FOOTNOTES:

[110] The division of the nerves of the eighth pair in the neck produces two kinds of effects, which should be carefully distinguished; the one relates to the larynx and the other to the lungs. Among the first, aphonia is one of the most striking symptoms. We see a very good reason for this phenomenon, when we recollect that the recurrent nerve is a branch of the eighth pair; but besides the loss of voice, the division of the eighth pair often produces such an approximation of the edges of the glottis that the air cannot enter, and death immediately takes place.

Most usually, the approximation is not sufficient to prevent entirely the entrance of the air into the thorax; but as the glottis has lost its motions in relation with those of respiration, this function is always performed in a more or less incomplete manner.

When these observations were first made, it was hardly possible to give an accurate explanation of them; but since I have ascertained the manner in which the recurrent and laryngeal nerves are distributed to the muscles of the larynx, there is no longer any difficulty. By the division of the eighth pair at the inferior part of the neck, the dilator muscles of the glottis are paralyzed; this opening does not enlarge at the moment of inspiration, whilst the constrictors, which receive their nerves from the superior laryngeal, preserve their action entire, and shut more or less completely the glottis.

When the division of the eighth pair does not close the glottis so completely as to produce death immediately, another order of phenomena is developed.

The respiration is at first embarrassed, and its rhythm often experiences a remarkable alteration; the inspiration is slow, and the expiration quick and short. The animal is averse to motion and seems to be easily fatigued. At first the formation of the arterial blood is not prevented, but soon its vermilion colour changes, it becomes darker and approximates more and more that of the venous blood. The temperature falls, and the very embarrassed respiration is only made by the aid of all the muscular powers; the coldness becomes evident, and the animal soon dies.

As this series of circumstances is developing, the animals, on whom the experiments are made, consume less oxygen, and form less carbonic acid.

We find, on opening the body, the bronchia filled with a frothy, and sometimes a bloody fluid; the lungs are engorged, and the divisions of the pulmonary artery are much distended with very black blood.

From all that has now been stated, it is natural to conclude that, in this last case, the animals die because respiration can no longer be effected, the lungs being so altered that the air cannot get into the bronchial cells. To this cause should be added also the difficulty which the blood experiences in passing from the arteries to the pulmonary veins.

[111] These words passion, emotion, affection, &c. have, I know, real differences in the language of metaphysicians; but as the general effect of the sensations which they express is always the same on the organic life; as this general effect is what alone concerns me, and as the secondary phenomena are of no importance, I use these words indifferently for each other.

[112] We have said in a preceding note, that the division of the nerves of the eighth pair could produce death in two ways; first, by closing the glottis, and preventing the entrance of the air into the air tubes; secondly, by altering the lungs and preventing the production of the chemical phenomena. Of these two kinds of death the first is in some measure accidental; it is an indirect effect of the interruption of the action of the brain; but it is not so with the second, and though it may not be instantaneous, it is not less a direct effect of the division. It might be supposed that the motions of the glottis being destroyed, and the entrance of the air being rendered consequently more difficult, that it is in consequence of this obstruction that respiration is embarrassed, and that the alteration of the lungs is only a consecutive phenomenon. But in the experiments made by M. Dupuy at Alfort, a free passage was given to the air, by an opening made in the trachea. Now it cannot be believed that the small wound necessary for this opening, could contribute to produce the disturbance of the respiration, for a similar operation is daily performed on horses, without producing the slightest inconvenience.

[113] The experiments of Legallois have clearly proved, that this point is at the origin of the nerves of the eighth pair.

[CHAPTER XI.]
OF THE INFLUENCE OF THE DEATH OF THE BRAIN OVER THAT OF THE HEART.

In the preceding chapter we have shewn how the lungs remain inactive, when the brain ceases to act.—The same phenomenon, under the same circumstances, takes place also in the heart, and must happen either immediately or mediately.

I. Does the Heart cease to act immediately in consequence of the interruption of the cerebral action?

The greater number of medical men, speak in much too vague a manner of the cerebral influence. They do not sufficiently determine its extent and limits, with respect to the different organs of the system.

It is evident that we shall have answered the question proposed at the head of this section, if we can determine what the influence of the brain is with regard to the heart. Now, we have every reason to suppose, that no direct influence is exercised by the former over the latter of these organs, which, on the contrary, is immediately dependent with regard to its operations, on the movement communicated to it by the blood. This assertion is by no means a new one. It has been admitted by all sound physiologists; but as many opinions in medicine are founded upon a contrary principle, it will not be amiss to dwell upon it a little. It is equally demonstrated both by observation and experiment—and to begin with the former:

1st, All violent irritation made upon the brain, produces either partial, or general convulsion in the muscles of the animal life. Examine those of the organic life, on the contrary, and little will be found amiss in their actions.

2dly, All compression of the cerebral mass, whether made by pus, water or blood, has ordinarily the effect of paralyzing the voluntary muscles; but so long as the affection does not extend to the muscles of the breast, the action of the heart is in no degree diminished.

3dly, Opium and wine, when taken in a certain quantity, diminish the cerebral energy for the moment and render the brain unfit for the functions of the animal life. The action of the heart, on the contrary, is increased.

4thly, In palpitation, and the different irregular movements of the heart, it is not observable that the principle of these derangements exists in the brain.—In this respect, as well as on the subject of syncope, Cullen has been mistaken. The brain during such time, continues in action as usual.

5thly, The numerous phenomena of apoplexy, and epilepsy, and concussion, &c. do certainly all of them tend to shew, how independent the heart is of the brain.

6thly, Every organ which is subject to the direct influence of the brain, is for that very reason an organ of volition. Now, I should suppose, that few persons of the present day, would be inclined to maintain with Stahl, that the heart is among the number of such organs. What would life be, were we able at will, to suspend the action of the organ, by which the system is animated? From simple observation, then, we might conclude, that it is not immediately that the heart ceases to act, when the functions of the brain are interrupted, but this fundamental datum of physiology and pathology, we shall further establish, upon actual experiment.

1st, If the brain of an animal be exposed, and irritated either with mechanical or chemical agents, a variety of alterations will, indeed, be produced in the organs of the animal life, but none in the heart, so long as the muscles of the breast continue to perform their functions.

2dly, Experiments made in the same manner upon the spinal marrow of the neck, present the same results.

3dly, If the eighth pair of nerves be irritated, the movements of the heart will not be accelerated; they will not be arrested if these two nerves be divided. In all these experiments, however, we must be careful to make a proper distinction between the emotions and passions of the animal, and what it really suffers from the experiment.

4thly, The nature of the great sympathetic nerve, I suppose to be known;[114] now if the same experiments be made on the cardiac branches of this nerve, as were made upon the eighth pair, the same results will follow.

I do not offer in detail the whole of these experiments; the greater part of them are well known: I was induced to repeat them, as authors are not agreed upon their consequences.

The experiments of galvanism, are well calculated to throw light upon the relations existing between the heart and the brain; these I have taken care to repeat with the utmost exactness, and whatever authors may have advanced, they are all in favour of the above opinions—for 1st, If the galvanic apparatus be applied to the brain, and to the heart, and inferior extremities of a frog, and the communication made between the metals, there will constantly be seen a strong contraction in the muscles of the limb, and little or none in the heart. The same will be the case, to whatever voluntary muscle the zinc be applied. 2dly, The same results will be had, on the communication being made between the metals applied on the one hand to the spinal marrow above the giving off of the sympathetic, and on the other hand to the heart, and any of the voluntary muscles.

3dly, On establishing a communication between the metals applied to the cardiac nerves, and to the heart of the animal, there has been no contraction in the heart. In all these essays, the natural disposition between the parts which serve to unite the two organs, is preserved: there are other experiments which consist in detaching the heart from the breast. 2dly, In placing two points of its surface in contact with two different metals. 3dly, In making the communication between them with a third. From this experiment, Humboldt and other philosophers have procured contractions, but I have taken care to repeat it with the greatest accuracy, and must assert, that I have seen little or nothing of the kind; indeed, if I had, I should have concluded nothing from it; for it appears to me, that to decide upon the influence of the brain over the heart, a portion at least of the nervous system, should be in contact with one of the metals.

I shall now pass to my experiments on red and warm-blooded animals. They are necessary for the decision of the question before us, as the mode of contractility in these animals differs much from that of the animals submitted to the experiments already mentioned.

1st, In the winter of the year 1798, I was authorized to make different essays on the bodies of persons who had been guillotined. I had them at my disposal thirty or forty minutes after they had undergone the punishment. In some of them, all mobility was extinct; in others, this property could be reanimated in all the muscles by the common agents, and in those of the animal life, by galvanism especially.[115] Notwithstanding which, I could never occasion the least motion, in applying the apparatus either to the spinal marrow and the heart, or to this latter organ and the nerves, which it receives from the ganglions of the sympathetic, or the par vagum. Nevertheless, the common mechanical excitant, immediately applied to the fleshy fibre, occasioned its contraction. Could this have happened in consequence of the separation of the nervous fillets from the brain? assuredly not; because the voluntary muscles were equally separated from it, and yet affected strongly. If any doubt remain, the following experiments will clear it up.

2dly, In dogs and guinea pigs, I have repeatedly applied the metals, first to the brain and the heart, then to the trunk of the spinal marrow, and the heart; then to the par vagum and the heart. The communication being made, was followed by no apparent result.

3dly, On making the communication between the metals, when applied to the cardiac nerves and the heart, there was no very sensible motion.

4thly, Humboldt has asserted, that when the heart is speedily detached with some of its nervous threads about it, a contraction may be excited, by arming the nerves with a metal, and then by touching this metal with another. I have many times tried this experiment in vain. I confess, however, that once it appeared to me to succeed.

5thly, On the contrary, I have almost always succeeded in producing contractions in the heart, by cutting it away from the breast, and making a communication between a couple of metals, applied to different points of its surface. This, if I am not mistaken, is the only means of evidently producing the phenomena of galvanism in this organ, but with respect to our present question, the experiment is wholly inconclusive.

All these experiments I have repeated many times, and with the most scrupulous precautions, nevertheless I do not pretend to call in question the reality of those results, which other physicians have remarked. It is well known how very variable those experiments are, which have the vital powers for their object. Besides, in admitting even these different results, I do not see how it is possible to refuse acknowledging, that with respect to the stimulus of galvanism, there is a wide difference between the susceptibility of the muscles of the animal life, and those of the organic life. Again, supposing that the galvanic phenomena were the same in both sorts of muscles, the fact would prove nothing more, than that these phenomena with regard to their succession, follow laws directly the contrary of those, which are displayed in the phenomena which take place, when any common cause of irritation is applied to the nerves and their corresponding muscles.

The proofs adduced, will allow us to conclude, that the brain exercises no direct influence over the heart, and consequently, that when it ceases to act, the functions of the latter must be interrupted indirectly.

II. In case of lesion of the brain, is the death of the heart occasioned by that of any intermediate organ?

When the brain dies, the heart dies, but not directly. There must be some intermediate organ then, the death of which occasions that of the heart.[116] That intermediate organ is the lungs. In this sort of death, the following is the series of the phenomena which may be observed.

1st, The cerebral action is interrupted. 2dly, The action of all the muscles of the animal life, and consequently of the intercostals and diaphragm, is annihilated. 3dly, The mechanical functions of the lungs are suspended. 4thly, The like ensues with respect to their chemical functions. 5thly, The fibres of the heart are penetrated with black blood. 6thly, The fibres when so penetrated, die.

Such sort of death then, has much resemblance with that which is occasioned by the different asphyxiæ. It is only more sudden, and that for reasons which I shall presently point out. The following experiments are an evident proof that the phenomena take place as I have described them to do.

1st, I have always found black blood in the red-blooded system of all animals, killed by concussion or compression of the brain; the heart livid, and the different surfaces coloured as in asphyxia.

2dly, I opened the carotid artery of a dog; the red blood instantly gushed out, but was immediately suppressed, and the artery tied. I then killed the creature, by striking him with violence on the occipital bone.[117] The animal life, and consequently both the mechanical and chemical functions of the lungs, were suddenly suppressed. The artery was then united. It poured forth the black blood with a feeble jet, for some little time, and after some minutes, the heart entirely ceased to move.

3dly, I have always obtained a similar result in opening the arteries of different animals which I afterwards killed, either by dividing the marrow between the first vertebra and occiput, or by strongly compressing the brain, which I had previously exposed.—It is thus also that animals perish, by the carotids of which a deleterious substance has been injected.

4thly, The preceding experiments explain the reason why the blood is black which flows from the arteries of animals, which are bled in our slaughter-houses, after having been knocked in the head. If the blow has been violent, the blood issues such as it was in the veins, but if the action of the diaphragm and intercostals has only been weakened by the blow, the redness of the blood is only diminished.

The state in which the respiration may be (and it is altered from a variety of circumstances during profuse hemorrhagy) occasions a great variety in the colour of the arterial blood: hence we have the reason why it is found of so many different shades in the great operations of surgery. At the beginning of these, it often flows out quite red; at the end of them, is sometimes almost black. The easy or embarrassed state of the respiration of the patient, is the occasion of these varieties. This I have frequently remarked, when attending Desault, and was often struck with the appearance, before I knew the cause of it.

I have never found any relation whatever, between the obscure colour of the blood, and the compression exercised above the artery, as some have asserted to take place. There is, indeed, a connection between the colour and the impetuosity of the jet, but the reason of this is evident to any one who has read the foregoing pages.

To return to the point of doctrine on which we are at present occupied, I am persuaded from the considerations and experiments which are adduced in the course of this chapter, that the manner in which the heart ceases to act, when the cerebral functions are suspended, can no longer admit of a doubt, and that we may resolve the question proposed, in affirming that under such circumstances, the death of the heart is occasioned through the medium of that of the lungs.

There is this difference, then, between the death of the heart, in consequence of that of the brain, and the death of the brain in consequence of that of the heart, that the one is indirect, the other direct, as we have already seen. If some men, as Stahl asserts, have really been able to suspend the movements of the heart, the fact is not a proof of the influence of the mind over the muscles of the organic life, but of its power over the mechanical, and consequently, the chemical phenomena of respiration.

In red and cold-blooded animals, the death of the heart does not succeed the death of the brain so quickly as it does in red and warm-blooded animals. Cut off the head of a frog, and the heart will continue to beat for some time afterwards. This phenomenon will be easily accounted for, if we recollect that respiration with these animals may be suspended a length of time, without arresting the movements of the heart.

In fact, as the heart dies only because the lungs die in the first place, when the cerebral functions are interrupted, it is plain that there ought to exist between the violent death of the heart and that of the brain, an interval nearly equal to that during which, in the natural state, there may be a suspension of respiration.