CHAPITRE VI.

Des Distillations pneumato-chimiques, des Dissolutions métalliques, & de quelques autres opérations qui exigent des Appareils très-compliqués.


§. PREMIER.
Des Distillations composées, & des Distillations pneumato-chimiques.

Je n'ai présenté dans le §. 5 du Chapitre précédent, la distillation, que comme une opération simple, dont l'objet est de séparer l'une de l'autre deux substances de volatilité différente: mais le plus souvent la distillation fait plus; elle opère une véritable décomposition du corps qui y est soumis: elle sort alors de la classe des opérations simples, & elle rentre dans l'ordre de celles qu'on peut regarder comme des plus compliquées de la chimie. Il est sans doute de l'essence de toute distillation, que la substance que l'on distille soit réduite à l'état de gaz dans la cucurbite par sa combinaison avec le calorique; mais dans la distillation simple ce même calorique se dépose dans le réfrigérent ou dans le serpentin, & la même substance reprend son état de liquidité. Il n'en est pas ainsi dans la distillation composée; il y a dans cette opération décomposition absolue de la substance soumise à la distillation: une portion telle que le charbon demeure fixe dans la cornue, tout le reste se réduit en gaz d'un grand nombre d'espèces. Les uns sont susceptibles de se condenser par le refroidissement, & de reparoître sous forme concrète & liquide; les autres demeurent constamment dans l'état aériforme; ceux-ci sont absorbables par l'eau, ceux-là le sont par les alkalis; enfin quelques-uns ne sont absorbables par aucune substance. Un appareil distillatoire ordinaire, & tel que ceux que j'ai décrits dans le chapitre précédent, ne suffiroit pas pour retenir & pour séparer des produits aussi variés: on est donc obligé d'avoir recours à des moyens beaucoup plus compliqués.

Je pourrois placer ici un historique des tentatives qui ont été successivement faites pour retenir les produits aériformes qui se dégagent des distillations; ce seroit une occasion de citer Hales, Rouelle, Woulfe & plusieurs autres chimistes célèbres; mais comme je me suis fait une loi d'être aussi concis qu'il seroit possible, j'ai pensé qu'il valoit mieux décrire tout d'un coup l'appareil le plus parfait, plutôt que de fatiguer le lecteur par le détail de tentatives infructueuses faites dans un tems où l'on n'avoit encore que des idées très-imparfaites sur la nature des gaz en général. L'appareil dont je vais donner la description est destiné à la plus compliquée de toutes les distillations: on pourra le simplifier ensuite suivant la nature des opérations.

A, planche IV, figure 1, représente une cornue de verre tubulée en H, dont le col B s'ajuste avec un ballon GC à deux pointes. A la tubulure supérieure D de ce ballon s'ajuste un tube de verre DEfg qui vient plonger par son extrêmité g dans la liqueur contenue dans la bouteille L. A la suite de la bouteille L qui est tubulée en xxx sont trois autres bouteilles L', L'', L''', qui ont de même trois tubulures ou gouleaux x', x', x'; x'', x'', x''; x''', x''', x'''. Chaque bouteille est liée par un tube de verre xyz', x'y'z'', x''y''z'''; enfin à la dernière tubulure de la bouteille L''' est adapté un tube x'''RM qui aboutit sous une cloche de verre, laquelle est placée sur la tablette de l'appareil pneumato-chimique. Communément on met dans la première bouteille un poids bien connu d'eau distillée, & dans les trois autres de la potasse caustique étendue d'eau: la tarre de ces bouteilles & le poids de la liqueur alkaline qu'elles contiennent doivent être déterminés avec un très-grand soin. Tout étant ainsi disposé, on lute toutes les jointures, savoir celle B de la cornue au ballon, & celle D de la tubulure supérieure du ballon avec du lut gras recouvert de toile imbibée de chaux & de blanc d'œuf, & toutes les autres avec un lut de térébenthine cuite & de cire fondues ensemble.

On voit d'après ces dispositions que lorsqu'on a mis le feu sous la cornue A, & que la substance qu'elle contient a commencé à se décomposer, les produits les moins volatils doivent se condenser & se sublimer dans le col même de la cornue, & que c'est principalement-là que doivent se rassembler les substances concrètes: que les matières plus volatiles telles que les huiles légères, l'ammoniaque & beaucoup d'autres substances, doivent se condenser dans le matras GC; que les gaz, au contraire, qui ne peuvent être condensés par le froid, doivent bouillonner à travers les liqueurs contenues dans les bouteilles LL'L''L'''; que tout ce qui est absorbable par l'eau doit rester dans la bouteille L; que tout ce qui est susceptible d'être absorbé par l'alkali doit rester dans les bouteilles L'L''L''', enfin que les gaz qui ne sont absorbables ni par l'eau, ni par les alkalis, doivent s'échapper par le tube RM, à la sortie duquel ils peuvent être reçus dans des cloches de verre. Enfin ce qu'on appeloit autrefois le caput mortuum, le charbon & la terre comme absolument fixes, doivent rester dans la cornue.

On a toujours dans cette manière d'opérer une preuve matérielle de l'exactitude du résultat; car le poids des matières en total doit être le même avant & après l'opération: si donc on a opéré par exemple sur 8 onces de gomme arabique ou d'amidon, le poids du résidu charbonneux qui restera dans la cornue A après l'opération, plus celui des produits rassemblés dans son col & dans le matras GC, plus celui du gaz rassemblé dans la cloche M, plus enfin l'augmentation de poids acquise par les bouteilles L, L', L'', L'''; tous ces poids, dis-je, réunis doivent former un total de 8 onces. S'il y a plus ou moins, il y a erreur, & il faut recommencer l'expérience jusqu'à ce qu'on ait un résultat dont on soit satisfait, & qui diffère à peine de 6 ou 8 grains par livre de matière mise en expérience.

J'ai rencontré long-tems dans ce genre d'expériences des difficultés presqu'insurmontables, & qui m'auroient obligé d'y renoncer, si je ne fusse parvenu enfin à les lever par un moyen très-simple, & dont M. Hassenfratz m'a fourni l'idée. Le moindre ralentissement dans le degré de feu du fourneau, & beaucoup d'autres circonstances inséparables de ce genre d'expériences occasionnent souvent des réabsorptions de gaz: l'eau de la cuve rentre rapidement dans la bouteille L''' par le tube x'''RM: la même chose arrive d'une bouteille à l'autre, & souvent la liqueur remonte jusques dans le ballon C. On prévient ces accidens en employant des bouteilles à trois tubulures, & en adaptant à l'une d'elles un tube capillaire St, s't', s''t'', s'''t''', dont le bout doit plonger dans la liqueur des bouteilles. S'il y a absorption soit dans la cornue, soit dans quelques-unes des bouteilles, il rentre par ces tubes de l'air extérieur qui remplace le vuide qui s'est formé, & on en est quitte pour avoir un petit mêlange d'air commun dans les produits; mais au moins l'expérience n'est pas entièrement manquée. Ces tubes peuvent bien admettre de l'air extérieur, mais ils ne peuvent en laisser échapper, parce qu'ils sont toujours bouchés dans leur partie inférieure tt't''t''' par le fluide des bouteilles.

On conçoit que pendant le cours de l'expérience, la liqueur des bouteilles doit remonter dans chacun de ces tubes à une hauteur relative à la pression qu'éprouve l'air ou le gaz contenu dans la bouteille; or cette pression est déterminée par la hauteur & par le poids de la colonne de liquide contenu dans toutes les bouteilles subséquentes. En supposant donc qu'il y ait trois pouces de liqueur dans chaque bouteille, que la hauteur de l'eau de la cuve soit également de trois pouces au-dessus de l'orifice du tuyau RM, enfin que la pesanteur spécifique des liqueurs contenues dans les bouteilles ne differe pas sensiblement de celle de l'eau; l'air de la bouteille L sera comprimé par un poids égal à celui d'une colonne d'eau de 12 pouces. L'eau s'élevera donc de 12 pouces dans le tube St, d'où il résulte qu'il faut donner à ce tube plus de 12 pouces de longueur au-dessus du niveau du liquide ab. Le tube s't' doit par la même raison avoir plus de 9 pouces, le tube s"t" plus de six, & le tube s'''t''' plus de trois. On doit au surplus donner à ces tubes plus que moins de longueur à cause des oscillations qui ont souvent lieu. On est obligé dans quelques cas d'introduire un semblable tube entre la cornue & le ballon; mais comme ce tube ne plonge point dans l'eau, comme il n'est point bouché par un liquide, au moins jusqu'à ce qu'il en ait passé par le progrès de la distillation, il faut en boucher l'ouverture supérieure avec un peu de lut, & ne l'ouvrir qu'au besoin, ou lorsqu'il y a assez de liquide dans le matras C pour fermer l'extrêmité du tube.

L'appareil dont je viens de donner la description, ne peut pas être employé dans des expériences exactes, toutes les fois que les matières qu'on se propose de traiter ont une action trop rapide l'une sur l'autre, ou lorsque l'une des deux ne doit être introduite que successivement & par petites parties, comme il arrive dans les mêlanges qui font une violente effervescence. On se sert alors d'une cornue tubulée A, planche VII, fig. 1. On y introduit l'une des deux substances, & de préférence celle qui est concrète, puis on adapte & on lute à la tubulure un tube recourbé BCDA terminé dans sa partie supérieure B en entonnoir, & par son extrêmité A en un tube capillaire: c'est par l'entonnoir B de ce tube qu'on verse la liqueur. Il faut que la hauteur BC soit assez grande pour que la liqueur qu'on doit introduire puisse faire équilibre avec la résistance occasionnée par celle contenue dans les bouteilles LL'L''L''', planche IV, figure 1.

Ceux qui n'ont pas l'habitude de se servir de l'appareil distillatoire que je viens de decrire, ne manqueront pas de s'effrayer de la grande quantité d'ouvertures qu'on est obligé de luter, & du tems qu'exigent les préliminaires de semblables expériences; & en effet si on fait entrer en ligne de compte les pesées qu'il est nécessaire de faire avant l'expérience & de répéter après, les préparatifs sont beaucoup plus longs que l'expérience elle-même. Mais aussi on est bien dédommagé de ses peines quand l'expérience réussit, & on acquiert en une seule fois plus de connoissances sur la nature de la substance animale ou végétale qu'on a soumise à la distillation, que par plusieurs semaines du travail le plus assidu.

A défaut de bouteilles triplement tubulées, on se sert de bouteilles à deux gouleaux: il est même possible de mettre les trois tubes dans la même ouverture, & de se servir de bouteilles ordinaires à gouleaux renversés pourvu que l'ouverture soit suffisamment grande. Il faut avoir soin d'ajuster sur les bouteilles des bouchons qu'on use avec une lime très-douce, & qu'on fait bouillir dans un mêlange d'huile, de cire & de térébenthine. On perce à travers ces bouchons avec une lime nommée queue de rat, voyez planche I, fig. 16, autant de trous qu'il est nécessaire pour le passage des tubes: on voit un de ces bouchons représenté, pl. IV, figure 8.

§. II.
Des Dissolutions métalliques.

J'ai déja fait sentir lorsque j'ai parlé de la solution des sels dans l'eau, combien il existoit de différence entre cette opération & la dissolution métallique. On a vu que la solution des sels n'exigeoit aucun appareil particulier, & que tout vase y étoit propre. Il n'en est pas de même de la dissolution des métaux; pour ne rien perdre dans cette dernière, & pour obtenir des résultats vraiment concluans, il faut employer des appareils très-compliqués, & dont l'invention appartient absolument aux chimistes de notre âge.

Les métaux en général se dissolvent avec effervescence dans les acides; or l'effet auquel on a donné le nom d'effervescence n'est autre chose qu'un mouvement excité dans la liqueur dissolvante par le dégagement d'un grand nombre de bulles d'air ou de fluide aériforme qui partent de la surface du métal, & qui crèvent en sortant de la liqueur dissolvante.

M. Cavendish & M. Priestley sont les premiers qui aient imaginé des appareils simples pour recueillir ces fluides élastiques. Celui de M. Priestley consiste en une bouteille A, pl. VII, figure 2, bouchée en B avec un bouchon de liège troué dans son milieu, & qui laisse passer un tube de verre recourbé en BC, qui s'engage sous des cloches remplies d'eau, & renversées dans un bassin plein d'eau: on commence par introduire le métal dans la bouteille A, on verse l'acide par-dessus, puis on bouche avec le bouchon garni de son tube BC.

Mais cet appareil n'est pas sans inconvénient, du moins pour des expériences très-exactes. Premièrement lorsque l'acide est très-concentré, & que le métal est très-divisé, l'effervescence commence souvent avant qu'on ait eu le tems de boucher la bouteille; il y a perte de gaz, & on ne peut plus déterminer les quantités avec exactitude. Secondement dans toutes les opérations où l'on est obligé de faire chauffer, il y a une partie de l'acide qui se distille & qui se mêle avec l'eau de la cuve; en sorte qu'on se trompe dans le calcul des quantités d'acide décomposées. Troisièmement enfin l'eau de la cuve absorbe tous les gaz susceptibles de se combiner avec l'eau, & il est impossible de les recueillir sans perte.

Pour remédier à ces inconvéniens, j'avois d'abord imaginé d'adapter à une bouteille à deux gouleaux A, planche VII, figure 3, un entonnoir de verre BC qu'on y lute de manière à ne laisser aucune issue à l'air. Dans cet entonnoir entre une tige de cristal DE usée en D à l'émeri avec l'entonnoir, de manière à le fermer comme le bouchon d'un flacon.

Lorsqu'on veut opérer, on commence par introduire dans la bouteille A la matière à dissoudre: on lute l'entonnoir, on le bouche avec la tige DE, puis on y verse de l'acide qu'on fait passer dans la bouteille en aussi petite quantité que l'on veut, en soulevant doucement la tige: on répète successivement cette opération jusqu'à ce qu'on soit arrivé au point de saturation.

On a employé depuis un autre moyen qui remplit le même objet, & qui dans certains cas est préférable: j'en ai déjà donné une idée dans le paragraphe précédent. Il consiste à adapter à l'une des tubulures de la bouteille A, pl. VII, fig. 4, un tube recourbé DEFG terminé en D par une couverture capillaire, & en G par un entonnoir soudé au tube; on le lute soigneusement & solidement dans la tubulure C. Lorsqu'on verse une petite goutte de liqueur dans le tube par l'entonnoir G, elle tombe dans la partie F; si on en ajoute davantage, elle parvient à dépasser la courbure E & à s'introduire dans la bouteille A: l'écoulement dure tant qu'on fournit de nouvelle liqueur par l'entonnoir G. On conçoit qu'elle ne peut jamais être chassée en dehors du tube EFG, & qu'il ne peut jamais sortir d'air ou de gaz de la bouteille; parce que le poids de la liqueur l'en empêche & fait l'effet d'un véritable bouchon.

Pour remédier au second inconvénient, à celui de la distillation de l'acide, qui s'opère sur-tout dans les dissolutions qui sont accompagnées de chaleur, on adapte à la cornue A, planc. VII, fig. 1, un petit matras tubulé M qui reçoit la liqueur qui se condense.

Enfin pour séparer les gaz absorbables par l'eau, tel que le gaz acide carbonique, on ajoute une bouteille L à deux gouleaux dans laquelle on met de l'alkali pur étendu d'eau: l'alkali absorbe tout le gaz acide carbonique, & il ne passe plus, communément, sous la cloche par le tube NO, qu'une ou deux espèces de gaz tout au plus: on a vu dans le premier chapitre de cette troisième partie comment on parvenoit à les séparer. Si une bouteille d'alkali ne suffit pas, on en ajoute jusqu'à trois & quatre.

§. III.
Des Appareils relatifs aux fermentations vineuse & putride.

La fermentation vineuse & la fermentation putride exigent des appareils particuliers, & destinés uniquement à ce genre d'expériences. Je vais décrire celui que j'ai cru devoir définitivement adopter, après y avoir fait successivement un grand nombre de corrections.

On prend un grand matras A, planche X, d'environ 12 pintes de capacité: on y adapte une virole de cuivre ab solidement mastiquée, & dans laquelle se visse un tuyau coudé cd garni d'un robinet e. A ce tuyau s'adapte une espèce de récipient de verre à trois pointes B, au-dessous duquel est placée une bouteille C avec laquelle il communique. A la suite du récipient B est un tube de verre ghi, mastiqué en g & en i avec des viroles de cuivre: il est destiné à recevoir un sel concret très-déliquescent, tel que du nitrate ou du muriate de chaux, de l'acétite de potasse, &c.

Enfin ce tube est suivi de deux bouteilles D, E, remplies jusqu'en xy d'alkali dissous dans l'eau, & bien dépouillé d'acide carbonique.

Toutes les parties de cet appareil sont réunies les unes avec les autres par le moyen de vis & d'écrous qui se serrent; les points de contact sont garnis de cuir gras qui empêche tout passage de l'air: enfin chaque pièce est garnie de deux robinets, de manière qu'on peut la fermer par ses deux extrêmités, & peser ainsi chacune séparément à toutes les époques de l'expérience qu'on le juge à propos.

C'est dans le ballon A qu'on met la matière fermentescible, du sucre par exemple, & de la levure de bière étendue d'une suffisante quantité d'eau & dont le poids est bien déterminé. Quelquefois lorsque la fermentation est trop rapide, il se forme une quantité considérable d'écume qui non-seulement remplit le col du ballon, mais qui passe dans le récipient B & coule dans la bouteille C. C'est pour recueillir cette mousse & empêcher qu'elle ne passe dans le tube déliquescent, qu'on a donné une capacité considérable au récipient B & à la bouteille C.

Il ne se dégage dans la fermentation du sucre, c'est-à-dire dans la fermentation vineuse, que de l'acide carbonique qui emporte avec lui un peu d'eau qu'il tient en dissolution. Il en dépose une grande partie en passant par le tube ghi qui contient un sel déliquescent en poudre grossière, & on en connoît la quantité par l'augmentation de poids acquise par le sel. Ce même acide carbonique bouillonne ensuite à travers la liqueur alkaline de la bouteille D, dans laquelle il est conduit par le tube klm. La petite portion qui n'a point été absorbée par l'alkali contenu dans cette première bouteille, n'échappe point à la seconde E, & ordinairement il ne passe absolument rien sous la cloche F, si ce n'est l'air commun qui étoit contenu au commencement de l'expérience dans le vuide des vaisseaux.

Le même appareil peut servir pour les fermentations putrides; mais alors il passe une quantité considérable de gaz hydrogène par le tube qrstu, lequel est reçu dans la cloche F; & comme le dégagement est rapide, sur-tout en été, il faut la changer fréquemment. Ces fermentations exigent en conséquence une surveillance continuelle, tandis que la fermentation vineuse n'en exige aucune.

On voit qu'au moyen de cet appareil on peut connoître avec une grande précision le poids des matériaux mis à fermenter, & celui de tous les produits liquides ou aériformes qui s'en sont dégagés. On peut voir les détails dans lesquels je suis entré sur le résultat de la fermentation vineuse, dans le Chapitre XIII de la première partie de cet Ouvrage, page 139.

§. IV.
Appareil particulier pour la décomposition de l'eau.

J'ai déjà exposé, dans la première Partie de cet Ouvrage, Chapitre VIII, page 87, les expériences relatives à la décomposition de l'eau; j'éviterai donc des répétitions inutiles, & je me bornerai à des observations très-sommaires. Les matières qui ont la propriété de décomposer l'eau, sont principalement le fer & le charbon; mais il faut pour cela qu'ils soient portés à une chaleur rouge: sans cette condition l'eau se réduit simplement en vapeurs, & elle se condense ensuite par le refroidissement, sans avoir éprouvé la moindre altération: à une chaleur rouge au contraire, le fer & le charbon enlèvent l'oxygène à l'hydrogène; dans le premier cas il se forme de l'oxide noir de fer, & l'hydrogène se dégage libre & pur sous la forme de gaz; dans le second il se forme du gaz acide carbonique qui se dégage mêlé avec le gaz hydrogène, & ce dernier est communément carbonisé.

On se sert avec avantage, pour décomposer l'eau par le fer, d'un canon de fusil dont on ôte la culasse. On trouve aisément de ces sortes de canons chez les marchands de féraille. On doit choisir les plus longs & les plus forts: lorsqu'ils sont trop courts & qu'on craint que les luts ne s'échauffent trop, on y fait souder en soudure forte un bout de tuyau de cuivre. On place ce tuyau de fer dans un fourneau allongé CDEF, planche VII, fig. 11, en lui donnant une inclinaison de quelques degrés de E en F: cette inclinaison doit être un peu plus grande qu'elle n'est présentée dans la fig. 11. On adapte à la partie supérieure E de ce tuyau, une cornue de verre qui contient de l'eau & qui est placée sur un fourneau VVXX. On le lute par son extrêmité inférieure F avec un serpentin SS', qui s'adapte lui-même avec un flacon tubulé H, où se rassemble l'eau qui a échappé à la décomposition. Enfin le gaz qui se dégage est porté à la cuve où il est reçu sous des cloches par le tube KK adapté à la tubulure K du flacon H. Au lieu de la cornue A, on peut employer un entonnoir fermé d'un robinet par le bas, & par lequel on laisse couler l'eau goutte à goutte. Si-tôt que cette eau est parvenue à la partie où le tube est échauffé, elle se vaporise, & l'expérience a lieu de la même manière que si elle étoit fournie en vapeurs par le moyen de la cornue A.

Dans l'expérience que nous avons faite, M. Meusnier & moi, en présence des Commissaires de l'Académie, nous n'avions rien négligé pour obtenir la plus grande précision possible dans les résultats; nous avions même porté le scrupule jusqu'à faire le vuide dans les vaisseaux avant de commencer l'expérience, afin que le gaz hydrogène que nous obtiendrions fût exempt de mêlange de gaz azote. Nous rendrons compte à l'Académie, dans un très-grand détail, des résultats que nous avons obtenus.

Dans un grand nombre de recherches on est obligé de substituer au canon de fusil des tubes de verre, de porcelaine ou de cuivre. Mais les premiers ont l'inconvénient d'être faciles à fondre: pour peu que l'expérience ne soit pas bien ménagée, le tube s'applatit & se déforme. Les tubes de porcelaine sont la plupart percés d'une infinité de petits trous imperceptibles par lesquels le gaz s'échappe, surtout s'il est comprimé par une colonne d'eau. C'est ce qui m'a déterminé à me procurer un tube de cuivre rouge, que M. de la Briche a bien voulu faire couler plein & faire forer sous ses yeux à Strasbourg. Ce tube est très-commode pour opérer la décomposition de l'alkool: on sait en effet qu'exposé à une chaleur rouge, il se résout en carbone, en gaz acide carbonique & en gaz hydrogène. Ce même tube peut également servir à la décomposition de l'eau par le carbone, & à un grand nombre d'expériences.

§. V.
De la préparation & de l'emploi des Luts.

Si dans un tems où l'on perdoit une grande partie des produits de la distillation, où l'on ne tenoit aucun compte de tout ce qui se séparoit sous forme de gaz, en un mot où l'on ne faisoit aucune expérience exacte & rigoureuse, on sentoit déjà la nécessité de bien luter les jointures des appareils distillatoires; combien cette opération manuelle & mécanique n'est-elle pas devenue plus importante, depuis qu'on ne se permet plus de rien perdre dans les distillations & dans les dissolutions, depuis qu'on exige qu'un grand nombre de vaisseaux réunis ensemble se comportent comme s'ils n'étoient que d'une seule pièce, & comme s'ils étoient hermétiquement fermés; enfin depuis qu'on n'est plus satisfait des expériences, qu'autant que la somme du poids des produits obtenus est égale à celui des matériaux mis en expérience.

La première condition qu'on exige de tout lut destiné à fermer les jointures des vaisseaux, est d'être aussi imperméable que le verre lui-même, de manière qu'aucune matière, si subtile qu'elle soit, à l'exception du calorique, ne puisse le pénétrer. Une livre de cire fondue avec une once & demie ou deux onces de térébenthine, remplissent très-bien ce premier objet; il en résulte un lut facile à manier, qui s'attache fortement au verre & qui ne se laisse pas facilement pénétrer: on peut lui donner plus de consistance & le rendre plus ou moins dur, plus ou moins sec, plus ou moins souple, en y ajoutant différentes résines. Cette classe de luts a l'avantage de pouvoir se ramollir par la chaleur, ce qui les rend commodes pour fermer promptement les jointures des vaisseaux: mais, quelque parfaits qu'ils soient pour contenir les gaz & les vapeurs, il s'en faut bien qu'ils puissent être d'un usage général. Dans presque toutes les opérations chimiques, les luts sont exposés à une chaleur considérable & souvent supérieure au degré de l'eau bouillante: or à ce degré les résines se ramollissent, elles deviennent presque liquides, & les vapeurs expansives contenues dans les vaisseaux se font bientôt jour & bouillonnent à travers.

On a donc été obligé d'avoir recours à des matières plus propres à résister à la chaleur, & voici le lut auquel les Chimistes se sont arrêtés après beaucoup de tentatives; non pas qu'il n'ait quelques inconvéniens, comme je le dirai bientôt, mais parce qu'à tout prendre c'est encore celui qui réunit le plus d'avantages. Je vais donner quelques détails sur sa préparation & sur-tout sur son emploi: une longue expérience en ce genre m'a mis en état d'applanir aux autres un grand nombre de difficultés.

L'espèce de lut dont je parle dans ce moment, est connue des Chimistes sous le nom de lut gras. Pour le préparer on prend de l'argile non cuite, pure & très-sèche; on la réduit en poudre fine, & on la passe au tamis de soie. On la met ensuite dans un mortier de fonte, & on la bat pendant plusieurs heures à coups redoublés avec un lourd pilon de fer, en l'arrosant peu à peu avec de l'huile de lin cuite, c'est-à-dire, avec de l'huile de lin qu'on a oxygénée & rendue siccative par l'addition d'un peu de litharge. Ce lut est encore meilleur & plus tenace, il s'attache mieux au verre quand, au lieu d'huile grasse ordinaire, on emploie du vernis gras au succin. Ce vernis n'est autre chose qu'une dissolution de succin ou ambre jaune dans de l'huile de lin; mais cette dissolution n'a lieu qu'autant que le succin a été préalablement fondu seul: il perd dans cette opération préalable un peu d'acide succinique & un peu d'huile. Le lut fait avec le vernis gras est, comme je l'ai dit, un peu préférable à celui fait avec de l'huile de lin seul; mais il est beaucoup plus cher, & l'excédent de qualité qu'on acquiert n'est pas en proportion de l'excédent du prix: aussi est-il rarement employé.

Le lut gras résiste très-bien à un degré de chaleur même assez violent: il est imperméable aux acides & aux liqueurs spiritueuses; il prend bien sur les métaux, sur le grès, sur la porcelaine & sur le verre, mais pourvu qu'ils ayent été préalablement bien séchés. Si par malheur dans le cours d'une opération la liqueur en distillation s'est fait jour & qu'il ait pénétré quelque peu d'humidité, soit entre le verre & le lut, soit entre différentes couches même du lut, il est d'une extrême difficulté de reboucher les ouvertures qui se sont formées; & c'est un des principaux inconvéniens, peut-être le seul, que présente l'usage du lut gras.

La chaleur ramollit ce lut, & même au point de le faire couler; il a besoin en conséquence d'être contenu. Le meilleur moyen est de le recouvrir avec des bandes de vessie, qu'on mouille & qu'on tortille tout autour. On fait ensuite une ligature avec de gros fil au dessus & au-dessous du lut, puis on passe par-dessus le lut même & par conséquent par-dessus la vessie qui le recouvre, un grand nombre de tours de fil: un lut arrangé avec ces précautions, est à l'abri de tout accident.

Très-souvent la figure des jointures des vaisseaux ne permet pas d'y faire une ligature, & c'est ce qui arrive au col des bouteilles à trois gouleaux: il faut d'ailleurs beaucoup d'adresse pour serrer suffisamment le fil sans ébranler l'appareil, & dans les expériences où les luts sont très-multipliés, on en dérangeroit souvent plusieurs pour en arranger un seul. Alors on substitue à la vessie & à la ligature des bandes de toile imbibées de blanc d'œuf dans lequel on a délayé de la chaux. On applique sur le lut gras les bandes de toile encore humides; en peu de tems elles se sèchent & acquièrent une assez grande dureté. On peut appliquer ces mêmes bandes sur les luts de cire & de résine. De la colle forte délayée dans de l'eau, peut suppléer au blanc d'œuf.

La première attention qu'on doit avoir avant d'appliquer un lut quelconque sur les jointures des vaisseaux, est de les asseoir & de les assujétir solidement, de manière qu'ils ne puissent se prêter à aucun mouvement. Si c'est le col d'une cornue qu'on veut luter à celui d'un récipient, il faut qu'il y entre à peu près juste; s'il y a un peu de jeu, il faut assujétir les deux vaisseaux en introduisant entre leurs cols de petits morceaux fort courts d'alumettes ou de bouchon. Si la disproportion des deux cols est trop grande, on choisit un bouchon qui entre juste dans le col du matras ou récipient; on fait au milieu de ce bouchon un trou rond de la grosseur nécessaire pour recevoir le col de la cornue.

La même précaution est nécessaire à l'égard des tubes recourbés, qui doivent être lutés à des gouleaux de bouteille, comme dans la planche IV, fig. 1. On commence par choisir un bouchon qui entre juste dans le gouleau; puis on le perce d'un trou avec une lime d'une espèce nommée queue de rat. Voyez une de ces limes représentée planc. I, fig. 16. Quand un même gouleau est destiné à recevoir deux tubes, ce qui arrive très-souvent, sur-tout à défaut de bouteilles à deux & à trois gouleaux, on perce le bouchon de deux & de trois trous, pour qu'il puisse recevoir deux ou trois tubes. On voit un de ces bouchons représenté pl. IV, fig. 8.

Ce n'est que lorsque l'appareil est ainsi solidement assujetti & de manière à ce qu'aucune partie n'en puisse jouer, qu'on doit commencer à luter. On ramollit d'abord à cet effet le lut, en le pêtrissant; quelquefois même, sur-tout en hiver, on est obligé de le faire légèrement chauffer: on le roule ensuite entre les doigts, pour le réduire en petits cylindres qu'on applique sur les vases qu'on veut luter, en ayant soin de les appuyer & de les applatir sur le verre, afin qu'ils y contractent de l'adhérence. A un premier petit cylindre on en ajoute un second, qu'on applatit également, mais de manière que son bord empiète sur le précédent, & ainsi de suite. Quelque simple que soit cette opération, il n'est pas donné à tout le monde de la bien faire, & il n'est pas rare de voir les personnes peu au fait, recommencer un grand nombre de fois des luts sans succès, tandis que d'autres y réussissent avec certitude & dès la première fois. Le lut fait, on le recouvre, comme je l'ai dit, avec de la vessie bien ficelée & bien serrée, ou avec des bandes de toile imbibées de blanc d'œuf & de chaux. Je répéterai encore qu'il faut bien prendre garde, en faisant un lut & sur-tout en le ficelant, d'ébranler tous les autres; autrement on détruiroit son propre ouvrage, & on ne parviendroit jamais à clôre les vaisseaux.

On ne doit jamais commencer une expérience, sans avoir essayé préalablement les luts. Il suffit pour cela, ou de chauffer très-légèrement la cornue A, planc. IV, fig. 1, ou de souffler de l'air par quelques-uns des tubes ss's''s'''; le changement de pression qui en résulte, doit changer le niveau de la liqueur dans tous les tubes; mais si l'appareil perd air de quelque part, la liqueur se remet bientôt à son niveau; elle reste au contraire constamment, soit au-dessus, soit au-dessous, si l'appareil est bien fermé.

On ne doit pas oublier que c'est de la manière de luter, de la patience, de l'exactitude qu'on y apporte, que dépendent tous les succès de la Chimie moderne: il n'est donc point d'opération qui demande plus de soins & d'attention.

Ce seroit un grand service à rendre aux Chimistes & sur-tout aux Chimistes pneumatiques, que de les mettre en état de se passer de luts, ou du moins d'en diminuer considérablement le nombre. J'avois d'abord pensé à faire construire des appareils dont toutes les parties fussent bouchées à frottement, comme les flacons bouchés en cristal; mais l'exécution m'a présenté d'assez grandes difficultés. Il m'a paru préférable de suppléer aux luts par le moyen de colonnes de mercure, de quelques lignes de hauteur. Je viens de faire exécuter dans cette vue un appareil dont je vais donner la description, & dont l'usage me paroît pouvoir être utile & commode dans un grand nombre de circonstances.

Il consiste dans une bouteille A, planche XII, fig. 12, à double gouleau; l'un intérieur bc, communique avec le dedans de la bouteille; l'autre extérieur de, qui laisse un intervalle entre lui & le précédent, & qui forme tout autour une profonde rigole db, ce, destinée à recevoir du mercure. C'est dans cette rigole qu'entre & s'ajuste le couvercle de verre B. Il a par le bas des échancrures pour le passage des tubes de verre destinés au dégagement des gaz. Ces tubes, au lieu de plonger directement dans la bouteille A, comme dans les appareils ordinaires, se contournent auparavant, comme on le voit fig. 13, pour s'enfoncer dans la rigole, & pour passer par-dessous les échancrures du couvercle B: ils remontent ensuite pour entrer dans la bouteille, en passant par-dessus les bords du gouleau intérieur.

Il est aisé de voir que, lorsque les tubes ont été mis en place, que le couvercle B a été solidement assujetti, & que la rigole db, ce a été remplie de mercure, la bouteille se trouve fermée & ne communique plus à l'extérieur que par les tubes.

Un appareil de cette espèce sera très-commode dans un grand nombre d'expériences; mais on ne pourra le mettre en usage que dans la distillation des matières qui n'ont point d'action sur le mercure.

M. Séguin, dont les secours actifs & intelligens m'ont été si souvent utiles, a même déjà commandé dans les verreries des cornues jointes hermétiquement à des récipiens; en sorte qu'il seroit possible de parvenir à n'avoir plus aucun lut. On voit, planche XII, fig. 14, un appareil monté d'après les principes que je viens d'exposer.