VII

ELECTRIC LIGHT

We have now arrived at a very interesting part of the study of electricity, as well as a more difficult part than we have yet told you of, but one which you can easily understand if you read carefully.

You must all have seen electric lights, either in the streets or in some large buildings, for so many electric lights are now used that there are very few people who have not seen them. But perhaps some of you have only seen the large, dazzling lights that are used in the streets, and do not know that there is another kind of electric light which is in a globe about the size and shape of a large pear, and gives about the same light as a good gas-jet.

These two kinds of electric lights have different names.

The large, dazzling lights which you see in the streets are called "arc-lights," and the small, pear-shaped lamps, which give a soft, steady light, are called "incandescent lights." We will tell you later why these names are given to them.

Fig. 15

The incandescent lights are generally used in houses, stores, theaters, factories, steamboats, and other places where a number of small lights are more pleasant to the eyes. The arc-lights (Fig. 15) are used to light streets and large spaces where a great quantity of light is wanted.

It would not be pleasant to have one of these dazzling arc-lamps in your parlor—although it would give a great deal of light—because your eyes would soon become tired. But two or three of the small incandescent lights (Fig. 16) would be very agreeable, because they would give you a nice, soft light to read or work by, and would not tire your eyes. So, you see, these two different kinds of lamps are very useful in their proper places.

Now, if you will read patiently and carefully, we will try and explain how both these lights are made.

Fig. 16

You have seen that the telegraph, telephone, electric bells, etc., are worked by batteries. Electric lights, however, require such a large amount of current that it is too expensive to produce them in large quantities by batteries. A small number of lamps could be lighted by batteries, but if we were to attempt to use them to light 500 or 1,000 lamps together, the expense would be so enormous as to make it entirely out of the question.

There are many millions of incandescent lamps in use in the United States, but you will easily see that there could not be that number used if we had to depend on batteries to light them. You will understand this more thoroughly when you have finished reading this little book.

Well, you will ask, if we cannot use batteries, what is used to produce these electric lights?

Machines called "dynamo-electric machines," or "generators," which are driven by steam-engines or water-power, are used to produce the electricity which makes these lamps give us light.

You will remember that in the chapter on Magnetism we explained to you how electricity makes magnetism, and now we will explain how, in the dynamo, magnetism makes electricity.

Fig. 17

It has been found that the influence of a magnet is very strong at its poles, and that this influence is always in the same lines. This influence has been described as "lines of force," which you will see represented in the sketch above by the dotted lines (Fig. 17). Of course, these lines of force are only imaginary and cannot be seen in any magnet, but they are always present. The meaning of this term "lines of force," then, is used to designate the strength of the magnet.

Many years ago the great scientist Faraday made the discovery that, by passing a closed loop of wire through the magnetic lines of force existing between the poles of a magnet, the magnetism produced the peculiar effect of creating a current of electricity in the wire. If the closed loop of wire were passed down, say from U to D, the current flowed in the wire in one direction, and if it were passed upward, from D to U, the current flowed in the other direction. Thus, you see, magnetism produces electricity in the closed loop of wire as it cuts through the magnetic lines of force. Just why or how, nobody knows; we only know that electricity is produced in that way, and to-day we make practical use of this method of producing it by embodying this principle in dynamo-machines, as we will shortly explain.

In carrying this discovery into practice in making dynamo-machines we use copper wire. If iron were used, there would be a current of electricity generated, but it would be much less in quantity, because iron wire has much greater resistance to the passage of electricity than the same size of copper wire.

Perhaps you can understand it more thoroughly if we state that when a closed loop of wire is passed up and down between the poles of a strong magnet there is a very perceptible opposition felt to the passage of the wire to and fro.

This is due to the influence of the magnetism upon the current produced in the wire as it cuts through the lines of force, and, inasmuch as these lines of force are always present at the poles of a magnet, you will see that, no matter how many times you pass the loop of wire up and down, there will be created in it a current of electricity by its passage through the lines of force.

Fig. 18

Suppose that, instead of using one single loop of copper wire, you wound upon a spool a long piece of wire like that in Fig. 18, and that you turned this spool around rapidly between the poles of the magnet, you would thus be cutting the lines of force by the same wire a great many times, and every time one length of the wire cut through the lines of force some electricity would be generated in it, and this would continue as long as the spool was revolved. But, as each length would only be a part of the one piece of wire, you will easily see that there would be a great deal of electricity generated in the whole piece of wire.

Fig. 19

All we have to do, then, is to collect this electricity from the two ends of the wire, and use it. If we should attach two wires to the two ends of this wire on the spool, they would be broken off when it turned around, so we must use some other method. We fix on the end of the spool (which is called an "armature") two pieces of copper, so that they will not touch each other (as in Fig. 19), and fasten the ends of the wire to these pieces of copper. This is called a "commutator," and, as you see, is really the ends of the wire on the spool. Now we get two thin, flat pieces of copper and fix them so that they will rest upon the copper bars of the commutator, but will not go round with it. These two flat pieces of copper are called the "brushes," and they will collect from the commutator the electricity which is gathered in the wire around the spool. As the brushes stand still, two wires can be fastened to them, and thus the ampères of current of electricity, acted upon by the volts pressure, can be carried away to be used in the lamps, for you must remember that as long as the spool turns around it gathers more electricity while there is any magnetism for the wire on the spool to pass through. The constant revolving of the spool creates so much electricity that it is driven out from the wire on the spool, through the commutator to the brushes, and there it finds a path to travel away from the pressure of the new electricity which is all the time being made.

In this way we get a continuous current of electricity in the two wires leading from the commutator, and can use it to light electric lamps or for other useful purposes.

In explaining this to you, so far, we have used as an illustration of the magnet one of the steel permanent magnets in order to make the explanation more simple, but now that you understand how the electricity is made, we must explain to you something about the magnets that are used in dynamo-machines. We can perhaps make this more clear by giving another example.

Suppose you had a dynamo which was lighting up 100 of the incandescent lamps, each of 200 ohms resistance and each requiring 100 volts pressure. Now each lamp would take just a certain quantity of electricity, say half an ampère; so, the 100 lamps would require one hundred times that quantity. But, if you turned off 50 of these lamps at once, the tendency would be for the pressure to rise above the 100 volts required for the other 50, and they would be apt to burn out quicker. It is plainly to be seen, then, that we must have some means of regulating the magnetism so as to regulate the lines of force for the wire on the armature to cut through. We can do this with an electromagnet, but not with a permanent magnet, because we cannot easily regulate the amount of magnetism which a permanent magnet will give.

There is another reason why we cannot use permanent magnets in a dynamo, and that is because they cannot be made to give as much magnetism as an electromagnet will give.

Thus you will see that there are very good reasons for using electromagnets in making dynamo-machines. Let us see now how these electromagnets and dynamos are made, and then examine the methods which are followed to operate and use them.

You must remember, to begin with, that in referring to wire used on magnets and armatures and for carrying the electricity away to the lamps, we always mean wire that is covered or insulated. In electric lighting, insulated wire is always used, except at the points where it is connected with, the dynamo, the lamps, a switch, or any point where we make what is called a "connection."

As the shape of the magnets is different in the dynamos of various inventors, we will take for illustration the one that is nearest the shape of the horseshoe and the shape that is generally used in illustrating the principle of the dynamo. This is the form used by Mr. Edison, whom we have previously mentioned. This form is shown in Fig. 20.

Now, although this magnet appears to be in one piece, it really consists of five parts screwed together so as to make, practically, one piece. The names of the parts are as follows: F, F are the "cores"; C the "yoke," which binds them together; and P, P the "pole pieces," where the magnetism is the strongest. These pole pieces are rounded out to receive the armature, which, as you will remember, is the part that turns around.

Fig. 20

The cores, F, F, are first wound with a certain amount of wire, which depends upon the use the dynamo is to be made for. Thus, you will see, there will be on each core two loose ends of the wire that is wound around it—namely, the beginning of the wire and the end where we leave off winding, which on the two cores together will make four ends of wire. We will tell you presently what is done with them.

After the cores are wound, they are screwed firmly to the yoke and to the pole pieces, so as to make, for all practical purposes, one whole piece pretty nearly the shape of a horseshoe magnet.

Fig. 21

Now, to make the dynamo complete, we must put in the armature between the poles, which are rounded off, as you will see, to accommodate it. The armature is held up by two "bearings," which you will see in the sketch of the complete dynamo above. (Fig. 21.)

The armature in a practical dynamo-machine consists of a large spool made of thin sheets of iron firmly fastened together and having a steel shaft run through the center, upon which it revolves.

This spool, or armature, is wound with a number of strands of copper wire. The commutator, instead of consisting of two bars, is made in many dynamos with as many bars as there are strands of wire, and the ends of these wires are fastened to the bars of the commutator so as to make, practically, one long piece of wire, just as we showed you in explaining how the electricity was produced.

The brushes, resting upon the commutator, carry away the electricity from it into the wires with which they are connected.

Now we have our dynamo all put together and ready to start as soon as we properly connect these four loose ends of wire on the cores.

If you will turn back to Fig. 20 you will see that two of the wires are marked I, and the other two O. The letter I means the inside wire, or where the winding began, and the letter O means the outside wire, or where we left off winding.

Now, if we fasten together (or "connect") the two ends of wires, I and O, near the top of the magnet, we make the two wires round the cores into one wire, which starts, say, at I near the poles, goes all around one core, crosses over and around the other core down to the other end of the wire to O, near the poles.

So far we have called the iron a magnet, although it is not a magnet until electricity is put into it; so, when the dynamo is started for the first time, these two ends of wire, I and O, are connected to a battery or other source of current for the purpose of sending electricity through the wire on the cores. When the electricity goes into this wire the iron immediately becomes a magnet, and the lines of force are present at the poles.

Now, the armature is turned around rapidly by a steam-engine, and, as the wire on the armature cuts the lines of force with great rapidity and so frequently, there is quickly generated a large quantity of electricity, which passes out as fast as it is made through the commutator and the brushes to the lamp. And so long as the armature is revolved and the battery attached, the electricity will be made, or, as it is usually termed, "generated."

As we stated above, a battery is used the first time the dynamo is run, and now we will explain why it is not needed afterward.

Although iron will not become a permanent magnet, like steel, it does not lose all its magnetism after it has been once thoroughly charged. When the dynamo is stopped, after the first trial, and the battery is taken away, you will discover only traces of magnetism about the poles. They will not readily attract even a needle or iron filings; but there is, nevertheless, a very small amount of magnetism left in the iron. Small as this magnetism is, however, it is enough to make very faint and weak lines of force at the poles of the magnet.

After the battery is taken away, the ends of the wire on the cores, which were connected to the battery, are connected, instead, to the wires which carry away the electricity from the brushes to the lamps. Thus, you will see, if any electricity goes from the dynamo to the lamps, part of it must also find its way through the wires which are around the cores.

We will now start up the dynamo without having any battery attached and see what happens. The armature turns around and the wires upon it cut through those very faint lines of force which are always at the poles. This, as you know, makes some electricity; very little, to be sure, but it comes out through the brushes to the wires leading to the lamps, and there it finds the wires leading back to the cores. Well, part of this weak current of electricity goes into these wires and travels back round the cores and so makes the magnetism stronger. The consequence of this is that the lines of force become stronger and, as the armature keeps turning around, the electricity naturally becomes stronger, and so there is more of it going through the wires back to the cores and increasing the strength of the magnet all the time, until the dynamo becomes strong enough to generate all the current it was intended to give for the lamps.

Of course, you understand that the stronger the magnet becomes, the greater will be the lines of force and the greater the amount of electricity made by the turning of the armature. Now, there is naturally a limit to what can be done with any particular dynamo; so, while the electricity continues to strengthen the magnetism and the magnetism increases the electricity, this cannot go beyond what is called the "saturation" point of the magnet.

Saturation means that the iron is full of magnetism, and will hold that much but no more. You will learn more as to the saturation of magnets when you study electricity more deeply, and we therefore do not intend to enter into that subject in this book. We will only state, however, that the magnets of dynamos are not always charged up to their saturation point.