NOTE TO CHAPTER III.
[3rd Ed.]—[The doctrine here propounded, that All Matter is Heavy, has been opposed by Sir William Hamilton of Edinburgh. (Works of Reid, note, p. 853.) This writer is a man of unquestionable acuteness and of very extensive reading; but his acuteness shows itself in barren ontological distinctions, which appear to me to be of the same character as the speculations of the eminent Schoolmen of the most sterile periods of the dark ages. That he should have no conception of progressive or inductive science is not wonderful, when we recollect that he holds, as an important part of his philosophy, that the study of mathematics perverts and obscures the mind. But it may be of some interest to consider his objections to the doctrine here maintained.
He says, 1st, that our reasoning assumes that we must necessarily have it in our power to ascertain the Quantity of Matter; whereas this may be a problem out of the reach of human determination.
To this I reply, that my reasoning does assume that there is a science, or sciences, which make assertions concerning the Quantity of Matter: Mechanics and Chemistry are such sciences. My assertion is, that to make such sciences possible, Quantity of Matter must be proportional to Weight. If my opponent deny that Mechanics and Chemistry can exist as sciences, he may invalidate my proof; but not otherwise.
2. He says that there are two conceivable ways of estimating the Quantity of Matter: by the Space occupied, and by the Weight or Inertia; and that I assume the second measure gratuitously.
To which I reply, that the most elementary steps in Mechanics and in Chemistry contradict the notion that [38] the Quantity of Matter is proportionate to the Space. They proceed necessarily on a distinction between Space and Matter:—between mere Extension and material Substance.
3. He allows that we cannot make the Extension of a body the measure of the Quantity of Matter, because, he says, we do not know if ‘the compressing force’ is such as to produce ‘the closest compression.’ That is, he assumes a compressing force, assumes a closest compression, assumes a peculiar (and very improbable) atomic hypothesis; and all this to supply a reason why we are not to believe the first simple principle of Mechanics and Chemistry.
4. He speaks of ‘a series of apparent fluids (as Light or its vehicle, the Calorific, the Electro-galvanic, and Magnetic agents) which we can neither denude of their character of substance, nor clothe with the attribute of weight.’
To which my reply is, that precisely because I cannot ‘clothe’ these agents with the attribute of Weight, I do ‘denude them of the character of Substance.’ They are not substances, but agencies. These Imponderable Agents are not properly called ‘Imponderable Fluids.’ This I conceive that I have proved; and the proof is not shaken by denying the conclusion without showing any defect in the reasoning.
5. Finally, my critic speaks about ‘a logical canon,’ and about ‘a criterion of truth, subjectively necessary and objectively certain;’ which matters I shall not waste the reader’s time by discussing.]
CHAPTER IV.
Application of the Idea of Substance in Chemistry.
1. A Body is Equal to the Sum of its Elements.—From the earliest periods of chemistry the balance has been familiarly used to determine the proportions of the ingredients and of the compound; and soon after the middle of the last century, this practice was so studiously followed, that Wenzel and Richter were thereby led to the doctrine of Definite Proportions. But yet the full value and significance of the balance, as an indispensable instrument in chemical researches, was not understood till the gaseous, as well as solid and fluid ingredients were taken into the account. When this was done, it was found that the principle, that the whole is equal to the sum of its parts, of which, as we have seen, the necessary truth, in such cases, flows from the idea of substance, could be applied in the most rigorous manner. And conversely, it was found that by the use of the balance, the chemist could decide, in doubtful cases, which was a whole, and which were parts.
For chemistry considers all the changes which belong to her province as compositions and decompositions of elements; but still the question may occur, whether an observed change be the one or the other. How can we distinguish whether the process which we contemplate be composition or decomposition?—whether the new body be formed by addition of a new, or subtraction of an old element? Again; in the case of decomposition, we may inquire, What are the ultimate limits of our analysis? If we decompound bodies into others more and more simple, how far can we carry this succession [40] of processes? How far can we proceed in the road of analysis? And in our actual course, what evidence have we that our progress, as far as it has gone, has carried us from the more complex to the more simple?
To this we reply, that the criterion which enables us to distinguish, decidedly and finally, whether our process have been a mere analysis of the proposed body into its ingredients, or a synthesis of some of them with some new element, is the principle stated above, that the weight of the whole is equal to the weight of all the parts. And no process of chemical analysis or synthesis can be considered complete till it has been verified by this fact;—by finding that the weight of the compound is the weight of its supposed ingredients; or, that if there be an element which we think we have detached from the whole, its loss is betrayed by a corresponding diminution of weight.
I have already noticed what an important part this principle has played in the great chemical controversy which ended in the establishment of the oxygen theory. The calcination of a metal was decided to be the union of oxygen with the metal, and not the separation of phlogiston from it, because it was found that in the process of calcination, the weight of the metal increased, and increased exactly as much as the weight of ambient air diminished. When oxygen and hydrogen were exploded together, and a small quantity of water was produced, it was held that this was really a synthesis of water, because, when very great care was taken with the process, the weight of the water which resulted was equal to the weight of the gases which disappeared.
2. Lavoisier.—It was when gases came to be considered as entering largely into the composition of liquid and solid bodies, that extreme accuracy in weighing was seen to be so necessary to the true understanding of chemical processes. It was in this manner discovered by Lavoisier and his contemporaries that oxygen constitutes a large ingredient of calcined metals, of acids, and of water. A countryman of Lavoisier[30] [41] has not only given most just praise to that great philosopher for having constantly tested all his processes by a careful and skilful use of the balance, but has also claimed for him the merit of having introduced the maxim, that in chemical operations nothing is created and nothing lost. But I think it is impossible to deny that this maxim is assumed in all the attempts at analysis made by his contemporaries, as well as by him. This maxim is indeed included in any clear notion of analysis: it could not be the result of the researches of any one chemist, but was the governing principle of the reasonings of all. Lavoisier, however, employed this principle with peculiar assiduity and skill. In applying it, he does not confine himself to mere additions and subtractions of the quantities of ingredients; but often obtains his results by more complex processes. In one of his investigations he says, ‘I may consider the ingredients which are brought together, and the result which is obtained as an algebraical equation; and if I successively suppose each of the quantities of this equation to be unknown, I can obtain its value from the rest: and thus I can rectify the experiment by the calculation, and the calculation by the experiment. I have often taken advantage of this method, in order to correct the first results of my experiments, and to direct me in repeating them with proper precautions.’
[30] M. Dumas, Leçons de la Philosophie Chimique. 1837. p. 157.
The maxim, that the whole is equal to the sum of all its parts, is thus capable of most important and varied employment in chemistry. But it may be applied in another form to the exclusion of a class of speculations which are often put forwards.
3. Maxim respecting Imponderable Elements.—Several of the phenomena which belong to bodies, as heat, light, electricity, magnetism, have been explained hypothetically by assuming the existence of certain fluids; but these fluids have never been shown to have weight. Hence such hypothetical fluids have been termed imponderable elements. It is however plain, that so long as these fluids appear to be without weight, they are not elements of bodies in the same [42] sense as those elements of which we have hitherto been speaking. Indeed we may with good reason doubt whether those phenomena depend upon transferable fluids at all. We have seen strong reason to believe that light is not matter, but only motion; and the same thing appears to be probable with regard to heat. Nor is it at all inconceivable that a similar hypothesis respecting electricity and magnetism should hereafter be found tenable. Now if heat, light, and those other agents, be not matter, they are not elements in such a sense as to be included in the principle referred to above, That the body is equal to the sum of its elements. Consequently the maxim just stated, that in chemical operations nothing is created, nothing annihilated, does not apply to Light and Heat. They are not things. And whether heat can be produced where there was no heat before, and light struck out from darkness, the ideas of which we are at present treating do not enable us to say. In reasoning respecting chemical synthesis and analysis therefore, we shall only make confusion by attempting to include in our conception the Light and Heat which are produced and destroyed. Such phenomena may be very proper subjects of study, as indeed they undoubtedly are; but they cannot be studied to advantage by considering them as sharing the nature of composition and decomposition.
Again: in all attempts to explain the processes of nature, the proper course is, first to measure the facts with precision, and then to endeavour to understand their cause. Now the facts of chemical composition and decomposition, the weights of the ingredients and of the compounds, are facts measurable with the utmost precision and certainty. But it is far otherwise with the light and heat which accompany chemical processes. When combustion, deflagration, explosion, takes place, how can we measure the light or the heat? Even in cases of more tranquil action, though we can apply the thermometer, what does the thermometer tell us respecting the quantity of the heat? Since then we have no measure which is of any value as [43] regards such circumstances in chemical changes, if we attempt to account for these phenomena on chemical principles, we introduce, into investigations in themselves perfectly precise and mathematically rigorous, another class of reasonings, vague and insecure, of which the only possible effect is to vitiate the whole reasoning, and to make our conclusions inevitably erroneous.
We are led then to this maxim: that imponderable fluids are not to be admitted as chemical elements of bodies[31].
[31] See the [answer] to Sir William Hamilton’s objections, at the end of the last chapter.
Since we are thus warned by a sound view of the nature of science, from considering chemical affinity as having any hold upon imponderable elements, we are manifestly still more decisively prohibited from supposing mechanical impulse or pressure to have any effect upon such elements. To make this supposition, is to connect the most subtle and incorporeal objects which we know in nature by the most gross material ties. This remark seems to be applicable to M. Poisson’s hypothesis that the electric fluid is retained at the surface of bodies by the pressure of the atmosphere.
4. It appears, I think, that our best and most philosophical chemists have proceeded upon this principle in their investigations. In reasoning concerning the constitution of bodies and the interpretation of chemical changes, the attempts to include in these interpretations the heat or cold produced, by the addition or subtraction of a certain hypothetical ‘caloric,’ have become more and more rare among men of science. Such statements, and the explanations often put forwards of the light and heat which appear under various circumstances in the form of fire, must be considered as unessential parts of any sound theory. Accordingly we find Mr. Faraday gradually relinquishing such views. In January, 1834, he speaks generally of an hypothesis of this kind[32]: ‘I cannot refrain from recalling here the beautiful idea put forth, I believe by Berzelius, in his development of his views of the electro-chemical theory of affinity, that the heat and light evolved during cases of powerful combination [44] are the consequence of the electric discharge which is at that moment taking place.’ But in April of the same year[33], he observes, that in the combination of oxygen and hydrogen to produce water, electric powers to a most enormous amount are for the time active, but that the flame which is produced gives but feeble traces of such powers. ‘Such phenomena,’ therefore, he adds, ‘may not, cannot, be taken as evidences of the nature of the action; but are merely incidental results, incomparably small in relation to the forces concerned, and supplying no information of the way in which the particles are active on each other, or in which their forces are finally arranged.’
[32] Researches, 870.
[33] Researches, 960.
In pursuance of this maxim, we must consider as an unessential part of the oxygen theory that portion of it, much insisted upon by its author at the time, in which when sulphur, for instance, combined with oxygen to produce sulphuric acid, the combustion was accounted for by means of the caloric which was supposed to be liberated from its combination with oxygen.
5. Controversy of the Composition of Water.—There is another controversy of our times to which we may with great propriety apply the maxim now before us. After the glory of having first given a true view of the composition of water had long rested tranquilly upon the names of Cavendish and Lavoisier, a claim was made in favour of James Watt as the real author of this discovery by his son, (Mr J. Watt,) and his eulogist, (M. Arago[34]). It is not to our purpose here to discuss the various questions which have arisen on this subject respecting priority of publication, and respecting the translation of opinions published at one time into the language of another period. But if we look at Watt’s own statement of his views, given soon after those of Cavendish had been published, we shall perceive that it is marked by a violation of this maxim: we shall find that he does admit imponderable fluids [45] as chemical elements; and thus shows a vagueness and confusion in his idea of chemical composition. With such imperfection in his views, it is not surprising that Watt, not only did not anticipate, but did not apprehend quite precisely the discovery of Cavendish and Lavoisier. Watt’s statement of his views is as follows[35]:—‘Are we not authorized to conclude that water is composed of dephlogisticated air and phlogiston deprived of part of their latent or elementary heat; that dephlogisticated or pure air is composed of water deprived of its phlogiston and united to elementary heat and light; and that the latter are contained in it in a latent state, so as not to be sensible to the thermometer or to the eye; and if light be only a modification of heat, or a circumstance attending it, or a component part of the inflammable air, then pure or dephlogisticated air is composed of water deprived of its phlogiston and united to elementary heat?’
[34] Éloge de James Watt, Annuaire du Bur. des Long. 1839.
[35] Phil. Trans. 1784, p. 332.
When we compare this doubtful and hypothetical statement, involving so much that is extraneous and heterogeneous, with the conclusion of Cavendish, in which there is nothing hypothetical or superfluous, we may confidently assent to the decision which has been pronounced by one[36] of our own time in favour of Cavendish. And we may with pleasure recognize, in this enlightened umpire, a due appreciation of the value of the maxim on which we are now insisting. ‘Cavendish,’ says Mr. Vernon Harcourt, ‘pared off [46] from the hypotheses their theories of combustion, and affinities of imponderable for ponderable matter, as complicating chemical with physical considerations.’
[36] The Rev. W. Vernon Harcourt, Address to the British Association, 1839.—Since the first edition of this work was published, and also since the second edition of the History of the Inductive Sciences, Mr. Watt’s correspondence bearing upon the question of the Composition of Water has been published by Mr. Muirhead. I do not find, in this publication, any reason for withdrawing what I have stated in the text above: but with reference to the statement in the History, it appears that Mr. Cavendish’s claim to the discovery was not uncontested in his own time. Mr. Watt had looked at the composition of water, as a problem to be solved, perhaps more distinctly than Mr. Cavendish had done; and he conceived himself wronged by Mr. Cavendish’s putting forwards his experiment as the first solution of this problem.
6. Relation of Heat to Chemistry.—But while we thus condemn the attempts to explain the thermotical phenomena of chemical processes by means of chemical considerations, it may be asked if we are altogether to renounce the hope of understanding such phenomena? It is plain, it may be said, that heat generated in chemical changes is always a very important circumstance, and can sometimes be measured, and perhaps reduced to laws; are we prohibited from speculating concerning the causes of such circumstances and such laws? And to this we reply, that we may properly attempt to connect chemical with thermotical processes, so far as we have obtained a clear and probable view of the nature of the thermotical processes. When our theory of Thermotics is tolerably complete and certain, we may with propriety undertake to connect it with our theory of Chemistry. But at present we are not far enough advanced in our knowledge of heat to make this attempt with any hope of success. We can hardly expect to understand the part which heat plays in the union of two bodies, when we cannot as yet comprehend in what manner it produces the liquefaction or vaporization of one body. We cannot look to account for Gay Lussac and Dalton’s Law, that all gases expand equally by heat, till we learn how heat causes a gas to expand. We cannot hope to see the grounds of Dulong and Petit’s Law, that the specific heat of all atoms is the same, till we know much more, not only about atoms, but about specific heat. We have as yet no thermotical theory which even professes to account for all the prominent facts of the subject[37]: and the theories which have been proposed are of the most diverse kind. Laplace assumes particles of bodies surrounded by atmospheres of caloric[38]; Cauchy makes heat consist in longitudinal vibrations of the ether of which transverse vibrations [47] produce light: in Ampère’s theory[39], heat consists in the vibrations of the particles of bodies. And so long as we have nothing more certain in our conceptions of heat than the alternative of these and other precarious hypotheses, how can we expect to arrive at any real knowledge, by connecting the results of such hypotheses with the speculations of Chemistry, of which science the theory is at least equally obscure?
[37] Hist. Ind. Sci. b. x. c. 4.
[38] Ib.
[39] Hist. Ind. Sci. b. x. c. 4.
The largest attempts at chemical theory have been made in the form of the Atomic Theory, to which I have just had occasion to allude. I must, therefore, before quitting the subject, say a few words respecting this theory.
CHAPTER V.
The Atomic Theory.
1. The Atomic Theory considered on Chemical Grounds.—We have already seen that the combinations which result from chemical affinity are definite, a certain quantity of one ingredient uniting, not with an uncertain, but with a certain quantity of another ingredient. But it was found, in addition to this principle, that one ingredient would often unite with another in different proportions, and that, in such cases, these proportions are multiples one of another. In the three salts formed by potassa with oxalic acid, the quantities of acid which combine with the same quantity of alkali are exactly in the proportion of the numbers 1, 2, 4. And the same rule of the existence of multiple proportions is found to obtain in other cases.
It is obvious that such results will be accounted for, if we suppose that the base and the acid consist each of numerous definite equal particles, and that the formation of the salts above mentioned consists in the combination of one particle of the base with one particle of acid, with two particles of acid, and with four particles of acid, respectively. But further; as we have already stated, chemical affinity is not only definite, but reciprocal. The proportions of potassa and soda which form neutral salts being 590 and 391 in one case, they are so in all cases. These numbers represent proportions of weight in which the two bases, potassa and soda, enter into analogous combinations; 590 of potassa is equivalent to 391 of soda. These facts with regard to combination are still expressed by the above supposition of equal particles, assuming that the weights of a [49] particle of potassa and of soda are in the proportion of 590 to 391.
But we pursue our analysis further. We find that potassa is a compound of a metallic base, potassium, and of oxygen, in the proportion of 490 to 100; we suppose, then, that the particle of potassa consists of a particle of potassium and a particle of oxygen; and these latter particles, since we see no present need to suppose them divided, potassium and oxygen being simple bodies, we may call atoms, and assume to be indivisible. And by supposing all simple bodies to consist of such atoms, and compounds to be formed by the union of two, or three, or more of such atoms, we explain the occurrence of definite and multiple proportions, and we construct the Atomic Theory.
2. Hypothesis of Atoms.—So far as the assumption of such atoms as we have spoken of serves to express those laws of chemical composition which we have referred to, it is a clear and useful generalization. But if the Atomic Theory be put forwards (and its author, Dr. Dalton, appears to have put it forwards with such an intention,) as asserting that chemical elements are really composed of atoms, that is, of such particles not further divisible, we cannot avoid remarking, that for such a conclusion, chemical research has not afforded, nor can afford, any satisfactory evidence whatever. The smallest observable quantities of ingredients, as well as the largest, combine according to the laws of proportions and equivalence which have been cited above. How are we to deduce from such facts any inference with regard to the existence of certain smallest possible particles? The Theory, when dogmatically taught as a physical truth, asserts that all observable quantities of elements are composed of proportional numbers of particles which can no further be subdivided; but all which observation teaches us is, that if there be such particles, they are smaller than the smallest observable quantities. In chemical experiment, at least, there is not the slightest positive evidence for the existence of such atoms. The assumption of indivisible particles, smaller than the smallest [50] observable, which combine, particle with particle, will explain the phenomena; but the assumption of particles bearing this proportion, but not possessing the property of indivisibility, will explain the phenomena at least equally well. The decision of the question, therefore, whether the Atomic Hypothesis be the proper way of conceiving the chemical combinations of substances, must depend, not upon chemical facts, but upon our conception of Substance. In this sense the question is an ancient and curious controversy, and we shall hereafter have to make some remarks upon it.
3. Chemical Difficulties of the Hypothesis.—But before doing this, we may observe that there is no small difficulty in reconciling this hypothesis with the facts of chemistry. According to the theory, all salts, compounded of an acid and a base, are analogous in their atomic constitution; and the number of atoms in one such compound being known or assumed, the number of atoms in other salts may be determined. But when we proceed in this course of reasoning to other bodies, as metals, we find ourselves involved in difficulties. The protoxide of iron is a base which, according to all analogy, must consist of one atom of iron and one of oxygen: but the peroxide of iron is also a base, and it appears by the analysis of this substance that it must consist of two-thirds of an atom of iron and one atom of oxygen. Here, then, our indivisible atoms must be divisible, even upon chemical grounds. And if we attempt to evade this difficulty by making the peroxide of iron consist of two atoms of iron and three of oxygen, we have to make a corresponding alteration in the theoretical constitution of all bodies analogous to the protoxide; and thus we overturn the very foundation of the theory. Chemical facts, therefore, not only do not prove the Atomic Theory as a physical truth, but they are not, according to any modification yet devised of the theory, reconcileable with its scheme.
Nearly the same conclusions result from the attempts to employ the Atomic Hypothesis in expressing another important chemical law;—the law of the [51] combinations of gases according to definite proportions of their volumes, experimentally established by Gay Lussac[40]. In order to account for this law, it has been very plausibly suggested that all gases, under the same pressure, contain an equal number of atoms in the same space; and that when they combine, they unite atom to atom. Thus one volume of chlorine unites with one volume of hydrogen, and forms hydrochloric acid[41]. But then this hydrochloric acid occupies the space of the two volumes; and therefore the proper number of particles cannot be supplied, and the uniform distribution of atoms in all gases maintained, without dividing into two each of the compound particles, constituted of an atom of chlorine and an atom of hydrogen. And thus in this case, also, the Atomic Theory becomes untenable if it be understood to imply the indivisibility of the atoms.
[40] Hist. Ind. Sc. b. xiv. c. 8.
[41] Dumas, Phil. Chim. 263.
In all these attempts to obtain distinct physical conception of chemical union by the aid of the Atomic Hypothesis, the atoms are conceived to be associated by certain forces of the nature of mechanical attractions. But we have already seen[42] that no such mode of conception can at all explain or express the facts of chemical combination; and therefore it is not wonderful that when the Atomic Theory attempts to give an account of chemical relations by contemplating them under such an aspect, the facts on which it grounds itself should be found not to authorize its positive doctrines; and that when these doctrines are tried upon the general range of chemical observation, they should prove incapable of even expressing, without self-contradiction, the laws of phenomena.
[42] See [Chapter I]. of this book.
4. Grounds of the Atomic Doctrine.—Yet the doctrine of atoms, or of substance as composed of indivisible particles, has in all ages had great hold upon the minds of physical speculators; nor would this doctrine ever have suggested itself so readily, or have been maintained so tenaciously, as the true mode of [52] conceiving chemical combinations, if it had not been already familiar to the minds of those who endeavour to obtain a general view of the constitution of nature. The grounds of the assumption of the atomic structure of substance are to be found rather in the idea of substance itself, than in the experimental laws of chemical affinity. And the question of the existence of atoms, thus depending upon an idea which has been the subject of contemplation from the very infancy of philosophy, has been discussed in all ages with interest and ingenuity. On this very account it is unlikely that the question, so far as it bears upon chemistry, should admit of any clear and final solution. Still it will be instructive to look back at some of the opinions which have been delivered respecting this doctrine.
5. Ancient Prevalence of the Atomic Doctrine.—The doctrine that matter consists of minute, simple, indivisible, indestructible particles as its ultimate elements, has been current in all ages and countries, whenever the tendency of man to wide and subtle speculations has been active. I need not attempt to trace the history of this opinion in the schools of Greece and Italy. It was the leading feature in the physical tenets of the Epicureans, and was adopted by their Roman disciples, as the poem of Lucretius copiously shows us. The same tenet had been held at still earlier periods, in forms more or less definite, by other philosophers. It is ascribed to Democritus, and is said to have been by him derived from Leucippus. But this doctrine is found also, we are told[43], among the speculations of another intellectual and acute race, the Hindoos. According to some of their philosophical writers, the ultimate elements of matter are atoms, of which it is proved by certain reasonings, that they are each one-sixth of one of the motes that float in the sunbeam.
[43] By Mr. Colebrook. Asiatic Res. 1824.
This early prevalence of controversies of the widest and deepest kind, which even in our day remain undecided, has in it nothing which need surprize us; or, at least, it has in it nothing which is not in conformity [53] with the general course of the history of philosophy. As soon as any ideas are clearly possessed by the human mind, its activity and acuteness in reasoning upon them are such, that the fundamental antitheses and ultimate difficulties which belong to them are soon brought into view. The Greek and Indian philosophers had mastered completely the Idea of Space, and possessed the Idea of Substance in tolerable distinctness. They were, therefore, quite ready, with their lively and subtle minds, to discuss the question of the finite and infinite divisibility of matter, so far as it involved only the ideas of space and of substance, and this accordingly they did with great ingenuity and perseverance.
But the ideas of Space and of Substance are far from being sufficient to enable men to form a complete general view of the constitution of matter. We must add to these ideas, that of mechanical Force with its antagonist Resistance, and that of the Affinity of one kind of matter for another. Now the former of these ideas the ancients possessed in a very obscure and confused manner; and of the latter they had no apprehension whatever. They made vague assumptions respecting the impact and pressure of atoms on each other; but of their mutual attraction and repulsion they never had any conception, except of the most dim and wavering kind; and of an affinity different from mere local union they did not even dream. Their speculations concerning atoms, therefore, can have no value for us, except as a part of the history of science. If their doctrines appear to us to approach near to the conclusions of our modern philosophy, it must be because our modern philosophy is that philosophy which has not fully profited by the additional light which the experiments and meditations of later times have thrown upon the constitution of matter.
6. Bacon.—Still, when modern philosophers look upon the Atomic Theory of the ancients in a general point of view merely, without considering the special conditions which such a theory must fulfil, in order to represent the discoveries of modern times, they are [54] disposed to regard it with admiration. Accordingly we find Francis Bacon strongly expressing such a feeling. The Atomic Theory is selected and dwelt upon by him as the chain which connects the best parts of the physical philosophy of the ancient and the modern world. Among his works is a remarkable dissertation On the Philosophy of Democritus, Parmenides, and Telesius: the last mentioned of whom was one of the revivers of physical science in modern times. In this work he speaks of the atomic doctrine of Democritus as a favourable example of the exertions of the undisciplined intellect. ‘Hæc ipsa placita, quamvis paulo emendatiora, talia sunt qualia esse possunt illa quæ ab intellectu sibi permisso, nec continenter et gradatim sublevato, profecta videntur.’—‘These doctrines, thus [in an ancient fable] presented in a better form, are such glimpses of truth as can be obtained by the intellect left to its own natural impulses, and not ascending by successive and connected steps,’ [as the Baconian philosophy directs]. ‘Accordingly,’ he adds, ‘the doctrine of Atoms, from its going a step beyond the period in which it was advanced, was ridiculed by the vulgar, and severely handled in the disputations of the learned, notwithstanding the profound acquaintance with physical science by which its author was allowed to be distinguished, and from which he acquired the character of a magician.’
‘However,’ he continues, ‘neither the hostility of Aristotle, with all his skill and vigour in disputation, (though, like the Ottoman sultans, he laboured to destroy all his brother philosophers that he might rest undisputed master of the throne of science,) nor the majestic and lofty authority of Plato, could effect the subversion of the doctrine of Democritus. And while the opinions of Plato and Aristotle were rehearsed with loud declamation and professorial pomp in the schools, this of Democritus was always held in high honour by those of a deeper wisdom, who followed in silence a severer path of contemplation. In the days of Roman speculation it kept its ground and its favour; Cicero everywhere speaks of its author with the [55] greatest praise; and Juvenal, who, like poets in general, probably expressed the prevailing judgment of his time, proclaims his merit as a noble exception to the general stupidity of his countrymen.
. . . . Cujus prudentia monstrat
Magnos posse viros et magna exempla daturos
Vervecum in patriâ crassoque sub aere nasci.
‘The destruction of this philosophy was not effected by Aristotle and Plato, but by Genseric and Attila, and their barbarians. For then, when human knowledge had suffered shipwreck, those fragments of the Aristotelian and Platonic philosophy floated on the surface like things of some lighter and emptier sort, and so were preserved; while more solid matters went to the bottom, and were almost lost in oblivion.’
7. Modern Prevalence of the Atomic Doctrine.—It is our business here to consider the doctrine of Atoms only in its bearing upon existing physical sciences, and I must therefore abstain from tracing the various manifestations of it in the schemes of hypothetical cosmologists;—its place among the vortices of Descartes, its exhibition in the monads of Leibnitz. I will, however, quote a passage from Newton to show the hold it had upon his mind.
At the close of his Opticks he says, ‘All these things being considered, it seems probable to me that God, in the beginning, formed matter in solid, massy, hard, impenetrable, moveable particles, of such sizes and figures, and with such other properties, and in such proportions to space, as most conduced to the end for which He formed them; and that the primitive particles, being solids, are incomparably harder than any porous bodies compounded of them, even so very hard as never to wear or break in pieces; no ordinary power being able to divide what God had made one in the first creation. While the particles continue entire, they may compose bodies of one and the same nature and texture in all ages: but should they wear away or break in pieces, the nature of things depending on them would be changed. Water and earth composed [56] of old worn particles and fragments of particles would not be of the same nature and texture now with water and earth composed of entire particles in the beginning. And therefore that nature may be lasting, the changes of corporeal things are to be placed only in the various separations and new associations and motions of these permanent particles; compounded bodies being apt to break, not in the midst of solid particles, but where those particles are laid together and only touch in a few points.’
We shall [hereafter] see how extensively the atomic doctrine has prevailed among still more recent philosophers. Not only have the chemists assumed it as the fittest form for exhibiting the principles of multiple proportions; but the physical mathematicians, as Laplace and Poisson, have made it the basis of their theories of heat, electricity, capillary action; and the crystallographers have been supposed to have established both the existence and the arrangement of such ultimate molecules.
In the way in which it has been employed by such writers, the hypothesis of ultimate particles has been of great use, and is undoubtedly permissible. But when we would assert this theory, not as a convenient hypothesis for the expression or calculation of the laws of nature, but as a philosophical truth respecting the constitution of the universe, we find ourselves checked by difficulties of reasoning which we cannot overcome, as well as by conflicting phenomena which we cannot reconcile. I will attempt to state briefly the opposing arguments on this question.
8. Arguments for and against Atoms.—The leading arguments on the two sides of the question, in their most general form, may be stated as follows:
For the Atomic Doctrine.—The appearances which nature presents are compounded of many parts, but if we go on resolving the larger parts into smaller, and so on successively, we must at last come to something simple. For that which is compound can be so no otherwise than by composition of what is simple; and if we suppose all composition to be removed, which [57] hypothetically we may do, there can remain nothing but a number of simple substances, capable of composition, but themselves not compounded. That is, matter being dissolved, resolves itself into atoms.
Against the Atomic Doctrine.—Space is divisible without limit, as may be proved by Geometry; and matter occupies space, therefore matter is divisible without limit, and no portion of matter is indivisible, or an atom.
And to the argument on the other side just stated, it is replied that we cannot even hypothetically divest a body of composition, if by composition we mean the relation of point to point in space. However small be a particle, it is compounded of parts having relation in space.
The Atomists urge again, that if matter be infinitely divisible, a finite body consists of an infinite number of parts, which is a contradiction. To this it is replied, that the finite body consists of an infinite number of parts in the same sense in which the parts are infinitely small, which is no contradiction.
But the opponents of the Atomists not only rebut, but retort this argument drawn from the notion of infinity. Your atoms, they say, are indivisible by any finite force; therefore they are infinitely hard; and thus your finite particles possess infinite properties. To this the Atomists are wont to reply, that they do not mean the hardness of their particles to be infinite, but only so great as to resist all usual natural forces. But here it is plain that their position becomes untenable; for, in the first place, their assumption of this precise degree of hardness in the particles is altogether gratuitous; and in the next place, if it were granted, such particles are not atoms, since in the next moment the forces of nature may be augmented so as to divide the particle, though hitherto undivided.
Such are the arguments for and against the Atomic Theory in its original form. But when these atoms are conceived, as they have been by Newton, and commonly by his followers, to be solid, hard particles exerting attractive and repulsive forces, a new set of [58] arguments come into play. Of these, the principal one may be thus stated: According to the Atomic Theory thus modified, the properties of bodies depend upon the attractions and repulsions of the particles. Therefore, among other properties of bodies, their hardness depends upon such forces. But if the hardness of the bodies depends upon the forces, the repulsion, for instance, of the particles, upon what does the hardness of the particles depend? what progress do we make in explaining the properties of bodies, when we assume the same properties in our explanation? and to what purpose do we assume that the particles are hard?
9. Transition to Boscovich’s Theory.—To this difficulty it does not appear easy to offer any reply. But if the hardness and solidity of the particles be given up as an incongruous and untenable appendage to the Newtonian view of the Atomic Theory, we are led to the theory of Boscovich, according to which matter consists not of solid particles, but of mere mathematical centers of force. According to this theory, each body is composed of a number of geometrical points from which emanate forces, following certain mathematical laws in virtue of which the forces become, at certain small distances attractive, at certain other distances repulsive, and at greater distances attractive again. From these forces of the points arise the cohesion of the parts of the same body, the resistance which it exerts against the pressure of another body, and finally the attraction of gravitation which it exerts upon bodies at a distance.
This theory is at least a homogeneous and consistent theory, and it is probable that it may be used as an instrument for investigating and expressing true laws of nature; although, as we have already said, the attempt to identify the forces by which the particles of bodies are bound together with mechanical attraction, appears to be a confusion of two separate ideas[44].
[44] ‘Boscovich’s Theory,’ that all bodies may be considered as consisting of a mere collection of centers of forces, may be so conceived as possibly to involve an explanation of all the powers which their parts exert, (such powers, namely, as those which produce optical, thermotical and chemical phenomena;) but this theory cannot supply an explanation of the mechanical properties of a body as a whole, especially of its inertia. A collection of mere centers of force can have no inertia. If two bodies are considered as two collections of centers of force, the one attracting the other, there is in this view nothing to limit or determine the velocity with which the one body will approach the other. A world composed of such bodies is not a material world: for matter (as we have already seen in book iii. [chapter v.]) implies not only force, but something which resists the action of force.
[59] 10. Use of the Molecular Hypothesis.—In this form, representing matter as a collection of molecules or centers of force, the Atomic Theory has been abundantly employed in modern times as an hypothesis on which calculations respecting the elementary forces of bodies might be conducted. When thus employed it is to be considered as expressing the principle that the properties of bodies depend upon forces emanating from immovable points of their mass. This view of the way in which the properties of bodies are to be treated by the mechanical philosopher was introduced by Newton, and was a natural sequel to the success which he had obtained by reasoning concerning central forces on a large scale. I have already quoted his Preface to the Principia, in which he says, ‘Many things induce me to believe that the rest of the phenomena of nature, as well as those of astronomy, may depend upon certain forces by which the particles of bodies, in virtue of causes not yet known, are urged towards each other and cohere in regular figures, or are mutually repelled and recede; and philosophers, knowing nothing of these forces, have hitherto failed in their examination of nature.’ Since the time of Newton, this line of speculation has been followed with great assiduity, and by some mathematicians with great success. In particular Laplace has shown that the hypothesis may, in many instances, be made a much closer representation of nature, if we suppose the forces exerted by the particles to decrease so rapidly with the increasing distance from them, that [60] the force is finite only at distances imperceptible to our senses, and vanishes at all remoter points. He has taught the method of expressing and calculating such forces, and he and other mathematicians of his school have applied this method to many of the most important questions of physics; as capillary action, the elasticity of solids, the conduction and radiation of heat. The explanation of many apparently unconnected and curious observed facts by these mathematical theories gives a strong assurance that its essential principles are true. But it must be observed that the actual constitution of bodies as composed of distinct and separate particles is by no means proved by these coincidences. The assumption, in the reasoning, of certain centers of force acting at a distance, is to be considered as nothing more than a method of reducing to calculation that view of the constitution of bodies which supposes that they exert force at every point. It is a mathematical artifice of the same kind as the hypothetical division of a body into infinitesimal parts, in order to find its center of gravity; and no more implies a physical reality than that hypothesis does.
11. Poisson’s Inference.—When, therefore, M. Poisson, in his views of Capillary Action, treats this hypothetical distribution of centers of force as if it were a physical fact, and blames Laplace for not taking account of their different distribution at the surface of the fluid and below it[45], he appears to push the claims of the molecular hypothesis too far. The only ground for the assumption of separate centers, is that we can thus explain the action of the whole mass. The intervals between the centers nowhere enter into this explanation: and therefore we can have no reason for assuming these intervals different in one part of the fluid and in the other. M. Poisson asserts that the density of the fluid diminishes when we approach very near the surface; but he allows that this diminution is not detected by experiment, and that the formulæ on [61] his supposition, so far as the results go, are identical with those of Laplace. It is clear, then, that his doctrine consists merely in the assertion of the necessary truth of a part of the hypothesis which cannot be put to the test of experiment. It is true, that so long as we have before us the hypothesis of separate centers, the particles very near the surface are not in a condition symmetrical with that of the others: but it is also true that this hypothesis is only a step of calculation. There results, at one period of the process of deduction, a stratum of smaller density at the surface of the fluid; but at a succeeding point of the reasoning the thickness of this stratum vanishes; it has no physical existence.
[45] Poisson, Théorie de l’Action Capillaire.
Thus the molecular hypothesis, as used in such cases, does not differ from the doctrine of forces acting at every point of the mass; and this principle, which is common to both the opposite views, is the true part of each.
12. Wollaston’s Argument.—An attempt has been made in another case, but depending on nearly the same arguments, to bring the doctrine of ultimate atoms to the test of observation. In the case of the air, we know that there is a diminution of density in approaching the upper surface of the atmosphere, if it have a surface: but it is held by some that except we allow the doctrine of ultimate molecules, it will not be bounded by any surface, but will extend to an infinite distance. This is the reasoning of Wollaston[46]. ‘If air consists of any ultimate particles no longer divisible, then must the expansion of the medium composed of them cease at that distance where the force of gravity downwards is equal to the resistance arising from the repulsive force of the medium.’ But if there be no such ultimate particles, every stratum will require a stratum beyond it to prevent by its weight a further expansion, and thus the atmosphere [62] must extend to an infinite distance. And Wollaston conceived that he could learn from observation whether the atmosphere was thus diffused through all space; for if so, it must, he argued, be accumulated about the larger bodies of the system, as Jupiter and the Sun, by the law of universal gravitation; and the existence of an atmosphere about these bodies, might, he remarked, be detected by its effects in producing refraction. His result is, that ‘all the phenomena accord entirely with the supposition that the earth’s atmosphere is of finite extent, limited by the weight of ultimate atoms of definite magnitude, no longer divisible by repulsion of their parts.’
[46] Phil. Trans. 1822, p. 89.
A very little reflection will show us that such a line of reasoning cannot lead to any result. For we know nothing of the law which connects the density with the compressing force, in air so extremely rare as we must suppose it to be near the boundary of the atmosphere. Now there are possible laws of dependence of the density upon the compressing force such that the atmosphere would terminate in virtue of the law without any assumption of atoms. This may be proved by mathematical reasoning. If we suppose the density of air to be as the square root of the compressing force, it will follow that at the very limits of the atmosphere, the strata of equal thickness may observe in their densities such a law of proportion as is expressed by the numbers 7, 5, 3, 1[47].
[47] For the compressing force on each being as the whole weight beyond it, it will be for the four highest strata, 16, 9, 4 and 1, of which the square roots are as 4, 3, 2, 1, or, as 8, 6, 4, 2; and though these numbers are not exactly as the densities 7, 5, 3, 1, those who are a little acquainted with mathematical reasoning, will see that the difference arises from taking so small a number of strata. If we were to make the strata indefinitely thin, as to avoid error we ought to do, the coincidence would be exact; and thus, according to this law, the series of strata terminates as we ascend, without any consideration of atoms.
If it be asked how, on this hypothesis, the density of the highest stratum can be as 1, since there is [63] nothing to compress it, we answer that the upper part of the highest stratum compresses the lower, and that the density diminishes continually to the surface, so that the need of compression and the compressing weight vanish together.
The fallacy of concluding that because the height of the atmosphere is finite, the weight of the highest stratum must be finite, is just the same as the fallacy of those who conclude that when we project a body vertically upwards, because it occupies only a finite time in ascending to the highest point, the velocity at the last instant of the ascent must be finite. For it might be said, if the last velocity of ascent be not finite, how can the body describe the last particle of space in a finite time? and the answer is, that there is no last finite particle of space, and therefore no last finite velocity.
13. Permanence of Properties of Bodies.—We have already seen that, in explaining the properties of matter as we find them in nature, the assumption of solid, hard, indestructible particles is of no use or value. But we may remark, before quitting the subject, that Newton appears to have had another reason for assuming such particles, and one well worthy of notice. He wished to express, by means of this hypothesis, the doctrine that the laws of nature do not alter with the course of time. This we have already seen in the quotation from Newton. ‘The ultimate particles of matter are indestructible, unalterable, impenetrable; for if they could break or wear, the structure of material bodies now would be different from that which it was when the particles were new.’ No philosopher will deny the truth which is thus conveyed by the assertion of atoms; but it is obviously equally easy for a person who rejects the atomic view, to state this truth by saying that the forces which matter exerts do not vary with time, but however modified by the new modifications of its form, are always unimpaired in quantity, and capable of being restored to their former mode of action. [64]
We now proceed to speculations in which the fundamental conceptions may, perhaps, be expressed, at least in some cases, by means of the arrangement of atoms; but in which the philosophy of the subject appears to require a reference to a new Fundamental Idea.