THE VIBRATING DIAPHRAGM

Did you ever take the end of a cane in your hand, raise it up over your head, and then bring it down suddenly and sharply, so that it nearly touched the ground, as though you were about to strike something? If not, try it now with a thin walking-cane or with a pine stick about three feet long and one-half inch thick, and you will find that there is a peculiar sound given out. It is not the stick that makes this sound, but it is owing to the fact that you have caused the air to vibrate, or tremble, and thus give out a sound.

Fig. 10

If you strike a tuning-fork sharply you will see the ends vibrate and a sound will be given. If you put your fingers on top of a silk hat and speak near it you will feel vibrations of your voice.

Every time you speak you cause vibrations of the air; and the louder and higher you speak the greater the number of vibrations.

Suppose you take a thin piece of wood in your hands (say, for instance, the lid of a cigar-box cut in the shape shown in the picture, Fig. 10) and hold it about two inches from your mouth and then speak. You will feel the wood tremble in your hand. This is because the vibrations of the air cause the wood to vibrate in the same manner. These vibrations are very minute and cannot be seen with the naked eye, but they actually take place, and could be measured with a delicately balanced instrument.

Fig. 11

Now let us try another experiment in further illustration of this principle. We will take a tube about three inches long and one and one-half or two inches in diameter. This tube may be made of cardboard. Now cut out a piece of thin cardboard which will just fit over one end of the tube. This piece we will call the "diaphragm." Fasten the diaphragm by pasting it with two strips of thin paper to the tube. These strips of paper should be fastened only on the ends, and the middle of the paper allowed to be slack, as shown in the picture, so that the diaphragm may work backward and forward easily. Take a small shot about the size seen in the sketch and tie it to a single thread of fine silk, then let it hang as shown in the sketch (Fig. 11), so that it will only just touch the diaphragm. Now, if you speak into the open end of the tube the diaphragm will vibrate and the shot will be seen to move to and from it according to the strength of the vibrations. If we could by any means make a diaphragm in another tube reproduce these same vibrations, we should hear the same words respoken, if the tube were held to the ear.

Fig. 12

While the vibrations caused by the human voice are too minute to be seen, it may seem surprising that they can be made to produce power. This is done by an ingenious mechanism called a Phonomotor, perfected by the great inventor Thomas A. Edison, of whom every one has probably heard. This mechanism, when spoken or sung at (or into) immediately responds by causing a wheel to revolve. No amount of blowing will start the wheel, but it can instantly be set in motion by the vibrations caused by sound.

The Phonomotor (which is shown in the engraving Fig. 12) has a diaphragm and mouthpiece. A spring, which is secured to the bedpiece, rests on a piece of rubber tubing placed against the diaphragm. This spring carries a pawl that acts on a ratchet or roughened wheel on the fly-wheel shaft. A sound made in the mouthpiece creates vibrations in the diaphragm; the vibrations of the diaphragm move the spring and pawl with the same impulses, and as the pawl thus moves back and forth on the ratchet-wheel it is made to revolve.

The instrument, therefore, is of great value for measuring the mechanical force of sound waves, or vibrations, produced by the human voice.