnetism and electricity, galvanism and chemistry, crystalline structure and light. The Idea of Polarity becomes most pure and genuine, when we entirely reject the conception of Poles, as Faraday has taught us to do in considering electro-chemical decomposition; but it is only by degrees and by effort that we can reach this point of abstraction and generality. [370]
9. There is one other remark which we may here make. It was a maxim commonly received in the ancient schools of philosophy, that ‘Like attracts Like:’ but as we have seen, the universal maxim of Polar Phenomena is, that Like repels Like, and attracts Unlike. The north pole attracts the south pole, the positive fluid attracts the negative fluid; opposite elements rush together; opposite motions reduce each other to rest. The permanent and stable course of things is that which results from the balance and neutralization of contrary tendencies. Nature is constantly labouring after repose by the effect of such tendencies; and so far as Polar Forces enter into her economy, she seeks harmony by means of discord, and unity by opposition.
Although the Idea of Polarity is as yet somewhat vague and obscure, even in the minds of the cultivators of physical science, it has nevertheless given birth to some general principles which have been accepted as evident, and have had great influence on the progress of science. These we shall now consider.
CHAPTER II.
Of the Connexion of Polarities.
1. IT has appeared in the preceding chapter that in cases in which the phenomena suggest to us the idea of Polarity, we are also led to assume some material machinery as the mode in which the polar forces are exerted. We assume, for instance, globular particles which possess poles, or the vibrations of a fluid, or two fluids attracting each other; in every case, in short, some hypothesis by which the existence and operation of the Polarity is embodied in geometrical and mechanical properties of a medium; nor is it possible for us to avoid proceeding upon the conviction that some such hypothesis must be true; although the nature of the connexion between the mechanism and the phenomena must still be indefinite and arbitrary.
But since each class of Polar Phenomena is thus referred to an ulterior cause, of which we know no more than that it has a polar character, it follows that different Polarities may result from the same cause manifesting its polar character under different aspects. Taking, for example, the hypothesis of globular particles, if electricity result from an action dependent upon the poles of each globule, magnetism may depend upon an action in the equator of each globule; or taking the supposition of transverse vibrations, if polarized light result directly from such vibrations, crystallization may have reference to the axes of the elasticity of the medium by which the vibrations are rendered transverse,—so far as the polar character only of the phenomena is to be accounted for. I say this may be so, in so far only as the polar character of the phenomena is concerned; for whether the relation of [372] electricity to magnetism, or of crystalline forces to light, can really be explained by such hypotheses, remains to be determined by the facts themselves. But since the first necessary feature of the hypothesis is, that it shall give polarity, and since an hypothesis which does this, may, by its mathematical relations, give polarities of different kinds and in different directions, any two co-existent kinds of polarity may result from the same cause, manifesting itself in various manners.
The conclusion to which we are led by these general considerations is, that two co-existing classes of polar phenomena may be effects of the same cause. But those who have studied such phenomena more deeply and attentively have, in most or in all cases, arrived at the conviction that the various kinds of Polarity in such cases must be connected and fundamentally identical. As this conviction has exercised a great influence, both upon the discoveries of new facts and upon the theoretical speculations of modern philosophers, and has been put forward by some writers as a universal principle of science, I will consider some of the cases in which it has been thus applied.
2. Connexion of Magnetic and Electric Polarity.—The polar phenomena of electricity and magnetism are clearly analogous in their laws: and obvious facts showed at an early period that there was some connexion between the two agencies. Attempts were made to establish an evident and definite relation between the two kinds of force, which attempts proceeded upon the principle now under consideration;—namely, that in such cases, the two kinds of Polarity must be connected. Professor Œrsted, of Copenhagen, was one of those who made many trials founded upon this conviction: yet all these were long unsuccessful. At length, in 1820, he discovered that a galvanic current, passing at right angles near to a magnetic needle, exercises upon it a powerful deflecting force. The connexion once detected between magnetism and galvanism was soon recognized as constant and universal. It was represented in different hypothetical modes by different persons; some considering the galvanic [373] current as the primitive axis, and the magnet as constituted of galvanic currents passing round it at right angles to the magnetic axis; while others conceived the magnetic axis as the primitive one, and the electric current as implying a magnetic current round the wire. So far as many of the general relations of these two kinds of force were concerned, either mode of representation served to express them; and thus the assumption that the two Polarities, the magnetic and the electric, were fundamentally identical, was verified, so far as the phenomena of magnetic attraction, and the like, were concerned.
I need not here mention how this was further confirmed by the experiments in which, by means of the forces thus brought into view, a galvanic wire was made to revolve round a magnet, and a magnet round a galvanic wire;—in which artificial magnets were constructed of coils of galvanic wire;—and finally, in which the galvanic spark was obtained from the magnet. The identity which sagacious speculators had divined even before it was discovered, and which they had seen to be universal as soon as it was brought to light, was completely manifested in every imaginable form.
The relation of the electric and magnetic Polarities was found to be, that they were transverse to each other, and this relation exhibited under various conditions of form and position of the apparatus, gave rise to very curious and unexpected perplexities. The degree of complication which this relation may occasion, may be judged of from the number of constructions and modes of conception offered by Œrsted, Wollaston, Faraday, and others, for the purpose of framing a technical memory of the results. The magnetic polarity gives us the north and south poles of the needle; the electric polarity makes the current positive and negative; and these pairs of opposites are connected by relations of situation, as above and below, right and left; and give rise to the resulting motion of the needle one way or the other. [374]
3. Ampère, by framing his hypotheses of the action of voltaic currents and the constitution of magnets, reduced all these technical rules to rigorous deductions from one general principle. And thus the vague and obscure persuasion that there must be some connexion between Electricity and Magnetism, so long an idle and barren conjecture, was unfolded into a complete theory, according to which magnetic and electromotive actions are only two different manifestations of the same forces; and all the above-mentioned complex relations of polarities are reduced to one single polarity, that of the electro-dynamic current.
4. As the Idea of Polarity was thus firmly established and clearly developed, it became an instrument of reasoning. Thus it led Ampère to maintain that the original or elementary forces in electro-dynamic action could not be as M. Biot thought they were, a statical couple, but must be directly opposite to each other. The same idea enabled Mr. Faraday to carry on with confidence such reasonings as the following[8]: ‘No other known power has like direction with that exerted between an electric current and a magnetic pole; it is tangential, while all other forces acting at a distance are direct. Hence if a magnetic pole on one side of a revolving plate follow its course by reason of its obedience to the tangential force exerted upon it by the very current of electricity which it has itself caused; a similar pole on the other side of the plate should immediately set it free from this force; for the currents which have to be formed by the two poles are in contrary directions.’ And in Article 1114 of his Researches, the same eminent philosopher infers that if electricity and magnetism are considered as the results of a peculiar agent or condition, exerted in determinate directions perpendicular to each other, one must be by some means convertible into the other; and this he was afterwards able to prove to be the case in fact.
[8] Researches, 244.
[375] Thus the principle that the Co-existent Polarities of magnetism and electricity are connected and fundamentally identical, is not only true, but is far from being either vague or barren. It has been a fertile source both of theories which have, at present, a very great probability, and of the discovery of new and striking facts. We proceed to consider other similar cases.
5. Connexion of Electrical and Chemical Polarities.—The doctrine that the chemical forces by which the elements of bodies are held together or separated, are identical with the polar forces of electricity, is a great discovery of modern times; so great and so recent, indeed, that probably men of science in general have hardly yet obtained a clear view and firm hold of this truth. This doctrine is now, however, entirely established in the minds of the most profound and philosophical chemists of our time. The complete development and confirmation of this as of other great truths, was preceded by more vague and confused opinions gradually tending to this point; and the progress of thought and of research was impelled and guided, in this as in similar cases, by the persuasion that these co-existent polarities could not fail to be closely connected with each other. While the ultimate and exact theory to which previous incomplete and transitory theories tended is still so new and so unfamiliar, it must needs be a matter of difficulty and responsibility for a common reader to describe the steps by which truth has advanced from point to point. I shall, therefore, in doing this, guide myself mainly by the historical sketches of the progress of this great theory, which, fortunately for us, have been given us by the two philosophers who have played by far the most important parts in the discovery, Davy and Faraday.
It will be observed that we are concerned here with the progress of theory, and not of experiment, except so far as it is confirmatory of theory. In Davy’s Memoir[9] of 1826, on the Relations of Electrical and [376] Chemical Changes, he gives the historical details to which I have alluded. Already in 1802 he had conjectured that all chemical decompositions might be polar. In 1806 he attempted to confirm this conjecture, and succeeded, to his own satisfaction, in establishing[10] that the combinations and decompositions by electricity were referable to the law of electrical attractions and repulsions; and advanced the hypothesis (as he calls it), that chemical and electrical attractions were produced by the same cause, acting in one case on particles, in the other on masses. This hypothesis was most strikingly confirmed by the author’s being able to use electrical agency as a more powerful means of chemical decomposition than any which had yet been applied. ‘Believing,’ he adds, ‘that our philosophical systems are exceedingly imperfect, I never attached much importance to this hypothesis; but having formed it after a copious induction of facts, and having gained by the application of it a number of practical results, and considering myself as much the author of it as I was of the decomposition of the alkalies, and having developed it in an elementary work as far as the present state of chemistry seemed to allow, I have never,’ he says, ‘criticised or examined the manner in which different authors have adopted or explained it, contented, if in the hands of others, it assisted the arrangements of chemistry or mineralogy, or became an instrument of discovery.’ When the doctrine had found an extensive acceptance among chemists, attempts were made to show that it had been asserted by earlier writers: and though Davy justly denies all value to these pretended anticipations, they serve to show, however dimly, the working of that conviction of the Connexion of Co-existent Properties which all along presided in men’s minds during this course of investigation. ‘Ritter and Winterl have been quoted,’ Davy says[11], ‘among other persons, as having imagined or anticipated the relation between electrical powers and chemical affinities before the discovery of the pile [377] of Volta. But whoever will read with attention Ritter’s “Evidence that Galvanic action exists in organised nature,” and Winterl's Prolusiones ad Chemiam sæculi decimi noni, will find nothing to justify this opinion.’ He then refers to the Queries of Newton at the end of his Optics. ‘These,’ he says, ‘contain more grand and speculative views that might be brought to bear upon this question than any found in the works of modern electricians; but it is very unjust to the experimentalists who by the laborious application of new instruments, have discovered novel facts and analogies, to refer them to any such suppositions as that all attractions, chemical, electrical, magnetical, and gravitative, may depend upon the same cause.’ It is perfectly true, that such vague opinions, though arising from that tendency to generalize which is the essence of science, are of no value except so far as they are both rendered intelligible, and confirmed by experimental research.
[9] Phil. Trans. 1826, p. 383.
[10] Phil. Trans. 1826, p. 389.
[11] Ibid. p. 384.
The phenomena of chemical decomposition by means of the voltaic pile, however, led other persons to views very similar to those of Davy. Thus Grotthus in 1805[12] published an hypothesis of the same kind. ‘The pile of Volta,’ he says, ‘is an electrical magnet, of which each element, that is, each pair of plates, has a positive and a negative pole. The consideration of this polarity suggested to me the idea that a similar polarity may come into play between the elementary particles of water when acted upon by the same electrical agent; and I avow that this thought was for me a flash of light.’
[12] Ann. Chim. lxviii. 54.
6. The thought, however, though thus brought into being, was very far from being as yet freed from vagueness, superfluities, and errours. I have elsewhere noticed[13] Faraday’s remark on Davy’s celebrated Memoir of 1806; that ‘the mode of action by which the effects take place is stated very generally, so generally, indeed, that probably a dozen precise schemes of electro-chemical action might be drawn up, differing [378] essentially from each other, yet all agreeing with the statement there given.’ When Davy and others proceeded to give a little more definiteness and precision to the statement of their views, they soon introduced into the theory features which it was afterwards found necessary to abandon. Thus[14] both Davy, Grotthus, Riffault, and Chompré, ascribed electrical decomposition to the action of the poles, and some of them even pretended to assign the proportion in which the force of the pole diminishes as the distance from it increases. Faraday, as I have already stated, showed that the polarity must be considered as residing not only in what had till then been called the poles, but at every point of the circuit. He ascribed[15] electro-chemical decomposition to internal forces, residing in the particles of the matter under decomposition, not to external forces, exerted by the poles. Hence he shortly afterwards[16] proposed to reject the word poles altogether, and to employ instead, the term electrode, meaning the doors or passages (of whatever surface formed) by which the decomposed elements pass out. What have been called the positive and negative poles he further termed the Anode and Cathode; and he introduced some other changes in nomenclature connected with these. He then, as I have related in the History[17], invented the Volta-electrometer, which enabled him to measure the quantity of voltaic action, and this he found to be identical with the quantity of chemical affinity; and he was thus led to the clearest view of the truth towards which he and his predecessors had so long been travelling, that electrical and chemical forces are identical[18].
[13] Hist. Ind. Sc. b. xiv. c. ix. sect. 1.
[14] See Faraday’s Historical Sketch, Researches, 481–492.
[15] Art. 524.
[16] In 1834. Eleventh Series of Researches. Art. 662.
[17] Hist. Ind. Sc. b. xiv. c. ix. sect. 2.
[18] Arts. 915, 916, 917.
7. It will, perhaps, be said that this beautiful train of discovery was entirely due to experiment, and not to any à priori conviction that co-existent polarities [379] must be connected. I trust I have sufficiently stated that such an à priori principle could not be proved, nor even understood, without a most laborious and enlightened use of experiment; but yet I think that the doctrine, when once fully unfolded, exhibited clearly, and established as true, takes possession of the mind with a more entire conviction of its certainty and universality, in virtue of the principle we are now considering. When the theory has assumed so simple a form, it appears to derive immense probability (to say the least) from its simplicity. Like the laws of motion, when stated in its most general form, it appears to carry with it its own evidence. And thus this great theory borrows something of its character from the Ideas which it involves, as well as from the Experiments by which it was established.
8. We may find in many of Mr. Faraday’s subsequent reasonings, clear evidence that this idea of the Connexion of Polarities, as now developed, is not limited in its application to facts already known experimentally, but, like other ideas, determines the philosopher’s researches into the unknown, and gives us the form of knowledge even before we possess the matter. Thus, he says, in his Thirteenth Series[19], ‘I have long sought, and still seek, for an effect or condition which shall be to statical electricity what magnetic force is to current electricity; for as the lines of discharge are associated with a certain transverse effect, so it appeared to me impossible but that the lines of tension or of inductive action, which of necessity precede the discharge, should also have their correspondent transverse condition or effect.’ Other similar passages might be found.
[19] Art. 1658.
I will now consider another case to which we may apply the Principle of Connected Polarities.
9. Connexion of Chemical and Crystalline Polarities.—The close connexion between the Chemical Affinity and the Crystalline Attraction of elements cannot be overlooked. Bodies never crystallize but when their elements combine chemically; and solid bodies which [380] combine, when they do it most completely and exactly, also crystallize. The forces which hold together the elements of a crystal of alum are the same forces which make it a crystal. There is no distinguishing between the two sets of forces.
Both chemical and crystalline forces are polar, as we stated in the last chapter; but the polarity in the two cases is of a different kind. The polarity of chemical forces is then put in the most distinct form, when it is identified with electrical polarity; the polarity of the particles of crystals has reference to their geometrical form. And it is clear that these two kinds of polarity must be connected. Accordingly, Berzelius expressly asserts[20] the necessary identity of these two polarities. ‘The regular forms of bodies suppose a polarity which can be no other than an electric or magnetic polarity.’ This being so seemingly inevitable, we might expect to find the electric forces manifesting some relation to the definite directions of crystalline forms. Mr. Faraday tried, but in vain, to detect some such relation. He attempted to ascertain[21] whether a cube of rock crystal transmitted the electrical force of tension with different intensity along and across the axis of the crystal. In the first specimen there seemed to be some difference; but in other experiments, made both with rock crystal and with calc spar, this difference disappeared. Although therefore we may venture to assert that there must be some very close connexion between electrical and crystalline forces, we are, as yet, quite ignorant what the nature of the connexion is, and in what kind of phenomena it will manifest itself.
[20] Essay on Chemical Prop. 113.
[21] Researches. Art. 1689.
10. Connexion of Crystalline and Optical Polarities.—Crystals present to us optical phenomena which have a manifestly polar character. The double refraction, both of uniaxal and of biaxal crystals, is always accompanied with opposite polarization of the two rays; and in this and in other ways light is polarized in directions dependent upon the axes of the crystalline form, that is, on the directions of the polarities of the [381] crystalline particles. The identity of these two kinds of polarity (crystalline and optical) is too obvious to need insisting on; and it is not necessary for us here to decide by what hypothesis this identity may most properly be represented. We may hereafter perhaps find ourselves justified in considering the crystalline forces as determining the elasticity of the luminiferous ether to be different in different directions within the crystal, and thus as determining the refraction and polarization of the light which the crystal transmits. But at present we merely note this case as an additional example of the manifest connexion and fundamental identity of two co-existent polarities.
11. Connexion of Polarities in general.—Thus we find that the Connexion of different kinds of Polarities, magnetic, electric, chemical, crystalline, and optical, is certain as a truth of experimental science. We have attempted to show further that in the minds of several of the most eminent discoverers and philosophers, such a conviction is something more than a mere empirical result: it is a principle which has regulated their researches while it was still but obscurely seen and imperfectly unfolded, and has given to their theories a character of generality and self-evidence which experience alone cannot bestow.
It will, perhaps, be said that these doctrines,—that scientific researches may usefully be directed by principles in themselves vague and obscure;—that theories may have an evidence superior to and anterior to experience;—are doctrines in the highest degree dangerous, and utterly at variance with the soundest maxims of modern times respecting the cultivation of science.
In the justice and wisdom of this caution I entirely agree: and although I have shown that this principle of the Connexion of Polarities, rightly interpreted and established in each case by experiment, involves profound and comprehensive truths; I think it no less important to remark that, at least in the present stage of our knowledge, we can make no use of this principle without taking care, at every step, to determine by [382] clear and decisive experiments, its proper meaning and application. All endeavours to proceed otherwise have led, and must lead, to ignorance and confusion. Attempts to deduce from our bare Idea of Polarity, and our fundamental convictions respecting the connexion of polarities, theories concerning the forces which really exist in nature, can hardly have any other result than to bewilder men’s minds, and to misdirect their efforts.
So far, indeed, as this persuasion of a connexion among apparently different kinds of agencies, impels men, engaged in the pursuit of knowledge, to collect observations, to multiply, repeat, and vary experiments, and to contemplate the result of these in all aspects and relations, it may be an occasion of the most important discoveries. Accordingly we find that the great laws of phenomena which govern the motions of the planets about the sun, were first discovered by Kepler, in consequence of his scrutinizing the recorded observations with an intense conviction of the existence of geometrical and arithmetical harmonies in the solar system. Perhaps we may consider the discovery of the connexion of magnetism and electricity by Professor Œrsted in 1820, as an example somewhat of the same kind; for he also was a believer in certain comprehensive but undefined relations among the properties of bodies; and in consequence of such views entertained great admiration for the Prologue to the Chemistry of the Nineteenth Century, of Winterl, [already] mentioned. M. Œrsted, in 1803, published a summary of this work; and in so doing, praised the views of Winterl as far more profound and comprehensive than those of Lavoisier. Soon afterwards a Review of this publication appeared in France[22], in which it was spoken of as a work only fit for the dark ages, and as the indication of a sect which had for some time ‘ravaged Germany,’ and inundated that country with extravagant and unintelligible mysticism. It was, therefore, a kind of triumph to M. Œrsted to be, after [383] some years’ labour, the author of one of the most remarkable and fertile physical discoveries of his time.
[22] Ann. Chim., Tom. 1. (1804), p. 191.
12. It was not indeed without some reason that certain of the German philosophers were accused of dealing in doctrines vast and profound in their aspect, but, in reality, indefinite, ambiguous, and inapplicable. And the most prominent of such doctrines had reference to the principle now under our consideration; they represented the properties of bodies as consisting in certain polarities, and professed to deduce, from the very nature of things, with little or no reference to experiment, the existence and connexion of these polarities. Thus Schelling, in his Ideas towards a Philosophy of Nature, published in 1803, says[23], ‘Magnetism is the universal act of investing Multiplicity with Unity; but the universal form of the reduction of Multiplicity to Unity is the Line, pure Longitudinal Extension: hence Magnetism is determination of pure Longitudinal Extension; and as this manifests itself by absolute Cohesion, Magnetism is the determination of absolute Cohesion.’ And as Magnetism was, by such reasoning, conceived to be proved as a universal property of matter, Schelling asserted it to be a confirmation of his views when it was discovered that other bodies besides iron are magnetic. In like manner he used such expressions as the following[24]: ‘The threefold character of the Universal, the Particular, and the Indifference of the two,—as expressed in their Identity, is Magnetism, as expressed in their Difference, is Electricity, and as expressed in the Totality, is Chemical Process. Thus these forms are only one form; and the Chemical Process is a mere transfer of the three Points of Magnetism into the Triangle of Chemistry.’
[23] P. 223.
[24] P. 486.
It was very natural that the chemists should refuse to acknowledge, in this fanciful and vague language, (delivered, however, it is to be recollected, in 1803,) an anticipation of Davy’s doctrine of the identity of electrical and chemical forces, or of Œrsted’s [384] electro-magnetic agency. Yet it was perhaps no less natural that the author of such assertions should look upon every great step in the electro-chemical theory as an illustration of his own doctrines. Accordingly we find Schelling welcoming, with a due sense of their importance, the discoveries of Faraday. When he heard of the experiment in which electricity was produced from common magnetism, he fastened with enthusiasm upon the discovery, even before he knew any of its details, and proclaimed it at a public meeting of a scientific body[25] as one of the most important advances of modern science. We have (he thus reasoned) three effects of polar forces;—Electro-chemical Decomposition, Electrical Action, Magnetism. Volta and Davy had confirmed experimentally the identity of the two former agencies: Œrsted showed that a closed voltaic circuit acquired magnetic properties: but in order to exhibit the identity of electric and magnetic action it was requisite that electric forces should be extricated from magnetic. This great step Faraday, he remarked, had made, in producing the electric spark by means of magnets.
[25] Ueber Faraday’s Neueste Entdeckung. München. 1832.
13. Although conjectures and assertions of the kind thus put forth by Schelling involve a persuasion of the pervading influence and connexion of polarities, which persuasion has already been confirmed in many instances, they involve this principle in a manner so vague and ambiguous that it can rarely, in such a form, be of any use or value. Such views of polarity can never teach us in what cases we are and in what we are not expected to find polar relations; and indeed tend rather to diffuse error and confusion, than to promote knowledge. Accordingly we cannot be surprized to find such doctrines put forward by their authors as an evidence of the small value and small necessity of experimental science. This is done by the celebrated metaphysician Hegel, in his Encyclopædia[26]. ‘Since,’ [385] says he, ‘the plane of incidence and of reflection in simple reflection is the same plane, when a second reflector is introduced which further distributes the illumination reflected from the first, the position of the first plane with respect to the second plane, containing the direction of the first reflection and of the second, has its influence upon the position, illumination or darkening of the object as it appears by the second reflection. This influence must be the strongest when the two planes are what we must call negatively related to each other:—that is, when they are at right angles.’ ‘But,’ he adds, ‘when men infer (as Malus has done) from the modification which is produced by this situation, in the illumination of the reflection, that the molecules of light in themselves, that is, on their different sides, possess different physical energies; and when on this foundation, along with the phenomena of entoptical colours therewith connected, a wide labyrinth of the most complex theory is erected; we have then one of the most remarkable examples of the inferences of physics from experiment.’ If Hegel’s reasoning prove anything, it must prove that polarization always accompanies reflection under such circumstances as he describes: yet all physical philosophers know that in the case of metals, in which the reflection is most complete, light is not completely polarized at any angle; and that in other substances the polarization depends upon various circumstances which show how idle and inapplicable is the account which he thus gives of the property. His self-complacent remark about the inferences of physics from experiment, is intended to recommend by comparison his own method of considering the nature of ‘things in themselves;’ a mode of obtaining physical truth which had been more than exhausted by Aristotle, and out of which no new attempts have extracted anything of value since his time.
[26] Sec. 278.
14. Thus the general conclusion to which we are led on this subject, is, that the persuasion of the existence and Connexion or Identity of various Polarities in nature, although very naturally admitted, and in many [386] cases interpreted and confirmed by observed facts, is of itself, so far as we at present possess it, a very insecure guide to scientific doctrines. When it is allowed to dictate our theories, instead of animating and extending our experimental researches, it leads only to errour, confusion, obscurity, and mysticism.
This Fifth Book, on the subject of Polarities, is a short one compared with most of the others. This arises in a great measure from the circumstance that the Idea of Polarity has only recently been apprehended and applied, with any great degree of clearness, among physical philosophers; and is even yet probably entertained in an obscure and ambiguous manner by most experimental inquirers. I have been desirous of not attempting to bring forward any doctrines upon the subject, except such as have been fully illustrated and exemplified by the acknowledged progress of the physical sciences. If I had been willing to discuss the various speculations which have been published respecting the universal prevalence of Polarities in the universe, and their results in every province of nature, I might easily have presented this subject in a more extended form; but this would not have been consistent with my plan of tracing the influence of scientific Ideas only so far as they have really aided in disclosing and developing scientific truths. And as the influence of this Idea is clearly distinguishable both from those which precede and those which follow, in the character of the sciences to which it gives rise, and as it appears likely to be hereafter of great extent and consequence, it seemed better to treat of it in a separate Book, although of a brevity disproportioned to the rest.
end of vol. i.
Cambridge: Printed at the University Press.
HISTORY
OF
SCIENTIFIC IDEAS.
VOLUME II.
Cambridge:
PRINTED BY C. J. CLAY, M.A.
AT THE UNIVERSITY PRESS.