CHAPITRE VIII.
Des Instrumens nécessaires pour opérer sur les corps à de très-hautes températures.
§. PREMIER.
De la Fusion.
Lorsqu'on écarte les unes des autres, par le moyen de l'eau, les molécules d'un sel, cette opération, comme nous l'avons vu plus haut, se nomme solution. Ni le dissolvant, ni le corps tenu en dissolution ne sont décomposés dans cette opération; aussi dès l'instant que la cause qui tenoit les molécules écartées cesse, elles se réunissent, & la substance saline reparoît telle qu'elle étoit ayant la solution.
On opère aussi de véritables solutions par le feu, c'est-à-dire, en introduisant & en accumulant entre les molécules d'un corps une grande quantité de calorique. Cette solution des corps par le feu se nomme fusion.
Les fusions en général se font dans des vases que l'on nomme creusets, & l'une des premières conditions est qu'ils soient moins fusibles que la substance qu'ils doivent contenir. Les Chimistes de tous les âges ont en conséquence attaché une grande importance à se procurer des creusets de matières très-réfractaires, c'est-à-dire, qui eussent la propriété de résister à un très-grand degré de feu. Les meilleurs sont ceux qui sont faits avec de l'argile très-pure ou de la terre à porcelaine. On doit éviter d'employer pour cet usage les argiles mêlangées de silice ou de terre calcaire, parce qu'elles sont trop fusibles. Toutes celles qu'on tire aux environs de Paris sont dans ce cas; aussi les creusets qu'on fabrique dans cette ville fondent-ils à une chaleur assez médiocre, & ne peuvent-ils servir que dans un très-petit nombre d'opérations chimiques. Ceux qui viennent de Hesse sont assez bons, mais on doit préférer ceux de terre de Limoges qui paroissent être absolument infusibles. Il existe en France un grand nombre d'argiles propres à faire des creusets; telle est celle, par exemple, dont on se sert pour les creusets de la glacerie de Saint-Gobin.
On donne aux creusets différentes formes, suivant les opérations auxquelles on se propose de les employer. On a représenté celles qui sont le plus usitées dans les fig. 7, 8, 9 & 10 de la planche VII. Ceux représentés figure 9, qui sont presque fermés par en haut, se nomment tutes.
Quoique la fusion puisse souvent avoir lieu sans que le corps qui y est soumis change de nature & se décompose, cette opération est cependant aussi un des moyens de décomposition & de recomposition que la Chimie emploie. C'est par la fusion qu'on extrait tous les métaux de leurs mines, qu'on les revivifie, qu'on les moule, qu'on les allie les uns aux autres; c'est par elle que l'on combine l'alkali & le sable pour former du verre, que se fabriquent les pierres colorées, les émaux, &c.
Les anciens Chimistes employoient beaucoup plus fréquemment l'action d'un feu violent, que nous ne le faisons aujourd'hui. Depuis qu'on a introduit plus de rigueur dans la manière de faire des expériences, on préfère la voie humide à la voie sèche, & on n'a recours à la fusion que lorsqu'on a épuisé tous les autres moyens d'analyse.
Pour appliquer aux corps l'action du feu, on se sert de fourneaux, & il me reste à décrire ceux qu'on emploie pour les différentes opérations de la Chimie.
§. II.
Des Fourneaux.
Les fourneaux sont les instrumens dont on fait le plus d'usage en Chimie: c'est de leur bonne ou de leur mauvaise construction que dépend le sort d'un grand nombre d'opérations; en sorte qu'il est d'une extrême importance de bien monter un laboratoire en ce genre. Un fourneau est une espèce de tour cylindrique creuse ABCD, quelquefois un peu évasée par le haut, planche XIII, fig. 1. Elle doit avoir au moins deux ouvertures latérales, une supérieure F qui est la porte du foyer, une inférieure G qui est la porte du cendrier.
Dans l'intervalle de ces deux portes le fourneau est partagé en deux par une grille placée horisontalement, qui forme une espèce de diaphragme & qui est destinée à soutenir le charbon. On a indiqué la place de cette grille par la ligne HI. La capacité qui est au-dessus de la grille, c'est-à-dire au-dessus de la ligne HI, se nomme foyer, parce qu'en effet c'est dans cette partie que l'on entretient le feu; la capacité qui est au-dessous porte le nom de cendrier, par la raison que c'est dans cette partie que se rassemblent les cendres à mesure qu'elles se forment.
Le fourneau représenté planche XIII, fig. 1, est le moins compliqué de tous ceux dont on se sert en Chimie, & il peut être employé cependant à un grand nombre d'usages. On peut y placer des creusets, y fondre du plomb, de l'étain, du bismuth, & en général toutes les matières qui n'exigent pas pour être fondues, un degré de feu très-considérable. On peut y faire des calcinations métalliques, placer dessus des bassines, des vaisseaux évaporatoires, des capsules de fer pour former des bains de sable, comme on le voit représenté pl. III, fig. 1 & 2. C'est pour le rendre applicable à ces différentes opérations, qu'on a ménagé dans le haut des échancrures mmmm; autrement la bassine qu'on auroit posée sur le fourneau auroit intercepté tout passage à l'air, & le charbon se seroit éteint. Si ce fourneau ne produit qu'un degré de chaleur médiocre, c'est que la quantité de charbon qu'il peut consommer est limitée par la quantité d'air qui peut passer par l'ouverture G du cendrier. On augmenteroit beaucoup son effet, en aggrandissant cette ouverture; mais le grand courant d'air qui conviendroit dans quelques expériences, auroit de l'inconvénient dans beaucoup d'autres, & c'est ce qui oblige de garnir un laboratoire de fourneaux de différentes formes & construits sous différens points de vue. Il en faut sur-tout plusieurs semblables à celui que je viens de décrire, & de différentes grandeurs.
Une autre espèce de fourneau, peut-être encore plus nécessaire, est le fourneau de réverbère représenté planche XIII, figure 2. Il est composé, comme le fourneau simple, d'un cendrier HIKL dans sa partie inférieure, d'un foyer KLMN, d'un laboratoire MNOP, d'un dôme RSRS; enfin le dôme est surmonté d'un tuyau TTVV, auquel on peut en ajouter plusieurs autres, suivant le genre des expériences.
C'est dans la partie MNOP nommée le laboratoire, que se place la cornue A qu'on a indiquée par une ligne ponctuée; elle y est soutenue sur deux barres de fer qui traversent le fourneau. Son col sort par une échancrure latérale faite partie dans la pièce qui forme le laboratoire, partie dans celle qui forme le dôme. A cette cornue s'adapte un récipient B.
Dans la plupart des fourneaux de réverbère qui se trouvent tout faits chez les potiers de terre à Paris, les ouvertures tant inférieures que supérieures sont beaucoup trop petites; elles ne donnent point passage à un volume d'air assez considérable; & comme la quantité de charbon consommée, ou, ce qui revient au même, comme la quantité de calorique dégagée est à peu près proportionnelle à la quantité d'air qui passe par le fourneau, il en résulte que ces fourneaux ne produisent pas tout l'effet qu'on pourroit desirer dans un grand nombre d'opérations. Pour admettre d'abord par le bas un volume d'air suffisant, il faut, au lieu d'une ouverture G au cendrier, en avoir deux GG: on en condamne une lorsqu'on le juge à propos, & alors on n'obtient plus qu'un degré de feu modéré; on les ouvre au contraire l'une & l'autre, quand on veut donner le plus grand coup de feu que le fourneau puisse produire.
L'ouverture supérieure SS du dôme, ainsi que celle des tuyaux VVXX, doit être aussi beaucoup plus grande qu'on n'a coutume de la faire.
Il est important de ne point employer des cornues trop grosses relativement à la grandeur du fourneau. Il faut qu'il y ait toujours un espace suffisant pour le passage de l'air entre les parois du fourneau & celles du vaisseau qui y est contenu. La cornue A dans la figure 2 est un peu trop petite pour ce fourneau, & je trouve plus facile d'en avertir que de faire rectifier la figure.
Le dôme a pour objet d'obliger la flamme & la chaleur à environner de toutes parts la cornue & de la réverbérer; c'est de-là qu'est venu le nom de fourneau de réverbère. Sans cette réverbération de la chaleur, la cornue ne seroit échauffée que par son fond; les vapeurs qui s'en élèveroient se condenseroient dans la partie supérieure, elles se recohoberoient continuellement sans passer dans le récipient: mais au moyen du dôme, la cornue se trouve échauffée de toutes parts; les vapeurs ne peuvent donc se condenser que dans le col & dans le récipient, & elles sont forcées de sortir de la cornue.
Quelquefois, pour empêcher que le fond de la cornue ne soit échauffé ou refroidi trop brusquement, & pour éviter que ces alternatives de chaud & de froid n'en occasionnent la fracture, on place sur les barres une petite capsule de terre cuite dans laquelle on met un peu de sable, & on pose sur ce sable le fond de la cornue.
Dans beaucoup d'opérations on enduit les cornues de différens luts. Quelques-uns de ces luts n'ont pour objet que de les défendre des alternatives de chaud & de froid; quelquefois ils ont pour objet de contenir le verre, ou plutôt de former une double cornue qui supplée à celle de verre dans les opérations où le degré de feu est assez fort pour le ramollir.
Le premier de ces luts se fait avec de la terre à four à laquelle on joint un peu de bourre ou poil de vache: on fait une pâte de ces matières, & on l'étend sur les cornues de verre ou de grès. Si au lieu de terre à four qui est déjà mêlangée, on n'avoit que de l'argile ou de la glaise pure, il faudroit y ajouter du sable. A l'égard de la bourre, elle est utile pour mieux lier ensemble la terre: elle brûle à la première impression du feu; mais les interstices qu'elle laisse empêchent que l'eau qui est contenue dans la terre, en se vaporisant, ne rompe la continuité du lut & qu'il ne tombe en poussière.
Le second lut est composé d'argile & de fragmens de poteries de grès grossièrement pilés. On en fait une pâte assez ferme, qu'on étend sur les cornues. Ce lut se dessèche & se durcit par le feu, & forme lui-même une véritable cornue supplémentaire, qui contient les matières quand la cornue de verre vient à se ramollir. Mais ce lut n'est d'aucune utilité dans les expériences où on a pour objet de recueillir les gaz, parce qu'il est toujours poreux & que les fluides aériformes passent au travers.
Dans un grand nombre d'opérations, & en général toutes les fois qu'on n'a pas besoin de donner aux corps qu'on traite un degré de chaleur très-violent, le fourneau de réverbère peut servir de fourneau de fusion. On supprime alors le laboratoire MNOP, & on établit à la place le dôme RSRS, comme on le voit représenté planche XIII, fig. 3.
Un fourneau de fusion très-commode est celui représenté figure 4. Il est composé d'un foyer ABCD, d'un cendrier sans porte & d'un dôme ABGH. Il est troué en E pour recevoir le bout d'un soufflet qu'on y lute solidement. Il doit être proportionnellement moins haut qu'il n'est représenté dans la figure. Ce fourneau ne procure pas un degré de feu très-violent; mais il suffit pour toutes les opérations courantes. Il a de plus l'avantage d'être transporté commodément, & de pouvoir être placé dans tel lieu du laboratoire qu'on le juge à propos. Mais ces fourneaux particuliers ne dispensent pas d'avoir dans un laboratoire une forge garnie d'un bon soufflet, & ce qui est encore plus important, un bon fourneau de fusion. Je vais donner la description de celui dont je me sers, & détailler les principes d'après lesquels je l'ai construit.
L'air ne circule dans un fourneau que parce qu'il s'échauffe en passant à travers les charbons: alors il se dilate; devenu plus léger que l'air environnant, il est forcé de monter par la pression des colonnes latérales, & il est remplacé par de nouvel air qui arrive de toutes parts, principalement par-dessous. Cette circulation de l'air a lieu lorsque l'on brûle du charbon même dans un simple réchaut: mais il est aisé de concevoir que la masse d'air qui passe par un fourneau ainsi ouvert de toutes parts, ne peut pas être, toutes choses d'ailleurs égales, aussi grande que celle qui est contrainte de passer par un fourneau formé en tour creuse, comme le sont en général les fourneaux chimiques, & que par conséquent la combustion ne peut pas y être aussi rapide.
Soit supposé, par exemple, un fourneau ABCDEF, planche XIII, figure 5, ouvert par le haut & rempli de charbons ardens; la force avec laquelle l'air sera obligé de passer à travers les charbons, sera mesurée par la différence de pesanteur spécifique de deux colonnes AC, l'une d'air froid pris en-dehors du fourneau, l'autre d'air chaud pris en-dedans. Ce n'est pas qu'il n'y ait encore de l'air échauffé au-dessus de l'ouverture AB du fourneau, & il est certain que son excès de légèreté doit entrer aussi pour quelque chose dans le calcul; mais comme cet air chaud est continuellement refroidi & emporté par l'air extérieur, cette portion ne peut pas faire beaucoup d'effet.
Mais si à ce même fourneau on ajoute un grand tuyau creux de même diamètre que lui GHAB, qui défende l'air qui a été échauffé par les charbons ardens, d'être refroidi, dispersé & emporté par l'air environnant, la différence de pesanteur spécifique en vertu de laquelle s'opérera la circulation de l'air, ne sera plus celle de deux colonnes AC, l'une extérieure, l'autre intérieure; ce sera celle de deux colonnes égales à GC. Or, à chaleur égale, si la colonne GC = 3AC, la circulation de l'air se fera en raison d'une force triple. Il est vrai que je suppose ici que l'air contenu dans la capacité GHCD est autant échauffé que l'étoit l'air contenu dans la capacité ABCD, ce qui n'est pas rigoureusement vrai; car la chaleur doit décroître de AB à GH: mais comme il est évident que l'air de la capacité GHAB est beaucoup plus chaud que l'air extérieur, il en résulte toujours que l'addition de la tour creuse GHAB augmente la rapidité du courant d'air, qu'il en passe plus à travers les charbons, & que par conséquent il y aura plus de combustion.
Conclurons-nous de ces principes qu'il faille augmenter indéfiniment la longueur du tuyau GHAB? Non sans doute; car puisque la chaleur de l'air diminue de AB en GH, ne fût-ce que par le refroidissement causé à cet air par le contact des parois du tuyau, il en résulte que la pesanteur spécifique de l'air qui le traverse diminue graduellement, & que si le tuyau étoit prolongé à un certain point, on arriveroit à un terme où la pesanteur spécifique de l'air seroit égale en-dedans & en-dehors du tuyau; & il est évident qu'alors cet air froid qui ne tendroit plus à monter, seroit une masse à déplacer qui apporteroit une résistance à l'ascension de l'air inférieur. Bien plus, comme cet air est nécessairement mêlé de gaz acide carbonique, & que ce gaz est plus lourd que l'air atmosphérique, il arriveroit, si ce tuyau étoit assez long pour que l'air avant de parvenir à son extrémité pût se rapprocher de la température extérieure, qu'il tendroit à redescendre; d'où il faut conclure que la longueur des tuyaux qu'on ajoute sur les fourneaux est limitée par la nature des choses.
Les conséquences auxquelles nous conduisent ces réflexions, sont 1º. que le premier pied de tuyau qu'on ajoute sur le dôme d'un fourneau, fait plus d'effet que le sixième, par exemple; que le sixième en fait plus que le dixième: mais aucune expérience ne nous a encore fait connoître à quel terme on doit s'arrêter; 2º. que ce terme est d'autant plus éloigné que le tuyau est moins bon conducteur de chaleur, puisque l'air s'y refroidit d'autant moins; en sorte que la terre cuite est beaucoup préférable à la tôle pour faire des tuyaux de fourneaux, & que si même on les formoit d'une double enveloppe, si on remplissoit l'intervalle de charbon pilé, qui est une des substances la moins propre à transmettre la chaleur, on retarderoit le refroidissement de l'air, & on augmenteroit par conséquent la rapidité du courant & la possibilité d'employer un tuyau plus long; 3º. que le foyer du fourneau étant l'endroit le plus chaud & celui par conséquent où l'air qui le traverse est le plus dilaté, cette partie du fourneau doit être aussi la plus volumineuse, & qu'il est nécessaire d'y ménager un renflement considérable. Il est d'une nécessité d'autant plus indispensable de donner beaucoup de capacité à cette partie du fourneau, qu'elle n'est pas seulement destinée au passage de l'air qui doit favoriser, ou pour mieux dire, opérer la combustion; elle doit encore contenir le charbon & le creuset; en sorte qu'on ne peut compter pour le passage de l'air que l'intervalle que laissent entr'eux les charbons.
C'est d'après ces principes que j'ai construit mon fourneau de fusion, & je ne crois pas qu'il en existe aucun qui produise un effet plus violent. Cependant je n'ose pas encore me flatter d'être arrivé à la plus grande intensité de chaleur qu'on puisse produire dans les fourneaux chimiques. On n'a point encore déterminé par des expériences exactes l'augmentation de volume que prend l'air en traversant un fourneau de fusion; en sorte qu'on ne connoît point le rapport qu'on doit observer entre les ouvertures inférieures & supérieures d'un fourneau: on connoît encore moins la grandeur absolue qu'il convient de donner à ces ouvertures. Les données manquent donc, & on ne peut encore arriver au but que par tâtonnement.
Ce fourneau est représenté pl. XIII, fig. 6. Je lui ai donné, d'après les principes que je viens d'exposer, la forme d'un sphéroïde elliptique ABCD, dont les deux bouts sont coupés par un plan qui passeroit par chacun des foyers perpendiculairement au grand axe. Au moyen du renflement qui résulte de cette figure, le fourneau peut tenir une masse de charbon considérable, & il reste encore dans l'intervalle assez d'espace pour le passage du courant d'air.
Pour que rien ne s'oppose au libre accès de l'air extérieur, je l'ai laissé entièrement ouvert par-dessous, à l'exemple de M. Macquer, qui avoit déjà pris cette même précaution pour son fourneau de fusion, & je l'ai posé sur un trépied. La grille dont je me sers est à claire-voie & en fer méplat; & pour que les barreaux opposent moins d'obstacle au passage de l'air, je les ai fait poser non sur leur côté plat, mais sur le côté le plus étroit, comme on le voit figure 7. Enfin j'ai ajouté à la partie supérieure AB un tuyau de 18 pieds de long en terre cuite, & dont le diamètre intérieur est presque de moitié de celui du fourneau. Quoique j'obtienne déjà avec ce fourneau un feu supérieur à celui qu'aucun Chimiste se soit encore procuré jusqu'ici, je le crois susceptible d'être sensiblement augmenté par les moyens simples que j'ai indiqués & dont le principal consiste à rendre le tuyau FGAB le moins bon conducteur de chaleur qu'il soit possible.
Il me reste à dire un mot du fourneau de coupelle ou fourneau d'essai. Lorsqu'on veut connoître si du plomb contient de l'or ou de l'argent, on le chauffe à grand feu dans de petites capsules faites avec des os calcinés, & qui, en termes d'essai, se nomment coupelles. Le plomb s'oxide, il devient susceptible de se vitrifier, il s'imbibe & s'incorpore avec la coupelle. On conçoit que le plomb ne peut s'oxider qu'avec le contact de l'air; ce ne peut donc être, ni dans un creuset où le libre accès de l'air extérieur est interdit, ni même au milieu d'un fourneau à travers les charbons ardens, puisque l'air de l'intérieur d'un fourneau altéré par la combustion & réduit pour la plus grande partie à l'état de gaz azote & de gaz acide carbonique, n'est plus propre à la calcination & à l'oxidation des métaux. Il a donc fallu imaginer un appareil particulier où le métal fût en même tems exposé à la grande violence du feu, & garanti du contact de l'air devenu incombustible par son passage à travers les charbons. Le fourneau destiné à remplir ce double objet, a été nommé, dans les arts, fourneau de coupelle. Il est communément de forme quarrée, ainsi qu'il est représenté planche XIII, fig. 8. Voyez, aussi sa coupe, fig. 10. Comme tous les fourneaux, bien construits, il doit avoir un cendrier AABB, un foyer BBCC, un laboratoire CCDD, un dôme DDEE.
C'est dans le laboratoire qu'on place ce qu'on nomme la mouffle. C'est une espèce de petit four GH, figures 9 & 10, fait de terre cuite & fermé par le fond. On le pose sur des barres qui traversent le fourneau, il s'ajuste avec l'ouverture G de la porte, & on l'y lute avec de l'argile délayée avec de l'eau. C'est dans cette espèce de four que se placent les coupelles. On met du charbon dessus & dessous la mouffle par les portes du dôme & du foyer: l'air qui est entré par les ouvertures du cendrier, après avoir servi à la combustion, s'échappe par l'ouverture supérieure EE. A l'égard de la mouffle, l'air extérieur y pénètre par la porte GG, & il y entretient la calcination métallique.
En réfléchissant sur cette construction, on s'apperçoit aisément combien elle est vicieuse. Elle a deux inconvéniens principaux: quand la porte GG est fermée, l'oxidation se fait lentement & difficilement à défaut d'air pour l'entretenir; lorsqu'elle est ouverte, le courant d'air froid qui s'introduit fait figer le métal & suspend l'opération. Il ne seroit pas difficile de remédier à ces inconvéniens, en construisant la mouffle & le fourneau de manière qu'il y eût un courant d'air extérieur toujours renouvellé qui rasât la surface du métal. On feroit passer cet air à travers un tuyau de terre qui seroit entretenu rouge par le feu même du fourneau, afin que l'intérieur de la mouffle ne fût jamais refroidi; & on feroit en quelques minutes ce qui demande souvent un tems considérable.
M. Sage a été conduit par d'autres principes à de semblables conséquences. Il place la coupelle qui contient le plomb allié de fin dans un fourneau ordinaire à travers les charbons; il la recouvre avec une petite mouffle de porcelaine, & quand le tout est suffisamment chaud, il dirige sur le métal le courant d'air d'un soufflet ordinaire à main: la coupellation de cette manière se fait avec une grande facilité, & à ce qu'il paroît, avec beaucoup d'exactitude.
§. III.
Des moyens d'augmenter considérablement l'action du feu, en substituant le gaz oxygène à l'air de l'atmosphère.
On a obtenu avec les grands verres ardens qui ont été construits jusqu'à ce jour, tels que ceux de Tchirnausen & celui de M. de Trudaine, une intensité de chaleur un peu plus grande que celle qui a lieu dans les fourneaux chimiques, & même dans les fours où l'on cuit la porcelaine dure. Mais ces instrumens sont extrêmement chers, & ils ne vont pas même jusqu'à fondre la platine brute; en sorte que leur avantage, relativement à l'effet qu'ils produisent, n'est presque d'aucune considération, & qu'il est plus que compensé par la difficulté de se les procurer & même d'en faire usage.
Les miroirs concaves à diamètre égal font un peu plus d'effet que les verres ardens; on en a la preuve par les expériences faites par MM. Macquer & Baumé, avec le miroir de M. l'Abbé Bouriot: mais comme la direction des rayons réfléchis est de bas en haut, il faut opérer en l'air & sans support; ce qui rend absolument impossible le plus grand nombre des expériences chimiques.
Ces considérations m'avoient déterminé d'abord à essayer de remplir de grandes vessies de gaz oxygène, à y adapter un tube susceptible d'être fermé par un robinet, & à m'en servir pour animer avec ce gaz le feu des charbons allumés. L'intensité de chaleur fut telle, même dans mes premières tentatives, que je parvins à fondre une petite quantité de platine brute avec assez de facilité.
C'est à ce premier succès que je dois l'idée du gazomètre dont j'ai donné la description, page 346 & suivantes. Je l'ai substitué aux vessies; & comme on peut donner au gaz oxygène le degré de pression qu'on juge à propos, on peut non-seulement s'en procurer un écoulement continu, mais lui donner même un grand degré de vitesse.
Le seul appareil dont on ait besoin pour ce genre d'expériences, consiste en une petite table ABCD, pl. XII, fig. 15, percée d'un trou en F, à travers lequel on fait passer un tube de cuivre ou d'argent FG, terminé en G par une très-petite ouverture qu'on peut ouvrir ou fermer par le moyen du robinet H. Ce tube se continue par dessous la table en lmno, & va s'adapter au gazomètre avec l'intérieur duquel il communique. Lorsqu'on veut opérer, on commence à faire avec le tourne-vis KI un creux de quelques lignes de profondeur dans un gros charbon noir. On place dans ce creux le corps que l'on veut fondre: on allume ensuite le charbon avec un chalumeau de verre, à la flamme d'une chandelle ou d'une bougie; après quoi on l'expose au courant de gaz oxygène qui sort avec rapidité par le bec ou extrémité G du tube FG.
Cette manière d'opérer ne peut être employée que pour les corps qui peuvent être mis sans inconvénient en contact avec les charbons, tels que les métaux, les terres simples, &c. A l'égard des corps dont les principes ont de l'affinité avec le charbon & que cette substance décompose, comme les sulfates, les phosphates, & en général presque tous les sels neutres, les verres métalliques, les émaux, &c. on se sert de la lampe d'émailleur, à travers de laquelle on fait passer un courant de gaz oxygène. Alors, au lieu de l'ajutage recourbé EG, on se sert de celui coudé ST, qu'on visse à la place & qui dirige le courant de gaz oxygène à travers la flamme de la lampe. L'intensité de chaleur que donne ce second moyen n'est pas aussi forte que celle qu'on obtient par le premier, & ce n'est qu'avec beaucoup de peine qu'on parvient à fondre la platine.
Les supports dont on se sert dans cette seconde manière d'opérer, sont ou des coupelles d'os calcinés, ou de petites capsules de porcelaine, ou même des capsules ou cuillers métalliques. Pourvu que ces dernières ne soient pas trop petites, elles ne fondent pas, attendu que les métaux sont bons conducteurs de chaleur, que le calorique se répartit en conséquence promptement & facilement dans toute la masse, & n'en échauffe que médiocrement chacune des parties.
On peut voir dans les volumes de l'Académie, année 1782, page 476, & 1783, page 573, la suite d'expériences que j'ai faites avec cet appareil. Il en résulte, 1o. que le cristal de roche, c'est-à-dire la terre siliceuse pure, est infusible; mais qu'elle devient susceptible de ramollissement & de fusion, dès qu'elle est mélangée.
2o. Que la chaux, la magnésie & la baryte ne sont fusibles ni seules, ni combinées ensemble; mais qu'elles facilitent, sur-tout la chaux, la fusion de toutes les autres substances.
3o. Que l'alumine est complètement fusible seule, & qu'il résulte de sa fusion une substance vitreuse opaque très-dure, qui raye le verre comme les pierres précieuses.
4o. Que toutes les terres & pierres composées se fondent avec beaucoup de facilité, & forment un verre brun.
5o. Que toutes les substances salines, même l'alkali fixe, se volatilisent en peu d'instans.
6o. Que l'or, l'argent, etc. & probablement la platine, se volatilisent lentement à ce degré de feu, & se dissipent sans aucune circonstance particulière.
7o. Que toutes les autres substances métalliques, à l'exception du mercure, s'oxident quoique placées sur un charbon; qu'elles y brûlent avec une flamme plus ou moins grande & diversement colorée, & finissent par se dissiper entièrement.
8o. Que les oxides métalliques brûlent également tous avec flamme; ce qui semble établir un caractère distinctif de ces substances, ce qui me porte à croire, comme Bergman l'avoit soupçonné, que la baryte est un oxide métallique, quoiqu'on ne soit pas encore parvenu à en obtenir le métal dans son état de pureté.
9o. Que parmi les pierres précieuses, les unes, comme le rubis, sont susceptibles de se ramollir et de se souder, sans que leur couleur & même que leur poids soient altérés; que d'autres, comme l'hyacinthe dont la fixité est presque égale à celle du rubis, perdent facilement leur couleur; que la topase de Saxe, la topase & le rubis du Bresil non-seulement se décolorent promptement à ce degré de feu, mais qu'ils perdent même un cinquième de leur poids, & qu'il reste, lorsqu'ils ont subi cette altération, une terre blanche semblable en apparence à du quartz blanc ou à du biscuit de porcelaine; enfin que l'émeraude, la chrysolite & le grenat fondent presque sur-le-champ en un verre opaque & coloré.
10o. Qu'à l'égard du diamant, il présente une propriété qui lui est toute particulière, celle de se brûler à la manière des corps combustibles & de se dissiper entièrement.
Il est un autre moyen dont je n'ai point encore fait usage, pour augmenter encore davantage l'activité du feu par le moyen du gaz oxygène; c'est de l'employer à souffler un feu de forge. M. Achard en a eu la première idée; mais les procédés qu'il a employés & au moyen desquels il croyoit déphlogistiquer l'air de l'atmosphère, ne l'ont conduit à rien de satisfaisant. L'appareil que je me propose de faire construire, sera très-simple: il consistera dans un fourneau ou espèce de forge d'une terre extrêmement réfractaire; sa figure sera à peu près semblable à celle du fourneau représenté planche XIII, figure 4; il sera seulement moins élevé & en général construit sur de plus petites dimensions. Il aura deux ouvertures, l'une en E à laquelle s'adaptera le bout d'un soufflet, & une seconde toute semblable à laquelle s'ajustera un tuyau qui communiquera avec le gazomètre. Je pousserai d'abord le feu aussi loin qu'il sera possible par le vent du soufflet; & quand je serai parvenu à ce point, je remplirai entièrement le fourneau de charbons embrasés; puis interceptant tout-à-coup le vent du soufflet, je donnerai par l'ouverture d'un robinet accès au gaz oxygène du gazomètre, & je le ferai arriver avec quatre ou cinq pouces de pression. Je puis réunir ainsi le gaz oxygène de plusieurs gazomètres, de manière à en faire passer jusqu'à huit à neuf pieds cubes à travers le fourneau, & je produirai une intensité de chaleur certainement très-supérieure à tout ce que nous connoissons. J'aurai soin de tenir l'ouverture supérieure du fourneau très-grande, afin que le calorique ait une libre issue, & qu'une expansion trop rapide de ce fluide si éminemment élastique ne produise point une explosion.
FIN.
TABLES
A L'USAGE DES CHIMISTES.
No. I.
Table pour convertir les onces, gros & grains en fractions décimales de livre, poids de marc.
| Table pour les grains. | ||||
| Grains poids de marc. | Fractions décimales de livre correspondantes. | Grains poids de marc. | Fractions décimales de livre correspondantes. | |
| livre. | livre. | |||
| 1 | 0,000108507 | 13 | 0,001410591 | |
| 2 | 0,000217014 | 14 | 0,001519098 | |
| 3 | 0,000325521 | 15 | 0,001627605 | |
| 4 | 0,000434028 | 16 | 0,001736112 | |
| 5 | 0,000542535 | 17 | 0,001844619 | |
| 6 | 0,000651042 | 18 | 0,001953125 | |
| 7 | 0,000759549 | 19 | 0,002061633 | |
| 8 | 0,000868056 | 20 | 0,002170140 | |
| 9 | 0,000976563 | 21 | 0,002278647 | |
| 10 | 0,001085070 | 22 | 0,002387154 | |
| 11 | 0,001193577 | 23 | 0,002495661 | |
| 12 | 0,001302084 | 24 | 0,002604168 | |
| Grains poids de marc. | Fractions décimales de livre correspondantes. | Grains poids de marc. | Fractions décimales de livre correspondantes. | |
| livre. | livre. | |||
| 25 | 0,002712675 | 51 | 0,005533857 | |
| 26 | 0,002821182 | 52 | 0,005642364 | |
| 27 | 0,002929689 | 53 | 0,005750871 | |
| 28 | 0,003038196 | 54 | 0,005859378 | |
| 29 | 0,003146703 | 55 | 0,005967885 | |
| 30 | 0,003255210 | 56 | 0,006076372 | |
| 31 | 0,003363717 | 57 | 0,006184899 | |
| 32 | 0,003472224 | 58 | 0,006293406 | |
| 33 | 0,003580731 | 59 | 0,006401913 | |
| 34 | 0,003689238 | 60 | 0,006510420 | |
| 35 | 0,003797745 | 61 | 0,006618927 | |
| 36 | 0,003906252 | 62 | 0,006727434 | |
| 37 | 0,004014759 | 63 | 0,006835941 | |
| 38 | 0,004123266 | 64 | 0,006944448 | |
| 39 | 0,004231773 | 65 | 0,007052955 | |
| 40 | 0,004340280 | 66 | 0,007161462 | |
| 41 | 0,004448787 | 67 | 0,007269969 | |
| 42 | 0,004557294 | 68 | 0,007378456 | |
| 43 | 0,004665801 | 69 | 0,007486983 | |
| 44 | 0,004774308 | 70 | 0,007595490 | |
| 45 | 0,004882815 | 71 | 0,007703997 | |
| 46 | 0,004991322 | 72 | 0,007812504 | |
| 47 | 0,005099829 | 73 | 0,007921011 | |
| 48 | 0,005208336 | 74 | 0,008029518 | |
| 49 | 0,005316843 | 75 | 0,008138025 | |
| 50 | 0,005425350 | 76 | 0,008246532 |
| Grains poids de marc. | Fractions décimales de livre correspondantes. | Grains poids de marc. | Fractions décimales de livre correspondantes. | |
| livre. | livre. | |||
| 77 | 0,008355039 | 89 | 0,009657123 | |
| 78 | 0,008463546 | 90 | 0,009765630 | |
| 79 | 0,008572053 | 91 | 0,009874137 | |
| 80 | 0,008680560 | 92 | 0,009982644 | |
| 81 | 0,008789067 | 93 | 0,010091151 | |
| 82 | 0,008897574 | 94 | 0,010199658 | |
| 83 | 0,009006081 | 95 | 0,010308165 | |
| 84 | 0,009114588 | 96 | 0,010416672 | |
| 85 | 0,009223095 | 97 | 0,010525179 | |
| 86 | 0,009331602 | 98 | 0,010633686 | |
| 87 | 0,009440109 | 99 | 0,010742193 | |
| 88 | 0,009548616 | 100 | 0,010850700 |
| Pour les Gros. | Pour les Onces. | |||
| gros. | livre. | onces. | livre. | |
| 1 | 0,0078125 | 1 | 0,0625000 | |
| 2 | 0,0156250 | 2 | 0,1250000 | |
| 3 | 0,0234375 | 3 | 0,1875000 | |
| 4 | 0,0312500 | 4 | 0,2500000 | |
| 5 | 0,0390625 | 5 | 0,3125000 | |
| 6 | 0,0468750 | 6 | 0,3750000 | |
| 7 | 0,0546875 | 7 | 0,4375000 | |
| 8 | 0,0625000 | 8 | 0,5000000 | |
| 9 | 0,0703125 | 9 | 0,5625000 | |
| 10 | 0,0781250 | 10 | 0,6250000 | |
| 11 | 0,0859375 | 11 | 0,6875000 | |
| 12 | 0,0937500 | 12 | 0,7500000 | |
| 13 | 0,1015625 | 13 | 0,8125000 | |
| 14 | 0,1093750 | 14 | 0,8750000 | |
| 15 | 0,1171875 | 15 | 0,9375000 | |
| 16 | 0,1250000 | 16 | 1,0000000 | |
No. II.
Table pour convertir les fractions décimales de livre en fractions vulgaires.
| Pour les dixiemes de livre. | Pour les milliemes de livre. | |||||||
| Fractions décimales de livre. | Fractions vulgaires de livre correspondantes. | Fractions décimales de livre. | Fractions vulgaires de livre correspondantes. | |||||
| livre. | onces. | gros. | grains. | livre. | onces. | gros. | grains. | |
| 0,1 | 1 | 4 | 57,60 | 0,001 | » | » | 9,22 | |
| 0,2 | 3 | 1 | 43,20 | 0,002 | » | » | 18,43 | |
| 0,3 | 4 | 6 | 28,80 | 0,003 | » | » | 27,65 | |
| 0,4 | 6 | 3 | 14,40 | 0,004 | » | » | 36,86 | |
| 0,5 | 8 | 8 | 0 | 0,005 | » | » | 46,08 | |
| 0,6 | 9 | 4 | 57,60 | 0,006 | » | » | 55,30 | |
| 0,7 | 11 | 1 | 43,20 | 0,007 | » | » | 64,51 | |
| 0,8 | 12 | 6 | 28,80 | 0,008 | » | 1 | 1,73 | |
| 0,9 | 14 | 3 | 14,40 | 0,009 | » | 1 | 10,94 | |
| 1, | 16 | 0 | 0 | 0,010 | » | 1 | 20,16 | |
| Pour les centiemes de livre. | Pour les dix milliemes de livre. | |||||
| livre. | onces. | gros. | grains. | livre. | grains. | |
| 0,01 | » | 1 | 20,16 | 0,0001 | 0,92 | |
| 0,02 | » | 2 | 40,32 | 0,0002 | 1,84 | |
| 0,03 | » | 3 | 60,48 | 0,0003 | 2,76 | |
| 0,04 | » | 5 | 8,64 | 0,0004 | 3,69 | |
| 0,05 | » | 6 | 28,80 | 0,0005 | 4,61 | |
| 0,06 | » | 7 | 48,96 | 0,0006 | 5,53 | |
| 0,07 | 1 | 0 | 69,12 | 0,0007 | 6,45 | |
| 0,08 | 1 | 2 | 17,28 | 0,0008 | 7,37 | |
| 0,09 | 1 | 3 | 37,44 | 0,0009 | 8,29 | |
| 0,10 | 1 | 4 | 57,60 | 0,0010 | 9,22 | |
| Pour les cent milliemes de livre. | Pour les millioniemes de livre. | |||
| Fractions décimales de livre. | Fractions vulgaires de livre correspondantes. | Fractions décimales de livre. | Fractions vulgaires de livre correspondantes. | |
| livre. | grains. | livre. | grains. | |
| 0,00001 | 0,09 | 0,000001 | 0,01 | |
| 0,00002 | 0,18 | 0,000002 | 0,02 | |
| 0,00003 | 0,28 | 0,000003 | 0,03 | |
| 0,00004 | 0,37 | 0,000004 | 0,04 | |
| 0,00005 | 0,46 | 0,000005 | 0,05 | |
| 0,00006 | 0,55 | 0,000006 | 0,06 | |
| 0,00007 | 0,64 | 0,000007 | 0,07 | |
| 0,00008 | 0,74 | 0,000008 | 0,08 | |
| 0,00009 | 0,83 | 0,000009 | 0,09 | |
| 0,00010 | 0,92 | 0,000010 | 0,10 | |
No. III.
Table du nombre de Pouces cubes correspondans à un poids déterminé d'eau.
| Table pour les grains. | ||||
| Grains d'eau, poids de marc. | Nombre de pouces cubes correspondans | Grains d'eau, poids de marc. | Nombre de pouces cubes correspondans. | |
| 1 | 0,003 | 23 | 0,062 | |
| 2 | 0,005 | 24 | 0,065 | |
| 3 | 0,008 | 25 | 0,067 | |
| 4 | 0,011 | 26 | 0,070 | |
| 5 | 0,013 | 27 | 0,073 | |
| 6 | 0,016 | 28 | 0,076 | |
| 7 | 0,019 | 29 | 0,078 | |
| 8 | 0,022 | 30 | 0,081 | |
| 9 | 0,024 | 31 | 0,084 | |
| 10 | 0,027 | 32 | 0,086 | |
| 11 | 0,030 | 33 | 0,089 | |
| 12 | 0,032 | 34 | 0,092 | |
| 13 | 0,035 | 35 | 0,094 | |
| 14 | 0,038 | 36 | 0,097 | |
| 15 | 0,040 | 37 | 0,100 | |
| 16 | 0,043 | 38 | 0,103 | |
| 17 | 0,046 | 39 | 0,105 | |
| 18 | 0,049 | 40 | 0,108 | |
| 19 | 0,051 | 41 | 0,111 | |
| 20 | 0,054 | 42 | 0,113 | |
| 21 | 0,057 | 43 | 0,116 | |
| 22 | 0,059 | 44 | 0,119 | |
| Grains d'eau, poids de marc. | Nombre de pouces cubes correspondans | Grains d'eau, poids de marc. | Nombre de pouces cubes correspondans. | |
| 45 | 0,121 | 59 | 0,159 | |
| 46 | 0,124 | 60 | 0,162 | |
| 47 | 0,127 | 61 | 0,165 | |
| 48 | 0,130 | 62 | 0,167 | |
| 49 | 0,132 | 63 | 0,170 | |
| 50 | 0,135 | 64 | 0,173 | |
| 51 | 0,138 | 65 | 0,175 | |
| 52 | 0,140 | 66 | 0,178 | |
| 53 | 0,143 | 67 | 0,181 | |
| 54 | 0,146 | 68 | 0,184 | |
| 55 | 0,148 | 69 | 0,186 | |
| 56 | 0,151 | 70 | 0,189 | |
| 57 | 0,154 | 71 | 0,192 | |
| 58 | 0,157 | 72 | 0,194 |
| Table pour les Gros. | Table pour les Onces. | |||
| pouces. cubes. | pouces. cubes. | |||
| 1 | 0,193 | 1 | 1,543 | |
| 2 | 0,386 | 2 | 3,086 | |
| 3 | 0,579 | 3 | 4,629 | |
| 4 | 0,772 | 4 | 6,172 | |
| 5 | 0,965 | 5 | 7,715 | |
| 6 | 1,158 | 6 | 9,258 | |
| 7 | 1,351 | 7 | 10,801 | |
| 8 | 1,543 | 8 | 12,344 | |
| 9 | 13,887 | |||
| 10 | 15,430 | |||
| 11 | 16,973 | |||
| 12 | 18,516 | |||
| 13 | 20,059 | |||
| 14 | 21,602 | |||
| 15 | 23,145 | |||
| 16 | 24,687 | |||
| Table pour les Livres. | ||||
| Livres d'eau, poids de marc. | Nombre de pouces cubes correspondans | Livres d'eau, poids de marc. | Nombre de pouces cubes correspondans. | |
| pouces. cubes. | pouces. cubes. | |||
| 1 | 24,687 | 20 | 493,740 | |
| 2 | 49,374 | 21 | 518,427 | |
| 3 | 74,061 | 22 | 543,114 | |
| 4 | 98,748 | 23 | 567,801 | |
| 5 | 123,420 | 24 | 592,448 | |
| 6 | 148,122 | 25 | 617,175 | |
| 7 | 172,809 | 26 | 641,862 | |
| 8 | 197,496 | 27 | 666,549 | |
| 9 | 222,180 | 28 | 691,236 | |
| 10 | 246,870 | 29 | 715,923 | |
| 11 | 271,557 | 30 | 740,610 | |
| 12 | 296,244 | 40 | 987,480 | |
| 13 | 320,931 | 50 | 1234,200 | |
| 14 | 345,618 | 60 | 1481,220 | |
| 15 | 370,305 | 70 | 1728,000 | |
| 16 | 394,992 | 80 | 1974,960 | |
| 17 | 419,676 | 90 | 2221,800 | |
| 18 | 444,360 | 100 | 2328,700 | |
| 19 | 469,050 | |||
No. IV.
Table pour convertir les lignes & fractions de lignes en fractions décimales de pouce.
| Table pour les fractions de ligne. | Table pour les lignes. | |||
| Douzièmes de lignes. | Fractions décimales de pouce correspondantes. | Lignes. | Fractions décimales de pouce correspondantes. | |
| pouces. | pouces. | |||
| 1 | 0,00694 | 1 | 0,08333 | |
| 2 | 0,01389 | 2 | 0,16667 | |
| 3 | 0,02083 | 3 | 0,25000 | |
| 4 | 0,02778 | 4 | 0,33333 | |
| 5 | 0,03472 | 5 | 0,41667 | |
| 6 | 0,04167 | 6 | 0,50000 | |
| 7 | 0,04861 | 7 | 0,58333 | |
| 8 | 0,05556 | 8 | 0,66667 | |
| 9 | 0,06250 | 9 | 0,75000 | |
| 10 | 0,06944 | 10 | 0,83333 | |
| 11 | 0,07639 | 11 | 0,91667 | |
| 12 | 0,08333 | 12 | 1,00000 | |
No. V.
Table pour convertir les hauteurs d'eau observées dans les cloches ou jarres, en hauteurs correspondantes de mercure exprimées en fractions décimales de pouce.
| Hauteur de l'eau exprimée en lignes. | Hauteur correspondante du mercure exprimée en fractions décimales de pouce. | Hauteur de l'eau exprimée en lignes. | Hauteur correspondante du mercure exprimée en fractions décimales de pouce. | ||
| lignes. | pouces. | pouces. | lignes. | pouces. | |
| 1 | 0,00614 | 20 | 0,12284 | ||
| 2 | 0,01228 | 21 | 0,12898 | ||
| 3 | 0,01843 | 22 | 0,13512 | ||
| 4 | 0,02457 | 23 | 0,14126 | ||
| 5 | 0,03071 | 2 | 0,14741 | ||
| 6 | 0,03685 | 3 | 0,22111 | ||
| 7 | 0,04299 | 4 | 0,29481 | ||
| 8 | 0,04914 | 5 | 0,36852 | ||
| 9 | 0,05528 | 6 | 0,44222 | ||
| 10 | 0,06142 | 7 | 0,51593 | ||
| 11 | 0,06756 | 8 | 0,58963 | ||
| 12 | 0,07370 | 9 | 0,66333 | ||
| 13 | 0,07985 | 10 | 0,73704 | ||
| 14 | 0,08599 | 11 | 0,81074 | ||
| 15 | 0,09213 | 12 | 0,88444 | ||
| 16 | 0,09827 | 13 | 0,95815 | ||
| 17 | 0,10441 | 14 | 1,03185 | ||
| 18 | 0,11055 | 15 | 1,10556 | ||
| 19 | 0,11670 | 16 | 1,17926 | ||
No. VI.
Table des quantités de pouces cubiques françois correspondans à une once, mesure de M. Priestley.
| Onces, mesure de M. Priestley. | Pouces cubiques françois correspondans. | Onces, mesure de M. Priestley. | Pouces cubiques françois correspondans. | |
| 1 | 1,567 | 20 | 31,340 | |
| 2 | 3,134 | 30 | 47,010 | |
| 3 | 4,701 | 40 | 62,680 | |
| 4 | 6,268 | 50 | 78,350 | |
| 5 | 7,835 | 60 | 94,020 | |
| 6 | 9,402 | 70 | 109,690 | |
| 7 | 10,969 | 80 | 125,360 | |
| 8 | 12,536 | 90 | 141,030 | |
| 9 | 14,103 | 100 | 156,700 | |
| 10 | 15,670 | 200 | 313,400 | |
| 11 | 17,237 | 300 | 470,100 | |
| 12 | 18,804 | 400 | 626,800 | |
| 13 | 20,371 | 500 | 783,500 | |
| 14 | 21,938 | 600 | 940,200 | |
| 15 | 23,505 | 700 | 1096,900 | |
| 16 | 25,072 | 800 | 1253,600 | |
| 17 | 26,639 | 900 | 1410,300 | |
| 18 | 28,206 | 1000 | 1567,000 | |
| 19 | 29,773 |
No. VII.
Table des pesanteurs des différens gaz à 28 pouces de pression & à 10 degrés du thermomètre.
| Noms des airs ou gaz. | Poids du pouce cube. | Poids du pied cube. | Observations. | ||
| grains. | onces. | gros. | grains. | ||
| Air atmosphérique. | 0,46005 | 1 | 3 | 3,00 | D'après mes expér. |
| Gaz azote. | 0,44444 | 1 | 2 | 48,00 | D'après mes expér. |
| Gaz oxigène. | 0,50694 | 1 | 4 | 12,00 | D'après mes expér. |
| Gaz hydrogène. | 0,03539 | » | » | 61,15 | D'après mes expér. |
| Gaz acide carbonique. | 0,68985 | 2 | » | 40,00 | D'après mes expér. |
| Gaz nitreux. | 0,54690 | 1 | 5 | 9,04 | D'après M. Kirwan. |
| Gaz ammoniaque. | 0,27488 | » | 6 | 43,00 | D'après M. Kirwan. |
| Gaz acide sulfureux. | 1,03820 | 3 | » | 66,00 | D'après M. Kirwan. |
No. VIII.
Table des Pesanteurs spécifiques des substances minérales, extraite de l'ouvrage de M. Brisson.
| Substances métalliques. | ||||||||||
| Noms des substances métalliques. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| onc. | g. | gr. | livres. | on. | g. | gr. | ||||
| Or. | ![]() | Or à 24 karats, fondu & non forgé. | 192581 | 12 | 3 | 62 | 1348 | 1 | 0 | 41 |
| Le même fondu & forgé. | 193617 | 12 | 4 | 28 | 1355 | 5 | 0 | 60 | ||
| Or au titre de Paris, ou à 22 karats, fondu & non forgé. | 174863 | 11 | 2 | 48 | 1224 | 0 | 5 | 18 | ||
| Le même fondu & forgé. | 175894 | 11 | 3 | 15 | 1231 | 4 | 1 | 2 | ||
| Or au titre de la monoie de France, ou à 21 22/32 karats, fondu & non forgé. | 174022 | 11 | 2 | 17 | 1218 | 2 | 3 | 51 | ||
| Le même monoyé. | 176474 | 11 | 3 | 36 | 1235 | 5 | 0 | 51 | ||
| Or au titre des bijoux, ou à 20 karats, fondu & non forgé. | 157090 | 10 | 1 | 33 | 1099 | 10 | 0 | 46 | ||
| Le même, fondu & forgé. | 157746 | 10 | 1 | 57 | 1104 | 3 | 4 | 30 | ||
| Argent. | ![]() | Argent à 12 deniers fondu & non forgé. | 104743 | 6 | 6 | 22 | 733 | 3 | 1 | 52 |
| Le même fondu & forgé. | 105107 | 6 | 6 | 36 | 735 | 11 | 7 | 43 | ||
| Argent au titre de Paris, ou à 11 deniers 10 grains, fondu & non forgé. | 101752 | 6 | 4 | 55 | 712 | 4 | 1 | 57 | ||
| Le même, fondu & forgé. | 103765 | 6 | 5 | 58 | 726 | 5 | 5 | 32 | ||
| Argent au titre de la monoie de France, ou à 10 deniers 21 grains, fondu & non forgé. | 100476 | 6 | 4 | 7 | 703 | 5 | 2 | 36 | ||
| Le même monoyé. | 104077 | 6 | 5 | 70 | 728 | 8 | 4 | 71 | ||
| Platine. | ![]() | Platine brut en grenailles. | 156017 | 10 | 0 | 65 | 1092 | 1 | 7 | 17 |
| Le même décapé, par l'acide muriatique. | 167521 | 10 | 6 | 62 | 1172 | 10 | 2 | 59 | ||
| Platine purifié fondu. | 195000 | 12 | 5 | 8 | 1365 | 0 | 0 | 0 | ||
| Platine purifié forgé. | 203366 | 13 | 1 | 32 | 1423 | 8 | 7 | 67 | ||
| Platine purifié, passé par la filiere. | 210417 | 13 | 5 | 8 | 1472 | 14 | 5 | 46 | ||
| Platine purifié passé au laminoir. | 220690 | 14 | 2 | 31 | 1544 | 13 | 2 | 17 | ||
| Cuivre. | ![]() | Cuivre rouge fondu & non forgé. | 77880 | 5 | 0 | 28 | 545 | 2 | 4 | 35 |
| Le même fondu & passé à la filiere. | 88785 | 5 | 6 | 3 | 621 | 7 | 7 | 26 | ||
| Cuivre jaune fondu & non forgé. | 83958 | 5 | 3 | 38 | 587 | 11 | 2 | 26 | ||
| Le même fondu & passé à la filiere. | 85441 | 5 | 4 | 22 | 598 | 1 | 3 | 10 | ||
| Fer. | ![]() | Fer fondu. | 72070 | 4 | 5 | 27 | 504 | 7 | 6 | 52 |
| Fer forgé en barre, écroui ou non écroui. | 77880 | 5 | 0 | 28 | 545 | 2 | 4 | 35 | ||
| Acier ni trempé, ni écroui. | 78331 | 5 | 0 | 44 | 548 | 5 | 0 | 41 | ||
| Le même écroui & non trempé. | 78404 | 5 | 0 | 47 | 548 | 13 | 1 | 71 | ||
| Le même écroui & ensuite trempé. | 78180 | 5 | 0 | 39 | 547 | 4 | 1 | 20 | ||
| Le même trempé & non écroui. | 78163 | 5 | 0 | 38 | 547 | 2 | 2 | 3 | ||
| Etain. | ![]() | Etain pur de Cornouailles, fondu & non écroui. | 72914 | 4 | 5 | 58 | 510 | 6 | 2 | 68 |
| Le même fondu & écroui. | 72994 | 4 | 5 | 61 | 510 | 15 | 2 | 45 | ||
| Etain de Mélac, fondu & non écroui. | 72963 | 4 | 5 | 60 | 510 | 11 | 6 | 61 | ||
| Le même fondu & écroui. | 73065 | 4 | 5 | 64 | 511 | 7 | 2 | 17 | ||
| Plomb. | Plomb fondu. | 113523 | 7 | 2 | 62 | 794 | 10 | 4 | 44 | |
| Zinc. | Zinc fondu. | 71908 | 4 | 5 | 21 | 503 | 5 | 5 | 41 | |
| Bismuth. | Bismuth fondu. | 98227 | 6 | 2 | 67 | 687 | 9 | 3 | 28 | |
| Cobalt. | Cobalt fondu. | 78119 | 5 | 0 | 36 | 546 | 13 | 2 | 45 | |
| Antimoine. | ![]() | Antimoine fondu. | 67021 | 4 | 2 | 54 | 469 | 2 | 2 | 59 |
| Antimoine crud. | 40643 | 2 | 5 | 5 | 284 | 8 | 0 | 9 | ||
| Verre d'antimoine. | 49464 | 3 | 1 | 47 | 346 | 3 | 7 | 64 | ||
| Arsenic. | Arsenic fondu. | 57633 | 3 | 5 | 64 | 403 | 6 | 7 | 12 | |
| Nickel. | Nickel fondu. | 78070 | 5 | 0 | 35 | 546 | 7 | 6 | 52 | |
| Molybdène. | . . . . . . . . . . . . . . . . . . . . . . . | 47385 | 3 | 0 | 41 | 331 | 11 | 1 | 69 | |
| Tungstène. | . . . . . . . . . . . . . . . . . . . . . . . | 60665 | 3 | 7 | 33 | 424 | 10 | 3 | 60 | |
| Mercure. | . . . . . . . . . . . . . . . . . . . . . . . | 135681 | 8 | 6 | 25 | 949 | 12 | 2 | 13 | |
| Pierres précieuses. | ||||||||||
| Noms des pierres précieuses. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| onc. | g. | gr. | livres. | on. | g. | gr. | ||||
| Diamant. | ![]() | Diamant Oriental blanc. | 35212 | 2 | 2 | 19 | 246 | 7 | 5 | 69 |
| Diamant Oriental couleur de rose. | 35310 | 2 | 2 | 22 | 247 | 2 | 5 | 55 | ||
| Rubis. | ![]() | Rubis Oriental. | 42833 | 2 | 6 | 15 | 299 | 13 | 2 | 26 |
| Rubis Spinelle. | 37600 | 2 | 3 | 36 | 263 | 3 | 1 | 43 | ||
| Rubis Balai. | 36458 | 2 | 2 | 65 | 255 | 3 | 2 | 26 | ||
| Rubis du Brésil. | 35311 | 2 | 2 | 22 | 247 | 2 | 6 | 47 | ||
| Topaze. | ![]() | Topaze Orientale. | 40106 | 2 | 4 | 57 | 280 | 11 | 6 | 70 |
| Topaze-pistache Orientale. | 40615 | 2 | 5 | 4 | 284 | 4 | 7 | 3 | ||
| Topaze du Brésil. | 35365 | 2 | 2 | 24 | 247 | 8 | 7 | 3 | ||
| Topaze de Saxe. | 35640 | 2 | 2 | 35 | 249 | 7 | 5 | 32 | ||
| Topaze blanche de Saxe. | 35535 | 2 | 2 | 31 | 248 | 11 | 7 | 26 | ||
| Saphir. | ![]() | Saphir Oriental. | 39941 | 2 | 4 | 51 | 279 | 9 | 3 | 10 |
| Saphir Oriental blanc. | 39911 | 2 | 4 | 50 | 279 | 6 | 0 | 18 | ||
| Saphir du Puy. | 40769 | 2 | 5 | 10 | 285 | 6 | 1 | 2 | ||
| Saphir du Brésil. | 31307 | 2 | 0 | 17 | 219 | 2 | 3 | 5 | ||
| Girasol. | . . . . . . . . . . . . . . . . . . . . . . . | 40000 | 2 | 4 | 53 | 280 | 0 | 0 | 0 | |
| Jargon. | Jargon de Ceylan. | 44161 | 2 | 6 | 65 | 309 | 2 | 0 | 18 | |
| Hyacinthe. | Hyacinthe commune. | 36873 | 2 | 3 | 9 | 258 | 1 | 5 | 22 | |
| Vermeille. | . . . . . . . . . . . . . . . . . . . . . . . | 42299 | 2 | 5 | 67 | 296 | 1 | 3 | 65 | |
| Grenat. | ![]() | Grenat de Bohême. | 41888 | 2 | 5 | 52 | 293 | 3 | 3 | 47 |
| Grenat en cristal dodécaèdre. | 40627 | 2 | 5 | 5 | 284 | 6 | 1 | 57 | ||
| Grenat en cristal à 24 faces, volcanisé. | 24684 | 1 | 4 | 58 | 172 | 12 | 4 | 62 | ||
| Grenat Syrien. | 40000 | 2 | 4 | 53 | 280 | 0 | 0 | 0 | ||
| Emeraude. | Emeraude du Pérou. | 27755 | 1 | 6 | 28 | 194 | 4 | 4 | 35 | |
| Chrysolite. | ![]() | Chrysolite des Joailliers. | 27821 | 1 | 6 | 31 | 194 | 11 | 7 | 44 |
| Chrysolite du Brésil. | 26923 | 1 | 5 | 69 | 188 | 7 | 3 | 1 | ||
| Aigue-marine. | ![]() | Aigue-marine Orientale ou Béril. | 35489 | 2 | 2 | 29 | 248 | 6 | 6 | 10 |
| Aigue-marine Occidentale. | 27227 | 1 | 6 | 8 | 190 | 9 | 3 | 28 | ||
| Pierres siliceuses. | ||||||||||
| Noms des pierres siliceuses. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| onc. | g. | gr. | livres. | on. | g. | gr. | ||||
| Cristal de Roche. | ![]() | Cristal de Roche limpide de Madagascar. | 26530 | 1 | 5 | 54 | 185 | 11 | 2 | 64 |
| Cristal de Roche du Brésil. | 26526 | 1 | 5 | 54 | 185 | 10 | 7 | 21 | ||
| Cristal de Roche gélatineux ou d'Europe. | 26548 | 1 | 5 | 55 | 185 | 13 | 3 | 1 | ||
| Quartz. | ![]() | Quartz cristallisé. | 26546 | 1 | 5 | 55 | 185 | 13 | 1 | 16 |
| Quartz en masse. | 26471 | 1 | 5 | 52 | 185 | 4 | 6 | 1 | ||
| Grès. | ![]() | Grès des Paveurs. | 24158 | 1 | 4 | 38 | 169 | 1 | 5 | 41 |
| Grès des Rémouleurs. | 21429 | 1 | 3 | 8 | 150 | 0 | 0 | 28 | ||
| Grès des Couteliers. | 21113 | 1 | 2 | 68 | 147 | 12 | 5 | 18 | ||
| Grès luisant de Fontainebleau. | 25616 | 1 | 5 | 20 | 179 | 4 | 7 | 67 | ||
| Pierre à faux à grain moyen d'Auvergne.. | 25638 | 1 | 5 | 21 | 179 | 7 | 3 | 47 | ||
| Pierre à faux de Lorraine. | 25298 | 1 | 5 | 8 | 177 | 1 | 3 | 1 | ||
| Agathe. | ![]() | Agathe Orientale. | 25901 | 1 | 5 | 31 | 181 | 4 | 7 | 21 |
| Agathe Onix. | 26375 | 1 | 5 | 49 | 184 | 10 | 0 | 0 | ||
| Calcédoine. | Calcédoine limpide. | 26640 | 1 | 5 | 59 | 186 | 7 | 5 | 32 | |
| Cornaline. | . . . . . . . . . . . . . . . . . . . . . . . | 26137 | 1 | 5 | 40 | 182 | 15 | 2 | 54 | |
| Sardoine. | Sardoine pure. | 26025 | 1 | 5 | 36 | 182 | 2 | 6 | 39 | |
| Prase. | . . . . . . . . . . . . . . . . . . . . . . . | 25805 | 1 | 5 | 27 | 180 | 10 | 1 | 20 | |
| Pierre à fusil. | ![]() | Pierre à fusil blonde. | 25941 | 1 | 5 | 32 | 181 | 9 | 3 | 10 |
| Pierre à fusil noirâtre. | 25817 | 1 | 5 | 28 | 180 | 11 | 4 | 2 | ||
| Caillou. | ![]() | Caillou Onix. | 26644 | 1 | 5 | 59 | 186 | 8 | 1 | 2 |
| Caillou de Rennes. | 26538 | 1 | 5 | 55 | 185 | 12 | 2 | 3 | ||
| Pierre meuliere. | . . . . . . . . . . . . . . . . . . . . . . . | 24835 | 1 | 4 | 63 | 173 | 13 | 4 | 12 | |
| Jade. | ![]() | Jade blanc. | 29502 | 1 | 7 | 21 | 206 | 8 | 1 | 57 |
| Jade verd. | 29660 | 1 | 7 | 27 | 207 | 9 | 7 | 26 | ||
| Jaspe. | ![]() | Jaspe rouge. | 26612 | 1 | 5 | 58 | 186 | 4 | 4 | 25 |
| Jaspe brun. | 26911 | 1 | 5 | 69 | 188 | 6 | 0 | 18 | ||
| Jaspe jaune. | 27101 | 1 | 6 | 4 | 189 | 11 | 2 | 36 | ||
| Jaspe violet. | 27111 | 1 | 6 | 4 | 189 | 12 | 3 | 33 | ||
| Jaspe gris. | 27640 | 1 | 6 | 24 | 193 | 7 | 5 | 32 | ||
| Jaspe Onix ou rubanné. | 28160 | 1 | 6 | 43 | 197 | 1 | 7 | 26 | ||
| Schorl. | ![]() | Schorl noir, prismatique hexaèdre. | 33636 | 2 | 1 | 32 | 235 | 7 | 1 | 62 |
| Schorl noir spathique. | 33852 | 2 | 1 | 40 | 236 | 15 | 3 | 28 | ||
| Schorl noir en masse, dit Basalte noir antique. | 29225 | 1 | 7 | 11 | 204 | 9 | 1 | 43 | ||
| Pierres argileuses ou alumineuses. | ||||||||||
| Noms des pierres. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| onc. | g. | gr. | livres. | on. | g. | gr. | ||||
| Serpentine. | Serpentine opaque verte d'Italie, dite Gabro des Florentins. | 24295 | 1 | 4 | 43 | 170 | 1 | 0 | 23 | |
| Stéatite. | ![]() | Craie de Briançon grossiere. | 27274 | 1 | 6 | 10 | 190 | 14 | 5 | 56 |
| Craie d'Espagne. | 27902 | 1 | 6 | 34 | 195 | 5 | 0 | 14 | ||
| Pierre ollaire feuilletée du Dauphiné. | 27687 | 1 | 6 | 26 | 193 | 12 | 7 | 40 | ||
| Pierre ollaire feuilletée de Suéde. | 28531 | 1 | 6 | 57 | 199 | 11 | 3 | 56 | ||
| Talc. | ![]() | Talc de Moscovie. | 27917 | 1 | 6 | 34 | 195 | 6 | 5 | 46 |
| Mica noir. | 29004 | 1 | 7 | 3 | 203 | 0 | 3 | 42 | ||
| Schiste. | ![]() | Schiste commun. | 26718 | 1 | 5 | 61 | 187 | 0 | 3 | 24 |
| Ardoise neuve. | 28535 | 1 | 6 | 57 | 199 | 11 | 7 | 26 | ||
| Pierre à rasoir blanche. | 28763 | 1 | 6 | 66 | 201 | 5 | 3 | 47 | ||
| Pierre à rasoir noire & blanche. | 31311 | 2 | 0 | 17 | 219 | 2 | 6 | 47 | ||
| Pierres calcaires | ||||||||||
| Noms des pierres. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| onc. | g. | gr. | livres. | on. | g. | gr. | ||||
| Spath calcaire. | ![]() | Spath calcaire rhomboïdal dit Cristal d'Islande. | 27151 | 1 | 6 | 6 | 190 | 0 | 7 | 21 |
| Spath calcaire pyramidal, dit Dent de cochon. | 27141 | 1 | 6 | 5 | 189 | 15 | 6 | 24 | ||
| Albâtre. | Albâtre Oriental blanc antique. | 27302 | 1 | 6 | 11 | 191 | 2 | 6 | 42 | |
| Marbre. | ![]() | Marbre campan vert. | 27417 | 1 | 6 | 16 | 191 | 14 | 5 | 46 |
| Marbre campan rouge. | 27242 | 1 | 6 | 9 | 190 | 11 | 0 | 60 | ||
| Marbre blanc de Carare. | 27168 | 1 | 6 | 6 | 190 | 2 | 6 | 38 | ||
| Marbre blanc de Paros. | 28376 | 1 | 6 | 51 | 198 | 10 | 0 | 65 | ||
| Pierres calcaires à bâtir. | ![]() | Pierre de S. Leu, de la carriere de S. Leu. | 16593 | 1 | 0 | 43 | 116 | 2 | 3 | 24 |
| Pierre de S. Leu, de la carriere de Notre Dame. | 18094 | 1 | 1 | 28 | 126 | 10 | 4 | 16 | ||
| Pierre de Vergelet, du plus gros grain. | 16542 | 1 | 0 | 42 | 115 | 12 | 5 | 46 | ||
| Pierre d'Arcueil. | 20605 | 1 | 2 | 49 | 144 | 3 | 6 | 6 | ||
| Pierre de Liais du fond de Bagneux, de la carriere de Mad. Ricateau. | 20778 | 1 | 2 | 56 | 145 | 7 | 1 | 6 | ||
| Pierre de Liais du fond de Bagneux, de la carriere de M. Ory. | 23902 | 1 | 4 | 28 | 167 | 5 | 0 | 14 | ||
| Pierre des carrieres de Bouré. | 13864 | 0 | 7 | 14 | 97 | 1 | 6 | 10 | ||
| Pierre de Passy près Tonnerre. | 23340 | 1 | 4 | 7 | 163 | 6 | 0 | 46 | ||
| Spaths. | ||||||||||
| Noms des pierres. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| onc. | g. | gr. | livres. | on. | g. | gr. | ||||
| Spath pesant, ou Sulfate de baryte. | Spath pesant blanc. | 44300 | 6 | 70 | 310 | 1 | 4 | 58 | ||
| Spath fluor, ou Fluate de chaux. | ![]() | Spath fluor blanc. | 31555 | 2 | 0 | 26 | 220 | 14 | 1 | 20 |
| Spath fluor rouge. | 31911 | 2 | 0 | 39 | 223 | 6 | 0 | 18 | ||
| Spath fluor vert. | 31817 | 2 | 0 | 36 | 222 | 11 | 2 | 17 | ||
| Spath fluor bleu. | 31688 | 2 | 0 | 31 | 221 | 13 | 0 | 32 | ||
| Spath fluor violet. | 31757 | 2 | 0 | 34 | 222 | 4 | 6 | 20 | ||
| Zéolite. | ||||||||||
| Noms des pierres. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| onc. | g. | gr. | livres. | on. | g. | gr. | ||||
| Zéolite. | ![]() | Zéolite étincelante rouge d'Œdelfors. | 24868 | 1 | 4 | 64 | 174 | 1 | 1 | 52 |
| Zéolite étincelante blanche. | 20739 | 1 | 2 | 54 | 145 | 2 | 6 | 10 | ||
| Zéolite cristallisée. | 20833 | 1 | 2 | 58 | 145 | 13 | 2 | 26 | ||
| Peischtein ou Pierre de poix. | ||||||||||
| Noms des pierres. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| onc. | g. | gr. | livres. | on. | g. | gr. | ||||
| Pierres de poix. | ![]() | Pierre de poix noire. | 20499 | 1 | 2 | 45 | 143 | 7 | 7 | 7 |
| Pierre de poix jaune. | 20860 | 1 | 2 | 59 | 146 | 0 | 2 | 40 | ||
| Pierre de poix rouge. | 26695 | 1 | 5 | 61 | 186 | 13 | 6 | 52 | ||
| Pierre de poix noirâtre. | 23191 | 1 | 4 | 2 | 162 | 5 | 3 | 10 | ||
| Pierres Mélangées. | ||||||||||
| Noms des pierres. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| onc. | g. | gr. | livres. | on. | g. | gr. | ||||
| Porphire. | ![]() | Porphire rouge. | 27651 | 1 | 6 | 24 | 193 | 8 | 7 | 21 |
| Porphire rouge du Dauphiné. | 27933 | 1 | 6 | 35 | 195 | 8 | 3 | 70 | ||
| Serpentin. | ![]() | Serpentin vert. | 28960 | 1 | 7 | 1 | 202 | 11 | 4 | 12 |
| Serpentin noir dit variolite du Dauphiné. | 29339 | 1 | 7 | 15 | 205 | 5 | 7 | 54 | ||
| Serpentin vert du Dauphiné. | 29883 | 1 | 7 | 36 | 209 | 2 | 7 | 12 | ||
| Ophite. | . . . . . . . . . . . . . . . . . . . . . . . | 29722 | 1 | 7 | 30 | 208 | 0 | 6 | 66 | |
| Granitelle. | . . . . . . . . . . . . . . . . . . . . . . . | 30626 | 1 | 7 | 63 | 214 | 6 | 0 | 65 | |
| Granit. | ![]() | Granit rouge d'Egypte. | 26541 | 1 | 5 | 55 | 185 | 12 | 4 | 53 |
| Granit d'un beau rouge. | 27609 | 1 | 6 | 23 | 193 | 4 | 1 | 48 | ||
| Granit de la Vallée de Girardmas dans les Vosges. | 27163 | 1 | 6 | 6 | 190 | 2 | 2 | 3 | ||
| Pierres de volcans. | ||||||||||
| Noms des pierres. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| onc. | g. | gr. | livres. | on. | g. | gr. | ||||
| Pierres de volcans. | ![]() | Pierre-ponce. | 9145 | » | 4 | 53 | 64 | 0 | 1 | 66 |
| Lave pleine de Volcans, dite Pierre obsidienne. | 23480 | 1 | 4 | 13 | 164 | 5 | 6 | 6 | ||
| Pierre de Volvic. | 23205 | 1 | 4 | 2 | 162 | 6 | 7 | 49 | ||
| Basalte de la chaussée des Géans. | 28642 | 1 | 6 | 61 | 200 | 7 | 7 | 17 | ||
| Basalte prismatique d'Auvergne. | 24215 | 1 | 4 | 40 | 169 | 8 | 0 | 46 | ||
| Basalte, dit pierre de touche. | 24153 | 1 | 4 | 38 | 169 | 1 | 1 | 6 | ||
| Vitrifications artificielles. | ||||||||||
| Noms des pierres. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| onc. | g. | gr. | livres. | on. | g. | gr. | ||||
| Verres. | ![]() | Laitier des forges. | 28548 | 1 | 6 | 58 | 199 | 13 | 3 | 1 |
| Verre des bouteilles. | 27325 | 1 | 6 | 12 | 191 | 4 | 3 | 14 | ||
| Verre vert ou commun des vitres. | 26423 | 1 | 5 | 50 | 184 | 15 | 3 | 1 | ||
| Verre blanc ou cristal de France. | 28922 | 1 | 7 | 0 | 202 | 7 | 2 | 8 | ||
| Cristal des glaces de S. Gobin. | 24882 | 1 | 4 | 65 | 174 | 2 | 6 | 20 | ||
| Cristal d'Angleterre, dit Flint-glass. | 33293 | 2 | 1 | 19 | 233 | 0 | 6 | 38 | ||
| Verre de borax. | 26070 | 1 | 5 | 37 | 182 | 7 | 6 | 52 | ||
| Porcelaines. | ![]() | Porcelaine dure du Roi, ou de Sèves. | 21457 | 1 | 3 | 9 | 150 | 3 | 1 | 34 |
| Porcelaine de Limoges. | 23410 | 1 | 4 | 10 | 163 | 13 | 7 | 26 | ||
| Porcelaine de la Chine. | 23847 | 1 | 4 | 26 | 166 | 14 | 6 | 66 | ||
| Matières inflammables. | ||||||||||
| Noms des pierres. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| onc. | g. | gr. | livres. | on. | g. | gr. | ||||
| Soufre. | ![]() | Soufre natif. | 20332 | 1 | 2 | 39 | 142 | 5 | 1 | 34 |
| Soufre fondu. | 19907 | 1 | 2 | 23 | 139 | 5 | 3 | 56 | ||
| Bitumes. | ![]() | Charbon de terre compacte. | 13292 | 0 | 6 | 64 | 93 | 0 | 5 | 46 |
| Ambre gris. | 9263 | 0 | 4 | 58 | 64 | 13 | 3 | 47 | ||
| Ambre jaune ou Succin transparent. | 10780 | 0 | 5 | 42 | 75 | 7 | 2 | 63 | ||
Table des Pesanteurs spécifiques des Fluides.
| Eaux. | ||||||||||
| Especes. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| on. | g. | grai. | liv. | on. | g. | gr. | ||||
| Eaux. | ![]() | Eau distillée. | 10000 | 0 | 5 | 13 1/3 | 70 | 0 | 0 | 0 |
| Eau de pluie. | 10000 | 0 | 5 | 13 1/3 | 70 | 0 | 0 | 0 | ||
| Eau de la Seine filtrée. | 10001,5 | 0 | 5 | 13,4 | 70 | 0 | 1 | 25 | ||
| Eau d'Arcueil. | 10004,6 | 0 | 5 | 13,5 | 70 | 0 | 4 | 9 | ||
| Eau de Ville-d'Avray. | 10004,3 | 0 | 5 | 13,5 | 70 | 0 | 3 | 61 | ||
| Eau de mer. | 10263 | 0 | 5 | 23 | 71 | 13 | 3 | 47 | ||
| Eau du lac Asphaltite, ou de la Mer morte. | 12403 | 0 | 6 | 31 | 86 | 13 | 1 | 6 | ||
| Liqueurs spiritueuses. | ||||||||||||
| Especes. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||||
| on. | g. | gra. | liv. | on. | g. | gr. | ||||||
| Vins. | ![]() | Vin de Bourgogne. | 9915 | 0 | 5 | 10 | 69 | 6 | 3 | 60 | ||
| Vin de Bordeaux. | 9939 | 0 | 5 | 11 | 69 | 9 | 1 | 25 | ||||
| Vin de Malvoisie de Madère. | 10382 | 0 | 5 | 28 | 72 | 10 | 6 | 20 | ||||
| Bierre rouge. | 10338 | 0 | 5 | 26 | 72 | 5 | 6 | 61 | ||||
| Bierre blanche. | 10231 | 0 | 5 | 22 | 71 | 9 | 6 | 70 | ||||
| Cidre. | 10181 | 0 | 5 | 20 | 71 | 4 | 2 | 13 | ||||
| Esprit-de-vin, ou alkool. | ![]() | Alkool du commerce. | 8371 | 0 | 4 | 25 | 68 | 9 | 3 | 30 | ||
| Alkool très-rectifié. | 8293 | 0 | 4 | 22 | 58 | 0 | 6 | 38 | ||||
| Alkool mêlé d'eau. | ||||||||||||
| Alkool. | Eau. | |||||||||||
| parties. | parties. | |||||||||||
| 15 | 1 | 8527 | 0 | 4 | 30 | 59 | 11 | 0 | 14 | |||
| 14 | 2 | 8674 | 0 | 4 | 36 | 60 | 11 | 4 | 3 | |||
| 13 | 3 | 8815 | 0 | 4 | 41 | 61 | 11 | 2 | 17 | |||
| 12 | 4 | 8947 | 0 | 4 | 46 | 62 | 10 | 0 | 37 | |||
| 11 | 5 | 9075 | 0 | 4 | 51 | 63 | 8 | 3 | 14 | |||
| 10 | 6 | 9199 | 0 | 4 | 55 | 64 | 6 | 2 | 22 | |||
| 9 | 7 | 9317 | 0 | 4 | 60 | 65 | 3 | 4 | 2 | |||
| 8 | 8 | 9427 | 0 | 4 | 64 | 65 | 15 | 6 | 43 | |||
| 7 | 9 | 9519 | 0 | 4 | 67 | 66 | 10 | 1 | 2 | |||
| 6 | 10 | 9598 | 0 | 4 | 70 | 67 | 2 | 7 | 58 | |||
| 5 | 11 | 9674 | 0 | 5 | 1 | 67 | 11 | 3 | 66 | |||
| 4 | 12 | 9733 | 0 | 5 | 3 | 68 | 2 | 0 | 55 | |||
| 3 | 13 | 9791 | 0 | 5 | 6 | 68 | 8 | 4 | 53 | |||
| 2 | 14 | 9852 | 0 | 5 | 8 | 68 | 15 | 3 | 28 | |||
| 1 | 15 | 9919 | 0 | 5 | 10 | 69 | 6 | 7 | 31 | |||
| Ethers. | ![]() | Ether sulfurique. | 7396 | 0 | 3 | 60 | 51 | 12 | 2 | 59 | ||
| Ether nitrique. | 9088 | 0 | 4 | 51 | 63 | 9 | 6 | 61 | ||||
| Ether muriatique. | 7296 | 0 | 3 | 56 | 51 | 1 | 1 | 16 | ||||
| Ether acétique. | 8664 | 0 | 4 | 35 | 60 | 10 | 2 | 68 | ||||
| Liqueurs acides. | ||||||||||
| Especes. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| on. | g. | gr. | liv. | on. | g. | gr. | ||||
| Acides minéraux. | ![]() | Acide sulfurique. | 18409 | 1 | 1 | 39 | 128 | 13 | 6 | 33 |
| Acide nitrique. | 12715 | » | 6 | 43 | 89 | 0 | 0 | 46 | ||
| Acide muriatique. | 11940 | » | 6 | 14 | 83 | 9 | 2 | 17 | ||
| Acides végétaux. | ![]() | Acide acéteux rouge. | 10251 | 0 | 5 | 23 | 71 | 12 | 0 | 65 |
| Acide acéteux blanc. | 10135 | 0 | 5 | 18 | 70 | 15 | 0 | 69 | ||
| Acide acéteux distillé. | 10095 | 0 | 5 | 17 | 70 | 10 | 5 | 9 | ||
| Acide acétique. | 10626 | 0 | 5 | 37 | 74 | 6 | 0 | 65 | ||
| Acides animaux. | Acide formique. | 9942 | 0 | 5 | 11 | 69 | 9 | 6 | 2 | |
| Alkali volatil ou Ammoniaque. | |||||||||
| Especes. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | |||||
| on. | g. | gr. | livres. | on. | g. | gr. | |||
| Ammoniaque. | Ammoniaque en liqueur. | 8970 | 0 | 4 | 47 | 62 | 12 | 5 | 9 |
| Liqueurs huileuses. | ||||||||||
| Especes. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| on. | g. | gr. | livres. | on. | g. | gr. | ||||
| Huiles volatiles, ou essentielles. | ![]() | Huile essentielle de térébenthine. | 8697 | 0 | 4 | 37 | 60 | 14 | 0 | 37 |
| Térébenthine liquide. | 9910 | 0 | 5 | 10 | 69 | 5 | 7 | 26 | ||
| Huile essentielle de Lavande. | 8938 | 0 | 4 | 46 | 62 | 9 | 0 | 32 | ||
| Huile essentielle de Gérofle. | 10363 | 0 | 5 | 27 | 72 | 8 | 5 | 18 | ||
| Canelle. | 10439 | 0 | 5 | 30 | 73 | 1 | 1 | 25 | ||
| Huiles fixes, ou grasses. | ![]() | Huile d'olives. | 9153 | 0 | 4 | 54 | 64 | 1 | 1 | 6 |
| Huile d'amande douce. | 9170 | 0 | 4 | 54 | 64 | 3 | 0 | 23 | ||
| Huile de lin. | 9403 | 0 | 4 | 63 | 65 | 13 | 1 | 6 | ||
| Huile de pavot. | 9288 | 0 | 4 | 57 | 64 | 10 | 5 | 18 | ||
| Huile de faîne. | 9176 | 0 | 4 | 55 | 64 | 3 | 5 | 50 | ||
| Huile de baleine. | 9233 | 0 | 4 | 57 | 64 | 10 | 0 | 55 | ||
| Liqueurs animales. | ||||||||||
| Especes. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| on. | g. | gr. | livres. | on. | g. | gr. | ||||
| Liqueurs animales. | ![]() | Lait de femme. | 10203 | 0 | 5 | 21 | 71 | 6 | 5 | 64 |
| Lait de jument. | 10346 | 0 | 5 | 26 | 72 | 6 | 6 | 1 | ||
| Lait d'ânesse. | 10355 | 0 | 5 | 27 | 72 | 7 | 6 | 6 | ||
| Lait de chèvre. | 10341 | 0 | 5 | 26 | 72 | 6 | 1 | 39 | ||
| Lait de brebis. | 10409 | 0 | 5 | 29 | 72 | 13 | 6 | 33 | ||
| Lait de vache. | 10324 | 0 | 5 | 25 | 72 | 4 | 2 | 22 | ||
| Petit-lait de vache clarifié. | 10193 | 0 | 5 | 20 | 71 | 5 | 4 | 67 | ||
| Urine humaine. | 10106 | 0 | 5 | 17 | 70 | 1 | 6 | 70 | ||
Table des Pesanteurs spécifiques de quelques substances végétales & animales
| Especes. | Variétés. | Pesanteur spécifique. | Poids du pouce cube. | Poids du pied cube. | ||||||
| onc. | g. | gr. | livres. | on. | g. | gr. | ||||
| Résines. | ![]() | Résines jaune ou blanche du pin. | 10727 | 5 | 40 | 75 | 1 | 3 | 28 | |
| Arcançon | 10857 | 5 | 45 | 75 | 15 | 7 | 63 | |||
| Galipot. | 10819 | 5 | 54 | 75 | 11 | 5 | 59 | |||
| Baras. | 10441 | 5 | 30 | 73 | 1 | 3 | 10 | |||
| Sandaraque. | 10920 | 5 | 48 | 76 | 7 | 0 | 23 | |||
| Mastic. | 10742 | 5 | 41 | 75 | 3 | 0 | 60 | |||
| Storax. | 11098 | 5 | 54 | 77 | 10 | 7 | 58 | |||
| Résine ou gomme copale opaque. | 11398 | 5 | 28 | 72 | 12 | 4 | 44 | |||
| Gomme copale transparente. | 10452 | 5 | 30 | 73 | 2 | 4 | 71 | |||
| Gomme copale de Madagascar. | 10600 | 5 | 36 | 74 | 3 | 1 | 43 | |||
| Gomme copale de la Chine. | 10628 | 5 | 37 | 74 | 6 | 2 | 50 | |||
| Résine ou Gomme Elémi. | 10182 | 5 | 20 | 71 | 4 | 3 | 5 | |||
| Résine ou gomme animée d'Orient. | 10284 | 5 | 24 | 71 | 15 | 6 | 33 | |||
| Résine ou gomme animée d'Occident. | 10426 | 5 | 29 | 72 | 15 | 5 | 50 | |||
| Labdanum. | 11862 | 6 | 11 | 83 | 0 | 4 | 25 | |||
| Labdanum in tortis. | 24933 | 1 | 4 | 67 | 174 | 8 | 3 | 70 | ||
| Résine ou gomme de gayac. | 12289 | 6 | 27 | 86 | 0 | 2 | 68 | |||
| Résine de jalap. | 12185 | 6 | 23 | 85 | 4 | 5 | 55 | |||
| Sang-dragon. | 12045 | 6 | 18 | 84 | 5 | 0 | 23 | |||
| Résine ou gomme-laque. | 11390 | 5 | 65 | 79 | 11 | 5 | 32 | |||
| Résine tacamaque. | 10463 | 5 | 31 | 73 | 3 | 6 | 61 | |||
| Benjoin. | 10924 | 5 | 48 | 76 | 7 | 3 | 65 | |||
| Résine ou gomme alouchi. | 10604 | 5 | 36 | 74 | 3 | 5 | 13 | |||
| Résine ou gomme caragne. | 11244 | 5 | 60 | 78 | 11 | 2 | 45 | |||
| Résine ou gomme élastique. | 9335 | 4 | 61 | 65 | 5 | 4 | 12 | |||
| Camphre | 9887 | 5 | 9 | 69 | 3 | 2 | 54 | |||
| Gommes-résines. | ![]() | Gomme ammoniaque. | 12071 | 6 | 19 | 84 | 7 | 7 | 44 | |
| Gomme séraphique. | 12008 | 6 | 16 | 84 | 0 | 7 | 12 | |||
| Gomme de lierre, ou hédérée. | 12948 | 6 | 51 | 90 | 10 | 1 | 29 | |||
| Gomme gutte. | 12216 | 6 | 24 | 85 | 8 | 1 | 39 | |||
| Euphorbe. | 11244 | 6 | 60 | 78 | 11 | 2 | 45 | |||
| Oliban ou encens. | 11732 | 6 | 6 | 82 | 1 | 7 | 63 | |||
| Mirrhe. | 13600 | 7 | 4 | 95 | 3 | 1 | 43 | |||
| Bdelium. | 13717 | 5 | 65 | 79 | 10 | 1 | 57 | |||
| Scammonée d'Alep. | 12354 | 6 | 29 | 86 | 7 | 5 | 13 | |||
| Scammonée de Smyrne. | 12743 | 6 | 44 | 89 | 3 | 1 | 52 | |||
| Galbanum. | 12120 | 6 | 20 | 84 | 13 | 3 | 37 | |||
| Assa fœtida. | 13275 | 6 | 64 | 92 | 14 | 6 | 29 | |||
| Sarcocolle. | 12684 | 6 | 42 | 88 | 12 | 4 | 62 | |||
| Opopanax. | 16226 | 1 | 0 | 30 | 113 | 9 | 2 | 36 | ||
| Gommes. | ![]() | Gomme commune, ou de Païs. | 14817 | 0 | 7 | 49 | 103 | 11 | 4 | 2 |
| Gomme arabique. | 14523 | 7 | 38 | 101 | 10 | 4 | 44 | |||
| Gomme adraganthe. | 13161 | 6 | 59 | 92 | 2 | 0 | 18 | |||
| Gomme de Bassora. | 14346 | 7 | 32 | 100 | 6 | 6 | 1 | |||
| Gomme d'Acajou. | 14456 | 7 | 36 | 101 | 3 | 0 | 41 | |||
| Gomme monbain. | 14206 | 7 | 26 | 99 | 7 | 0 | 41 | |||
| Sucs épaissis. | ![]() | Suc de réglisse. | 17228 | 1 | 0 | 67 | 120 | 9 | 4 | 21 |
| Suc d'acacia. | 15153 | 7 | 62 | 106 | 1 | 1 | 6 | |||
| Suc d'arec. | 14573 | 7 | 40 | 102 | 0 | 1 | 29 | |||
| Cachou. | 13980 | 7 | 18 | 97 | 13 | 6 | 6 | |||
| Aloès hépatique. | 13586 | 7 | 3 | 95 | 1 | 5 | 4 | |||
| Aloès socotrin. | 13795 | 7 | 11 | 96 | 9 | 0 | 23 | |||
| Hypociste. | 15263 | 7 | 66 | 106 | 13 | 3 | 47 | |||
| Opium. | 13366 | 6 | 67 | 93 | 8 | 7 | 3 | |||
| Fécules. | ![]() | Indigo. | 7690 | 0 | 3 | 71 | 53 | 13 | 2 | 17 |
| Roucou. | 5956 | 0 | 3 | 6 | 41 | 11 | 0 | 41 | ||
| Cires & graisses. | ![]() | Cire jaune. | 9648 | 5 | 0 | 67 | 8 | 4 | 44 | |
| Cire blanche. | 9686 | 5 | 2 | 67 | 12 | 6 | 47 | |||
| Cire d'ouarouchi. | 8970 | 4 | 47 | 62 | 12 | 5 | 9 | |||
| Beurre de cacao. | 8916 | 4 | 45 | 62 | 6 | 4 | 53 | |||
| Blanc de baleine. | 9433 | 4 | 64 | 66 | 0 | 3 | 70 | |||
| Graisse de bœuf. | 9232 | 4 | 57 | 64 | 9 | 7 | 63 | |||
| Graisse de veau. | 9341 | 4 | 61 | 65 | 6 | 1 | 39 | |||
| Graisse de mouton. | 9235 | 4 | 57 | 64 | 10 | 2 | 40 | |||
| Suif. | 9419 | 4 | 64 | 65 | 14 | 7 | 31 | |||
| Graisse de cochon. | 9368 | 4 | 62 | 65 | 9 | 1 | 52 | |||
| Lard. | 9478 | 4 | 66 | 66 | 5 | 4 | 21 | |||
| Beurre. | 9423 | 4 | 64 | 65 | 15 | 3 | 1 | |||
| Bois. | ![]() | Chêne de 60 ans: le cœur. | 11700 | 6 | 5 | 81 | 14 | 3 | 14 | |
| Liège. | 2400 | 1 | 18 | 16 | 12 | 6 | 29 | |||
| Orme: le tronc. | 6710 | 3 | 35 | 46 | 15 | 4 | 12 | |||
| Fresne: le tronc. | 8450 | 4 | 27 | 59 | 2 | 3 | 14 | |||
| Hêtre. | 8520 | 4 | 30 | 59 | 10 | 1 | 66 | |||
| Aune. | 8000 | 4 | 11 | 56 | 0 | 0 | 0 | |||
| Erable. | 7550 | 3 | 66 | 52 | 13 | 4 | 58 | |||
| Noyer de France. | 6710 | 3 | 35 | 46 | 15 | 4 | 12 | |||
| Saule. | 5850 | 3 | 2 | 40 | 15 | 1 | 43 | |||
| Tilleul. | 6040 | 3 | 9 | 42 | 4 | 3 | 60 | |||
| Sapin mâle. | 5500 | 2 | 61 | 38 | 8 | 0 | 0 | |||
| Sapin femelle. | 4980 | 2 | 42 | 34 | 13 | 6 | 6 | |||
| Peuplier. | 3830 | 1 | 71 | 26 | 12 | 7 | 49 | |||
| Peuplier blanc d'Espagne. | 5294 | 2 | 54 | 37 | 0 | 7 | 31 | |||
| Pommier. | 7930 | 4 | 8 | 55 | 8 | 1 | 20 | |||
| Poirier. | 6610 | 3 | 31 | 46 | 4 | 2 | 40 | |||
| Coignassier. | 7050 | 3 | 47 | 49 | 5 | 4 | 58 | |||
| Nefflier. | 9440 | 4 | 64 | 66 | 1 | 2 | 17 | |||
| Prunier. | 7850 | 4 | 5 | 54 | 15 | 1 | 43 | |||
| Olivier. | 9270 | 4 | 58 | 64 | 14 | 1 | 66 | |||
| Cerisier. | 7150 | 3 | 51 | 50 | 0 | 6 | 29 | |||
| Coudrier ou noisetier. | 6000 | 3 | 8 | 42 | 0 | 0 | 0 | |||
| Buis de France. | 9120 | 4 | 52 | 63 | 13 | 3 | 37 | |||
| Buis de Hollande. | 13280 | 6 | 64 | 92 | 15 | 2 | 63 | |||
| If de Hollande. | 7880 | 4 | 6 | 55 | 2 | 4 | 35 | |||
| If d'Espagne. | 8070 | 4 | 13 | 56 | 7 | 6 | 52 | |||
| Cyprès d'Espagne. | 6440 | 3 | 24 | 45 | 1 | 2 | 17 | |||
| Thuya. | 5608 | 2 | 65 | 39 | 4 | 0 | 55 | |||
| Grenadier. | 13540 | 7 | 1 | 94 | 12 | 3 | 60 | |||
| Mûrier d'Espagne. | 8970 | 4 | 47 | 62 | 12 | 5 | 9 | |||
| Gayac. | 13330 | 6 | 66 | 93 | 4 | 7 | 49 | |||
| Oranger. | 7050 | 3 | 47 | 49 | 5 | 4 | 58 | |||
TABLE
DES MATIERES.
A
Acides. Ils résultent en général d'un premier ordre de combinaisons formées par la réunion de deux principes simples, 163.-Savoir, d'un radical particulier & d'un principe acidifiant commun à tous, l'oxigène, 69.-C'est, en général, le résultat de la combustion ou de l'oxigénation d'un corps, 70.-Leurs dénominations générales se tirent de celle de leur base acidifiable, 72.-Difficultés de les nommer lorsque les bases sont inconnues, 71 & 73.-Leurs noms se terminent en eux lorsqu'ils contiennent peu d'oxigène, 72.-Ils se terminent en ique, lorsqu'ils sont plus chargés de ce principe, ibid.-Ils peuvent être regardés comme de véritables principes salifians, 163.-Leurs combinaisons avec les bases salifiables, 189.-Leur nombre s'est beaucoup accru depuis les nouvelles découvertes chimiques, 209. Chaque acide nouveau enrichit la Chimie de 24 ou de 48 sels, 183.
Acide acéteux, vulgairement appelé vinaigre, 159.-Son radical est composé d'une proportion encore indéterminée d'hydrogène & de carbone, 159 & 160.-Il est le résultat de l'oxigénation du vin, ibid.-Il absorbe l'oxigène de l'air en se formant, ibid.-Tableau de ses combinaisons, 160.
— Acétique. Tableau de ses combinaisons, 298.-Appelé autrefois vinaigre radical. Dernier degré d'oxygénation, que puisse prendre le radical hydro-carboneux.-Il n'est pas encore démontré qu'il soit plus oxigéné que l'acide acéteux; il pourroit en différer par la différence de proportion des principes du radical.-Moyens de l'obtenir, 299.
— Animaux. On n'en connoît encore que six, 131.-Il paroît qu'ils se rapprochent beaucoup les uns des autres, 131.-Il entre ordinairement dans leur composition 4 bases acidifiables, 125.
Acide arsenique. Tableau de ses combinaisons, 269.-Enlève l'oxigène à l'acide nitrique, devient un véritable acide, soluble dans l'eau.-Se combine avec la potasse & avec un grand nombre de bases salifiables, 269, 270 & 271.-Plusieurs moyens de l'obtenir, 269, 270.
— Benzoïque. Tableau de ses combinaisons, 302.-On l'obtient par sublimation & par la voie humide.-Procédé pour l'obtenir.-On le recueille sous forme concrète, 303.
— Bombique. Tableau de ses combinaisons, 314.-Se tire de la chrysalide du ver à soie.-Moyen de l'obtenir. Ses propriétés & ses affinités ne sont pas bien déterminées.-Son radical paroît être composé de carbone, d'hydrogène & peut-être de phosphore, 313.
— Boracique. Combinaison du radical boracique avec l'oxigène, 229.-Tableau de ses combinaisons, 264.-Se tire du borax.-Sel sédatif des anciens, 265.-Moyens de l'obtenir du borax, 266.-Ses propriétés, ses affinités différentes selon qu'on opère par voie sèche ou par voie humide.-Son radical est inconnu.-Ce n'est que par analogie qu'on croit que l'oxigène fait partie de sa composition, 267.
— Camphorique. Tableau de ses combinaisons, 304.-Moyens de l'obtenir.-Il est très-analogue à l'acide oxalique.-Il peut être regardé comme un mêlange d'acide oxalique & d'acide malique, 305.
— Carbonique. Très-abondamment répandu dans la nature.-Tout formé dans les craies, les marbres, neutralisé par la chaux. Moyens de l'obtenir.-Il s'unit à l'eau à-peu-près à volume égal.-Le carbone est son radical.-On peut le former artificiellement en oxigénant le carbone, 251.-Sa formation dans la combustion des végétaux, 166.-Il emporte avec lui une portion de calorique qui le constitue dans l'état de gaz, ibid.-Il est un des produits de la fermentation vineuse, 139.-On le convertit en un acide végétal en lui combinant de l'hydrogène, 160.-Sa décomposition seroit bien importante pour les arts.-On peut y parvenir par les affinités doubles, 252;-Tableau de ses combinaisons, 251.
— Citrique. Tableau de ses combinaisons, 284.-On le tire du jus de citron; on le trouve dans beaucoup d'autres fruits.-Moyens de l'obtenir pur, 285.
Acide Fluorique. Combinaison du radical fluorique avec l'oxigène, 229.-Tableau de ses combinaisons, 261.-Il est tout formé dans le spath fluor, spath phosphorique.-Moyens de le dégager de ses bases.-Il est naturellement sous forme de gaz.-Dissout le verre. On pourroit tenter de le décomposer par les affinités doubles, 263.
— Formique. Tableau de ses combinaisons, 312.-Il a été connu dans le siècle dernier.-Espèce de fourmi dont on le tire.-Moyens de l'obtenir, 313.
— Gallique. Tableau de ses combinaisons, 306.-Se tire de la noix de galle.-Moyen de l'obtenir.-Ses propriétés acides sont peu marquées. Il se trouve dans beaucoup de végétaux.-Son radical est inconnu, 307.
— Lactique. Tableau de ses combinaisons, 308.-Se trouve dans le petit lait. Procédés pour l'obtenir. S'unit avec toutes les bases salifiables.-Il a beaucoup de rapport avec l'acide acéteux, 309.
— Lithique. Tableau de ses combinaisons, 318.-Moyens de l'obtenir.-Ses propriétés sont peu connues.-Il pourroit bien être déjà combiné à une base & dans l'état de phosphate de chaux, 319.
Acide malique. Tableau de ses combinaisons, 280.-Se trouve tout formé dans le jus de pommes & d'autres fruits.-Moyen de l'obtenir. Il est mêlé avec l'acide citrique & tartareux dans beaucoup de fruits.-Tient le milieu entre l'acide oxalique & l'acide acéteux. Son radical contient du carbone & de l'hydrogène. On le forme artificiellement, 282, 283.
— Marin. Est naturellement dans l'état de gaz, au degré de pression de l'atmosphère, 94. Voy. Acide Muriatique.
— Marin oxigéné. S'obtient en distillant de l'acide marin sur des oxides métalliques, 257. Voy. Acide Muriatique oxigéné.
— Molybdique. Tableau de ses combinaisons.-Moyens de l'obtenir.-On le recueille sous forme pulvérulente de couleur blanche comme de la craie.-Il est toujours concret & peu soluble, 273.
— Muriatique. Combinaison du radical muriatique avec l'oxigène, 229.-Son nom dérivé de celui latin muria, 76.-Il est dans l'état de gaz au degré de pression & de température ordinaire, 74.-Se combine facilement avec l'eau, 76.-Il est très-répandu dans le règne minéral, uni à différentes bases.-N'a été décomposé dans aucune expérience chimique.-Son radical est inconnu, 75 & 255.-Opinion sur sa nature, 255. Tient foiblement à ses bases.-Moyens de l'en séparer. Appareils pour la distillation, 246. On le surcharge d'oxigène, en le distillant sur des oxides métalliques, tels que le manganèse, 247.-Il est susceptible de différens genres d'oxigénation, 76.-L'excès d'oxigène le rend moins miscible à l'eau, 77; plus volatil, ibid.-Pourquoi on n'a pas donné à son nom la terminaison en eux, ibid.-Tableau de ses combinaisons, 253.
Acide muriatique oxigéné. Il est plus volatil que l'acide muriatique ordinaire, 77. Il ne peut exister que sous forme gazeuse.-N'est absorbable par l'eau qu'en petite quantité.-Se combine avec un grand nombre de bases salifiables.-Les sels qu'il forme détonnent avec le carbone.-Ces détonations sont dangereuses, par l'expansion du calorique, 257.-Il dissout les substances métalliques sans effervescence, 178.-Il perd son excès d'oxigène dans la dissolution des métaux & devient acide muriatique ordinaire, 178.-Tableau de ses combinaisons, 254.
Acide nitreux. Raisons de lui conserver ce nom; celui d'azotique lui conviendroit mieux, 79.-Se tire ordinairement du salpêtre, 77 & 233.-Moyens de l'obtenir, 234.-Il est le résultat de la combinaison de l'oxigène & de l'azote, 78 & 214.-C'est l'acide du nitre surchargé d'azote ou de gaz nitreux, 81.-Et par conséquent un véritable acide azoteux, 78.-Il est le premier dans lequel l'existence de l'oxigène ait été bien démontrée, ibid. Les principes qui le constituent tiennent peu ensemble, ibid. Il est rouge & fumant, 81.-Il laisse échapper son excès de gaz nitreux & une légère chaleur, ibid. Il est formé par la réunion de trois parties d'oxigène & d'une d'azote, 80.-Tableau de ses combinaisons, 233.
— Nitrique. Le gaz azote est son radical, 56.-C'est l'acide nitreux surchargé d'oxigène, 81.-Il est composé de 4 parties d'oxigène & une d'azote, ibid.-Il est blanc, sans couleur, plus fixe au feu que l'acide nitreux, ibid.-Se tire ordinairement du salpêtre, 233.-Moyens de l'obtenir, 234 & suiv.-Retient une grande partie du calorique de l'oxigène qui est entré dans sa composition, 110. Le calorique s'en dégage avec fracas lors de sa décomposition, 112.-Peut servir à oxigéner beaucoup de substances par la voie humide, 207.-Il est uni très-souvent à la chaux & à la magnésie, 233.-Moyens de l'obtenir pur, 236.-Il a une grande tendance à la combinaison & se décompose lui-même aisément, 237. Tableau de ses combinaisons, 233.
Acide nitro-muriatique. Anciennement appelé eau régale.-C'est un acide à deux bases, 259, 260.-Il a des propriétés particulières qui dépendent de l'action combinée de ses deux bases acidifiables, 124 & 259. Les métaux s'oxident dans cet acide avant de s'y dissoudre.-Gaz qui se dégagent pendant la dissolution, 259.-Tableau de ses combinaisons, 259.
— Oxalique. Tableau de ses combinaisons, 292.-Il se retire du suc de l'oseille; il se trouve dans cette plante uni à la potasse, & dans l'état d'un sel neutre avec excès d'acide.-Moyen de le dégager de sa base.-Il cristallise lorsqu'il est pur. Uni à sa base peut entrer tout entier dans un grand nombre de combinaisons; il en résulte des sels à deux bases, 293, 294.
Acide phosphoreux. Combinaison du phosphore avec l'oxigène par une combustion lente, 248.-Se convertit en acide phosphorique par une longue exposition à l'air, 249.-Tableau de ses combinaisons, 246.
— Phosphorique. Produit par la combustion du phosphore dans le gaz oxigène, 59. Il est naturellement dans l'état concret après la combustion, 61, 104 & 248. Moyen de l'obtenir pur, 248.-Quantité d'oxigène qu'absorbe le phosphore dans sa conversion en acide, ibid.-Ne peut pas être regardé comme un acide animal, parce qu'il appartient aux trois règnes, 131. Tableau de ses combinaisons, 246.
— Prussique. Tableau de ses combinaisons, 320.-Uni au fer il le colore en bleu. Son radical est inconnu. C'est un acide à base double ou triple, dont l'azote est un des principes constituans, 320, 321, 322 & 415.-Il ne jouit même que d'une partie des propriétés acides, 321, 322.
— Pyro-ligneux. Tableau de ses combinaisons, 286.-Se retire du bois.-Moyens de l'obtenir pur.-Son radical est formé d'hydrogène & de carbone.-Il est le même de quelque nature de bois qu'on le retire, 287.
Acide pyro-muqueux. Tableau de ses combinaisons, 290. On le retire de tous les corps sucrés par la distillation à feu nud.-Accidens à éviter.-Procédé pour le concentrer.-On le convertit en acide malique & en acide oxalique en l'oxigénant, 291.
— Pyro-tartareux. On le retire du tartre par distillation à feu nud.-Moyens pour l'obtenir.-Il se dégage pendant la distillation une grande quantité d'acide carbonique.-Explosion dans la rectification, 289.-Tableau de ses combinaisons, 288.
— Saccho-lactique. Tableau de ses combinaisons, 310. Extrait du sucre de petit-lait.-Son action sur les métaux peu connue.-Les sels qui résultent de sa combinaison avec les bases salifiables sont peu solubles, 311.
— Sébacique. Tableau de ses combinaisons, 316.-C'est la graisse animale oxigénée. Moyen de l'obtenir, 317.
— Succinique. Tableau de ses combinaisons, 300.-On le retire du succin.-Moyens de l'obtenir.-Il n'a pas dans un degré très-éminent les qualités acides, 301.
— Sulfureux. Premier degré d'oxigénation du soufre, 71 & 244.-Les métaux lorsqu'ils sont oxidés sont dissolubles dans cet acide, 244, 245.-On l'obtient par différens procédés, 244.-Il est dans l'état de gaz à la pression ordinaire de l'atmosphère.-Il se condense par le froid, 244. Tableau de ses combinaisons, 243.
Acide sulfurique. Il est formé par la combinaison du soufre & de l'oxigène, 66, 72 & 240.-Proportion d'oxigène qui entre dans sa combinaison, 241, 242.-Il est incombustible, 66.-Son poids est égal à celui du soufre qu'on a brûlé pour le former, & de l'oxigène qu'il a absorbé pendant la combustion, ibid. Difficulté de le condenser, ibid.-Il se combine avec l'eau en toutes proportions, 67.-On le trouve tout formé dans les argiles, les gypses.-Moyens de le ramener à l'état de soufre par voie de décomposition & d'affinité, 221.-Décompose le nitre, 78.-Les métaux le décomposent & le réduisent à l'état d'acide sulfureux, 242.-Tableau de ses combinaisons avec les bases salifiables, 238 & 239.
— Tartareux. Tableau de ses combinaisons.-Moyens de l'obtenir pur.-Son radical est en excès.-C'est par cette raison qu'on a donné à son nom la terminaison en eux. Sa base est le radical carbone-hydreux.-L'azote entre dans sa composition.-En l'oxigénant on le change en acides malique, oxalique & acéteux, 278, 279 & 280.-On observe deux degrés de saturation dans ses combinaisons avec les alkalis.-Le premier degré avec excès d'acide; tartrite acidule de potasse.-Le second degré, sel parfaitement neutre; tartrite de potasse, 279, 280.
Acide tunstique. Tableau de ses combinaisons.-Se retire de la mine de tunstene, dans laquelle il est déjà sous forme d'acide.-Moyens de l'obtenir.-Ses affinités avec les acides métalliques ne sont pas déterminées, 275, 276.
— Végétaux.-On en connoît 13 jusqu'à présent, 129.-Leur composition est connue, mais la proportion des principes qui les constituent ne l'est pas encore, 127 & 161.-Ils ont tous pour base l'hydrogène, le carbone & quelquefois le phosphore, 124, 197, 198.-Ils ne diffèrent entr'eux que par la proportion d'hydrogène & de carbone, & par leur degré d'oxigénation, 126.-Quoique composés d'hydrogène & de carbone, ne contiennent cependant ni eau, ni acide carbonique; mais les principes propres à les former, 130.-Peuvent se convertir les uns dans les autres, en changeant la proportion de leurs principes constituans, 210.
Affinités. Les données manquent encore pour entreprendre un traité complet sur cet objet, Discours préliminaire, xiij & xiv.-Il s'en exerce de doubles & triples dans la décomposition des végétaux, 135.-Elles sont très-compliquées dans la putréfaction, 153.
Agens chimiques. Ce que c'est, 422.
Air atmosphérique composé de deux fluides élastiques, l'un respirable & l'autre qui ne l'est pas, 39 & 54.-Observations sur les expériences analytiques, relatives à l'air atmosphérique, 48 & suiv.-Sa décomposition par le mercure, 34 & suiv. N'est plus respirable après la calcination du mercure, 37.-Est décomposé par le fer, 40.-Diminue d'une quantité en poids égale à l'augmentation que le fer acquiert dans sa calcination, 47.-Est décomposé par le gaz nitreux, 80.-Par la combustion du soufre, 66. Voy. Atmosphère.
— Fixe. Premier nom de l'acide carbonique, 68. Voy. Acide carbonique.
— Vital. Voy. Gaz oxigène.
Alkali de la soude se retire de la lexiviation des cendres des plantes qui croissent au bord de la mer, principalement du kali, 169.-On ne connoît pas ses principes constituans, 170.-On ne sait pas si cette substance est toute formée dans les végétaux antérieurement à la combustion, ibid.-Elle est presque toujours saturée d'acide carbonique, 169.-Ses cristaux s'effleurissent à l'air & y perdent leur eau de cristallisation, ibid.
Alkali fixe, ou Potasse. C'est un résultat de la combustion des végétaux, 166.-Moyens de l'obtenir, 167.-On ne connoît pas les principes constituans, 170.-L'analogie pourroit porter à croire que l'azote est un des principes constituans des alkalis en général, ibid.-Se volatilise très-promptement au feu alimenté par le gaz oxigène, 556.
Alkool. Raisons qui ont fait adopter ce nom générique pour toutes les liqueurs spiritueuses, 140.-Il est composé de carbone & d'hydrogène, 150.-L'hydrogène & le carbone ne sont pas dans l'état d'huile dans cette combinaison, ibid.-Se décompose en passant à travers un tube de verre rougi au feu, ibid.-Appareil pour sa combustion, 501.
Alliages. Combinaison des métaux les uns avec les autres, 116.-Celui des mentaux qui prédomine donne le nom à l'alliage.-Les alliages ont leur degré de saturation très-marqué, 230.
Alumine. C'est principalement dans les argiles qu'on la rencontre, 173.-La composition de cette terre est absolument inconnue, 172.-Elle a moins de tendance à la combinaison que les autres terres, 173.-Est parfaitement fusible au feu alimenté par le gaz oxigène, 555.-Son état après la combustion, ibid.
Amalgamme. Combinaison du mercure avec les autres métaux, 117.
Amidon. Oxide végétal à deux bases, 125.
Ammoniaque. Résultat de la combinaison de l'azote & de l'hydrogène, 79 & 155.-Sur 1000 parties elle est composée de 807 d'azote & de 193 d'hydrogène, 171.-Moyens de l'amener à un grand degré de pureté, ibid.-Lorsqu'elle est très-pure, elle ne peut exister que sous forme gazeuse, ibid.-Dans l'état aériforme elle porte le nom de gaz ammoniac, 172.-Dans cet état l'eau en absorbe une grande quantité, 171.
Appareils chimiques. Raisons qui ont déterminé à en placer la description à la fin de l'ouvrage, 324.
— Pneumato-chimiques à l'eau & au mercure. Leur description, 342 & suiv.
Argent se volatilise lentement au feu alimenté par le gaz, oxigène, 556.
Arsenic est susceptible de s'oxigéner.-Dans cet état il a la propriété de s'unir aux bases salifiables, 269 & suiv.
Atmosphere terrestre. Sa constitution, 17, 28 & suiv. Son analyse, 33.-Composée de tous les fluides susceptibles d'exister dans un état de vapeurs & d'élasticité constante au degré habituel de chaleur & de pression que nous éprouvons, 31.-Sa pression est un obstacle à la vaporisation, 29.-Quelles sont ses parties constituantes, 51.-Sa limite, 29. Voy. Air atmosphérique, Gaz oxigène, Gaz azote.
Attraction tend à réunir les molécules des corps, tandis que le calorique tend à les écarter, 3.
Aurores boréales. Conjectures sur les causes qui les produisent, 32.
Azote. C'est la partie non respirable de l'air, 79.-C'est un des principes le plus abondamment répandu dans la nature, 213.-Avec le calorique il forme le gaz azote qui demeure toujours dans l'état de gaz à la pression de l'atmosphère, 213.-Combiné avec l'oxigène, il forme les acides nitreux & nitrique, 79, 214 & 235.-Se trouve dans les substances végétales & animales, 135 & 198.-Sur-tout dans les matieres animales dont il forme un des principes, 213.-Combiné avec l'hydrogène, il forme l'ammoniaque, 79, 214.-Dans la décomposition des végétaux & des matieres animales, il s'unit à l'hydrogène pour former l'ammoniaque, 136, 155.-C'est un des principes constituans de l'acide prussique, 215.-Ses combinaisons avec les substances simples sont peu connues. Elles portent le nom d'azotures, 214.
B
Balances. Instrumens dont l'objet est de déterminer le poids absolu des corps.-Combien il en faut dans un laboratoire.-De leur perfection.-Des précautions pour les conserver, 333 & suiv.
— Hydrostatique. Moyen de s'en servir.-Ses usages, 336, 337.
Baromètre. Corrections barométriques du volume des gaz, relativement à la différence de pression de l'atmosphère, 371 & suiv.-Modèle de calcul pour ces corrections, 380 & suiv.
Bases salifiables. Il en existe 24; savoir, 3 alkalis, 4 terres, & 17 substances métalliques, 182.
Baryte. La composition de cette terre est encore inconnue, 172.-Il est probable que c'est un oxide métallique, 174.-Mais qui n'est pas réductible par les moyens que nous employons, ibid. Elle est peu abondante; on ne la trouve que dans le règne minéral, 173.-Effet que produit sur elle le feu le plus violent, alimenté par le gaz oxigène.
Borax. Sel concret avec excès de base qui est la soude. Son origine est inconnue. Sa purification est encore un mystère, 265, 266.
Bougie. Sa combustion, 112.
C
Calcul de la vessie fournit l'acide lithique, 319.
Calorimètre. Sa description, 387 & suiv.-Principes de sa construction, ibid. Manière de s'en servir, 396 & suiv.
Calorique. Cause de la chaleur, 5.-Peut être considéré d'une manière abstraite, 6.-Comment il agit sur les corps, 6, 7.-Paroit être le plus élastique de la nature, 24.-Tous les corps y sont plongés, & il remplit les intervalles que laissent entr'elles leurs molécules.-Il se fixe quelquefois de manière à constituer leurs parties solides.-C'est de son accumulation que dépend l'état aériforme, 200.-Il fait l'office de dissolvant dans toute espèce de gaz, 17.-On appelle du nom générique de gaz toute substance portée à l'état aériforme par une addition suffisante de calorique, 200.-Le soufre & le charbon en brûlant lui enlevent l'oxigène, 66.-Il en est de même du gaz hydrogène, 95.-Moyen de mesurer la quantité qui s'en dégage des corps pendant leur combustion, 23, 103 & suiv.-Appareil imaginé pour remplir cet objet, 387.-Plan d'expériences pour déterminer la quantité que la plupart des corps en contiennent, 115.-Son dégagement dans la combustion du fer, 41.-Dans la combinaison des métaux avec la base du gaz oxigène, 82.-Dans la combustion du charbon, 66 & 108.-Dans la combustion du phosphore, 107.-Dans la combustion de la cire, 113.-Dans la combustion de l'huile d'olives, ibid.-Dans la combustion du gaz hydrogène, 109.-Il reste uni à l'oxigène, dans la formation de l'acide nitrique, 110.-Il entre dans la composition des nitrates & des muriates, en quantité presqu'égale à celle qui est nécessaire pour constituer le gaz oxigène, 207.-Il se dégage avec une telle abondance dans la combinaison de l'oxigène avec les corps combustibles, que rien ne peut résister à son expansion, 207.-Il décompose les substances végétales & animales, 132.
Calorique combiné. Tient aux corps par l'attraction & constitue une partie de leur substance, 21.
— Libre. C'est celui qui n'est engagé dans aucune combinaison, 21.
— Spécifique des corps. C'est le rapport des quantités de calorique, nécessaires pour élever d'un même nombre de degrés, la température de plusieurs corps égaux en poids, 21.
Camphre. Espèce d'huile concrète qu'on retire par sublimation d'un laurier du Japon, 305.
Capsules de porcelaine, servent de support aux substances dans la fusion par le gaz oxigène, 555.
Carbone ou charbon pur. Substance simple combustible, 67 & 227.-Manière d'opérer sa combustion, 67.-Décompose le gaz oxigène à une certaine température, 67,133, 227 & 228;-appareil pour sa combustion, 483 & suiv.-Quantité de calorique qui se dégage dans cette opération, 67, 108.-Enlève sa base au calorique, 67.-Décompose l'eau à une chaleur rouge & enlève l'oxigène à l'hydrogène, 91, 218.-Il s'en dissout une portion dans le gaz hydrogène, 92 & 118. Il est contenu dans le fer & dans l'acier, 48.-Il existe dans les végétaux antérieurement à la combustion, & forme avec le phosphore, l'hydrogène & l'azote, des radicaux composés, 227.-Moyens d'obtenir celui qui est contenu dans les matières végétales & animales, 227 & 228.-Ses combinaisons avec les substances simples, 224.-Il a très-peu d'affinité avec le calorique, 133.-Il forme une des parties constituantes des huiles, 119.-Et en général de tous les acide végétaux, 124.-Il tient très-peu aux huiles volatiles animales, 136.-Il fait partie du radical des gommes, du sucre & de l'amidon, 125.-Il est combiné dans ces substances avec l'hydrogène, de manière à ne former qu'une seule base portée à l'état d'oxide par une portion d'oxigène, 126.-Quantité qu'en contient le sucre, 142.
Carbures, nom donné aux combinaisons du carbone avec les métaux, 118.
Cendres, elles forment ordinairement la vingtième portion du poids d'un végétal brûlé, 166.-Il paroît qu'elles existent dans les végétaux avant leur incinération. C'est la terre qui forme la partie osseuse ou la carcasse des végétaux, 168.
Chaleur dilate les corps, 1. -Ses causes.-Nécessaire à l'oxigénation.-Différente pour l'oxigénation des différens corps, 203 & suiv.-Ce qu'on entend par cette expression, 133. Voy. Calorique.
Chaleur sensible. N'est que l'effet produit sur nos organes par le dégagement du calorique des corps environnans, 22.
Charbon de bois. L'on croit qu'il contient du phosphore, 225.-Sert de support aux substances simples fondues au feu alimenté par le gaz oxigène, 554.
Chaux. C'est de toutes les bases salifiables la plus abondamment répandue dans la nature, 172.-Sa composition est absolument inconnue, ibid.-Elle est presque toujours saturée d'acide carbonique, & forme alors la craie, les spaths calcaires & une partie des marbres, ibid.-Les anciens ont appelé de ce nom générique, toutes les substances long-tems exposées au feu sans se fondre, 83.-Effet que produit sur elle le feu le plus violent alimenté par le gaz oxigène, 555.
Chrysolyte. Se fond presque sur le champ au feu alimenté par le gaz oxigène, 557.
Cire. Quantité de calorique qui se dégage pendant sa combustion, 113.
Clarification. Moyen pour mettre une liqueur en état d'être filtrée, 417.
Cloches. Manière de les graduer, 362, 363.
Combustion du fer, 41 & suiv.-Du phosphore, 57 & suiv.-Du soufre.-Du charbon, 67 & suiv.-Du gaz hydrogène, 97 & suiv. Voyez ces mots.-Théorie de la combustion des végétaux, 165.-La plus grande portion du végétal est réduite en eau & en acide carbonique, 166.-Opérations relatives à la combustion, 478 & suiv.-Conditions nécessaires pour l'opérer, 480 & suiv.
Creusets, instrumens propres à la fusion, 335.
Cristal de roche. Effet que produit sur lui le feu le plus violent alimenté par le gaz oxigène, 555.
Cristallisation. Opération par laquelle les parties intégrantes d'un corps qui étoient séparées par un fluide, sont réunies par la force d'attraction, 437.-Calorique qui se dégage pendant cette opération, ibid.-Vaisseaux dans lesquels on l'opère, 441 & 442.
D
Décantation. Peut suppléer à la filtration, 419.-Elle est préférable dans les opérations qui exigent une précision rigoureuse, 420.
Détonnation. Explication de ses phénomènes, 526 & suiv.-Ils sont produits par le passage brusque & instantané d'une substance concrète à l'état aériforme, 525.-Expériences sur celle du salpêtre, 529 & suiv.
Diamant, se brûle à la manière des corps combustibles, & s'évapore au feu alimenté par le gaz oxigène, 557.
Dissolutions métalliques. Appareils pour les opérer, 460 & suiv.
Distillation composée. Elle opère une véritable décomposition.-C'est une des opérations des plus compliquées de la Chimie.-Appareils pour cet objet, 449 & suiv.
— Simple. N'est autre chose qu'une évaporation en vaisseaux clos.-Appareils distillatoires, 443 & suiv.
E
Eau. Ses différens états selon la quantité de calorique qui lui est combinée, 4 & 54.-Se transforme en un fluide élastique à un degré de chaleur supérieur à celui de l'ébullition, 15.-Se dissout dans les gaz, 50.-Regardée par les anciens comme un élément ou substance simple, 87.-Preuves qu'elle est composée, 100.-D'un radical qui lui est propre & d'oxigène, 94.-Son passage à travers un tube de verre incandescent, 89.-Appareil pour sa décomposition, 465 & suiv.-Sa décomposition par le carbone, 87 & 90.-Sa décomposition par le fer; il n'y a pas de dégagement d'acide carbonique, 87, 92 & 98.-Oxide de fer qui en résulte, 93.-Phénomènes de la fermentation spiritueuse & de la putréfaction dus à la décomposition de l'eau, 101.-Cette décomposition s'opère continuellement dans la nature, 100.-Les principes qui la constituent séparés l'un de l'autre ne peuvent exister que sous forme de gaz, ibid.-Sa recomposition, 96 & suiv. 506 & suiv.-85 Parties en poids d'oxigène & 15 en poids d'hydrogène, composent 100 parties d'eau, 100.-Se combine avec le gaz acide carbonique, 67.-Se combine en toutes proportions avec l'acide sulfurique, ibid.-Avec l'acide muriatique très-facilement, 75.-N'est pas toute formée dans le sucre, 150.
Eau régale. Nom ancien donné à un acide composé qui dissout l'or, 124. Voy. Acide nitro-muriatique.
Ebullition, n'est autre chose que la vaporisation d'un fluide ou sa combinaison avec le calorique, 12.
Effervescence, est produite par le passage rapide d'un corps solide ou liquide à l'état gazeux, 177.
Elasticité. Comment on doit la concevoir, 25 & suiv.
Emeraude, fond sur le champ en un verre opaque au feu alimenté par le gaz oxigène, 557.
Ether, seroit habituellement dans l'état aériforme sans la pression de l'atmosphère, 9.-Se vaporise à 33 degrés, 13 & suiv.-Appareil pour sa combustion, 503 & suiv.
Evaporation. Opération pour séparer deux substances qui ont un degré de volatilité différent, 431 & suiv.-Action du calorique dans cette opération, 433.
F
Fer. Il décompose l'air atmosphérique, 41.-Il augmente de poids dans la calcination d'une quantité égale à celle que l'air a perdue, 47.-Appareil pour son oxidation, 519.-Sa combustion dans le gaz oxigène, 41.-Il décompose l'eau & s'oxide à un degré de chaleur rouge, 92, 93 & 218.-Il est moins attirable à l'aimant après qu'il a décomposé l'eau; c'est de l'oxide noir de fer, 42 & 93.-Ce métal contient de la matière charbonneuse, 48.
Fermentation acéteuse. C'est l'acidification du vin à l'air libre par l'absorption de l'oxigène, 159.
— Putride, s'opère en raison d'affinités très-compliquées, 153.-Appareil relatif à cette opération, 461 & suiv.-L'hydrogène se dégage sous la forme de gaz pendant la décomposition des substances animales, 154.-Il se forme des combinaisons binaires, 153.
— Vineuse. Moyens de l'exciter, 139.-Moyen d'analyse des substances susceptibles de fermenter, 151.-Description des appareils relatifs à cette opération, 461 & suiv.-Ses résultats & ses effets, 150 & suiv.-Détail de ce qui se passe dans la décomposition du sucre, 149.
Filtration. C'est un tamisage qui ne laisse passer que les parties liquides, 413.
Filtres. De leur choix & des moyens de s'en servir, 412 & suiv.
Fluides élastiques. Sont une modification des corps, 11.-Il s'absorbe du calorique dans leur formation, ibid.-S'obtiennent à un degré de chaleur déterminé, 12.-Leurs noms génériques & particuliers, 54.
Fourmis. Espèce qui fournit l'acide formique, 313.
Fourneaux. De leur construction, 537 & suiv.-Des fourneaux de fusion, 543 & suiv.-Leur objet, ibid.-Principes de leur construction, 547 & suiv.-Moyen de faire passer à travers un courant de gaz oxigène, 577 & suiv.
— de Coupelle. Sa description, 550 & suiv.-Son objet 545.-Sa construction est vicieuse, 551.-Moyens qu'a employés M. Sage pour y suppléer, 551 & 552.
Fusion. C'est une véritable solution par le feu, 534.-Description de l'appareil pour l'opérer à l'aide du gaz oxigène, 552 & suiv.
G
Gaz. Explication de ce mot, 17.-C'est le nom générique par lequel on désigne une substance quelconque, assez imprégnée de calorique pour passer de l'état liquide à l'état aériforme, 53, 54 & 200.-Ils dissolvent l'eau, 50.-Manière d'en mesurer le poids & le volume, 360 & suiv. 384 & suiv.-Moyens de les séparer les uns des autres, 365 & suiv.-De la correction à faire à leur volume, relativement à la pression de l'atmosphère, 370 & suiv.-Et aux degrés du thermomètre, 378.
— Aqueux. Eau combinée avec le calorique, 54.
Gaz acide carbonique, formé par la combustion du charbon dans le gaz oxygène, 67.-Est susceptible d'être absorbé par l'eau, 67.-Ne se condense pas au degré de pression de l'atmosphère, ibid.-De tous les gaz c'est celui qui dissout le plus d'eau, 50.-S'unit à toutes les bases susceptibles de former des sels neutres, 67.-Provenant de la décomposition de l'eau par le charbon, 91.
— Acide muriatique. Moyens de le dégager, 74.
— Azote. Fait partie de l'air atmosphérique, 39 & 203.-Plusieurs manières de l'obtenir, 214, 215.-Sa pesanteur, 55.-Ses propriétés chimiques ne sont pas encore bien connues, ibid.-Il prive de la vie les animaux qui le respirent, 56.-L'azote entre dans la composition de l'acide nitrique, ibid.-Dans celle de l'ammoniaque, ibid.
— Hépatique. C'est le gaz hydrogène sulfuré, 118.
— Hydrogène est formé par l'union du calorique & de l'hydrogène, 94 & 217.-C'est le radical constitutif de l'eau, 94.-On l'obtient en présentant à l'eau un corps pour lequel l'oxigène ait plus d'affinité; l'hydrogène s'unit au calorique pour le former, 217.-Se dégage dans la décomposition de l'eau par le fer, 93.-Et dans celle de l'eau par le charbon, 91.-Moyens de l'obtenir pur, 98.-Sa pesanteur, 95.-Ne peut se condenser au degré de pression de l'atmosphère, 99.-Enleve l'oxigène au calorique & décompose l'air dans la combustion, 95.-Sa combustion avec le gaz oxigène s'opère instantanément & avec explosion.--Précautions qu'exige cette expérience, 96.-Appareil pour sa combustion en grand, 506 & suiv.-Quantité de calorique qui se dégage pendant sa combustion, 109.-Dans la combustion des végétaux il s'allume par le contact de l'air & produit la flamme, 166.-Il n'est pas absorbable par l'eau, 95.-Il se combine avec tous les corps combustibles, 156.-Il dissout le carbone, 118.-Le phosphore, ibid.-Le soufre, ibid.-Les métaux, ibid.-Dénomination qu'il prend alors, ibid.-On en obtient d'autant moins qu'on a pris plus de précautions pour écarter l'eau dans les expériences sur les métaux, 122.
Gaz hydrogène carboné. Résultat de la combinaison du gaz hydrogène avec le carbone, 156.
— Hydrogène phosphoré. Résultat de la combinaison du gaz hydrogène avec le phosphore, 156 & 225.-S'enflamme spontanément lorsqu'il a le contact de l'air, 119.-Il a l'odeur du poisson pourri, ibid.-Et il s'exhale vraisemblablement de la chair des poissons en putréfaction, ibid.
Gaz hydrogène sulfuré. Résultat de la combinaison du gaz hydrogène avec le soufre, 156.-C'est à son émanation que les déjections animales doivent leur odeur infecte, 119.
— Inflammable. Voy. Gaz hydrogène.
— Nitro-muriatique. Se dégage pendant la dissolution de l'or dans l'acide nitro-muriatique.-N'a pas encore été décrit.-Son odeur est désagréable.-Il est funeste aux animaux qui le respirent.-L'eau en absorbe une grande quantité, 259.
— Nitreux. Premier degré de combinaison de l'azote avec l'oxigène, 80.-C'est une espece d'oxide d'azote, 81.-Proportions d'azote & d'oxigène qui le constituent, 80.-Surchargé d'oxigène, compose un acide très-puissant, l'acide nitrique, ibid.-Enleve l'oxigène à l'air de l'atmosphère, ibid.-Sert d'eudiomètre pour connoître la quantité d'oxigène contenue dans l'air atmosphérique, ibid.-Il est immiscible à l'eau, ibid.
— Oxigène. Combinaison de l'oxigène avec le calorique, 55.-Moyen de s'assurer s'il ne contient point d'acide carbonique, 98.-Le calorique & la lumière qui se dégagent dans la combustion sont-ils fournis par le corps qui brûle, ou par le gaz oxigène qui se fixe dans les opérations? 219.-Est décomposé par le charbon, 67.-Par le phosphore, 58 & suiv.-Perd son calorique dans cette combinaison, 60.-Sa décomposition par les métaux, 82.-Par le fer 41.-Par le soufre, 66.-Entre dans la décomposition de l'air atmosphérique, 55.-Retiré de l'oxide de mercure, 523.-Retiré de l'oxide de manganèse ou du nitrate de potasse, 524.-Change de nature par la détonnation avec le charbon, & se convertit en acide carbonique, 525.-Moyen de s'en servir pour augmenter l'intensité du feu, 552.-Son emploi dans les fusions, ibid.
Gazomètre. Instrument propre à mesurer le volume des substances aériformes, 342.-Sa description, 346 & suiv.-Sa graduation, 358 & suiv.-Expériences qui ont donné l'idée de sa construction, 553.-On peut avec cet instrument donner un grand degré de vîtesse au gaz oxigène, 553;-& l'employer à augmenter l'action du feu, 553 & suiv.
Gazomètrie. C'est l'art de mesurer le poids & le volume des substances aériformes, 342.
Gommes. Oxides végétaux à deux bases, 125.-Réunies sous le nom générique de muqueux, ibid.
Graisse animale. Formée par la partie musculaire de cadavres enterrés à une certaine profondeur & privés du contact de l'air, 157.-Le suif fournit l'acide sébacique, 317.
Grenat. Fond presque sur le champ au feu alimenté par le gaz oxigène, 557.
H
Huiles. Elles sont composées de carbone & d'hydrogène, 119.-Ce sont de véritables radicaux carbone-hydreux, 198.-Proportion des principes qui les constituent, 120.-Sont-elles base ou radical des acides végétaux & animaux.-Raisons qui font pencher pour la négative, 211.-Appareil pour leur combustion, 493 & suiv.-Se convertissent en brûlant en acide carbonique & en eau, 120.
— d'Olives. Quantité de calorique qui s'en dégage, 113.
— Fixes. Contiennent un excès de carbone, 119.-Elles le perdent à un degré de chaleur supérieur à l'eau bouillante, 119.
Huiles volatiles. Elles sont formées par une juste proportion d'hydrogène & de carbone, 119.-A un degré supérieur à l'eau bouillante, elles se combinent au calorique pour former un gaz; c'est dans cet état qu'elles passent dans la distillation, 120.
— Volatiles animales. Le carbone y tient si peu qu'il s'en sépare par leur simple exposition à l'air libre, 136 & 137.-Il se sépare encore plus promptement quand on les expose dans le gaz oxigène, & l'huile devient noire; en même tems il se forme de l'eau, 137.-Elles redeviennent blanches par la rectification & le charbon s'en sépare, 136.-Elles se décomposent & se convertissent entièrement en charbon & en eau par des rectifications répétées, 136 & 137.
Hyacinthe. Perd sa couleur au feu alimenté par le gaz oxigène, 556 & 557.
Hydrogène. Est un des principes de l'eau, 217.-Son existence & ses propriétés ne sont connues que depuis peu de tems.-C'est un des principes les plus répandus dans la nature.-Il joue le principal rôle dans le règne animal & végétal, 217.-Son affinité avec le calorique est telle qu'il est toujours dans l'état de gaz.-Il est impossible de l'obtenir seul sous forme concrète, 217 & suiv.-On l'obtient dans l'état de gaz en décomposant l'eau par le fer & par le carbone, 218.-Sa combinaison avec le phosphore, 225.-Avec l'oxigène, 217.-Est-il susceptible de se combiner avec les corps simples dans l'état concret? 121.-Ce ne peut être qu'en très-petite quantité, ibid.-Il est un des principes constitutifs des huiles, & du radical de tous les acides végétaux & animaux, 119.-De l'amidon, des gommes, du sucre, 125.-Quantité qu'en contient le sucre, 142.-Quelques chimistes ont supposé que c'étoit le phlogistique de Stahl.-Ils ne le prouvent point.-Ils n'expliquent pas les phénomènes de la calcination & de la combustion, 219.
I
Instrumens propres à déterminer le poids absolu & la pesanteur spécifique des corps, 327 & suiv.-Description de la machine qui sert à les comparer. Elle se nomme balance. L'action se nomme pesée. Variation de l'unité d'un pays à l'autre.-De la nécessité de n'employer que des poids dont on connoît les rapports entre eux, 327 & suiv.
L
Lampe d'émailleur. Sert d'intermédiaire, dans la fusion par le gaz oxigène, pour les substances composées qui ont de l'affinité avec le charbon, 554.
Lavage. Moyen de diviser les corps en poudres de grosseurs uniformes, 420.
Lexiviation. Opération dont l'objet est de séparer les substances solubles dans l'eau de celles qui ne le sont pas, 428 & suiv.
Limes. Servent à diviser les matières soit malléables, soit fibreuses, 408.
Limphe. Oxide animal, 130.
Lumière. Qualités qui lui sont communes avec le calorique, 6.-Nécessaire aux animaux comme aux végétaux.-Il n'existe d'êtres organisés que dans les lieux exposés à la lumière, 202.-Son dégagement dans la combustion du fer, 41.-Sa manière d'agir sur les corps est inconnue.-Elle contribue avec le calorique à constituer l'oxigène dans l'état de gaz.-Se combine avec quelques parties des plantes; c'est à cette combinaison qu'est due la couleur verte des feuilles, 201.
Luts, (préparation des) 468.-Résineux.-Gras.-De chaux & de blanc d'œufs, 469, 470 & suiv.-Leur emploi, 475 & suiv.-Moyens d'y suppléer, 477.-Pour enduire les cornues, 541.
M
Magnésie. La composition de cette terre est absolument inconnue, 172.-On la trouve dans l'eau de la mer, 173.-Et dans un grand nombre d'eaux minérales, 173.-Effet que produit sur elle le feu le plus violent, alimenté par le gaz oxigène, 555.
Matières fécales sont composées de carbone & d'hydrogène, 157.-Produisent de l'huile par la distillation, ibid.
Mercure. Appareil pour son oxidation, 35, 507 & suiv.-Absorbe dans cette opération la partie respirable de l'air, 38.-Ne l'absorbe pas en entier, 40.
Métaux. Sont susceptibles de se combiner les uns avec les autres, 116.-Ne sont pas dissolubles dans les acides; il faut qu'ils ayent été portés auparavant à l'état d'oxides, 176.
Miroirs concaves. Ont un plus grand degré d'intensité que les verres ardens.-La difficulté de s'en servir rend impossibles un grand nombre des expériences chimiques, 553.
Mophète. Voy. Azote & Gaz Azote.
Molécules élémentaires des corps ne se touchent point, 3.
Molybdène. Substance métallique qui a la propriété de s'oxigèner & de former un véritable acide.-La nature nous le présente dans l'état de sulfure de molybdène, 273.
Mortiers. Leur description. Leur usage, 404 & 405.
Muriates oxigénés. Le calorique entre dans leur composition en quantité presqu'égale à celle qui est nécessaire pour constituer le gaz oxigène, 207.
N
Nitrates. Sels résultans de l'union de l'acide nitrique avec différentes bases, 237.-Appareil pour en retirer l'acide, 78.-Dégagement de gaz oxigène qui l'accompagne, ibid.
Nitrites. Sels résultans de l'union de l'acide nitreux avec différentes bases, 237.
Noix de galle. Elles fournissent le principe astringent ou acide gallique par une simple infusion dans l'eau, 307.
Nomenclature. Systême général d'après lequel elle est formée.-Discours préliminaire.-Ses difficultés, 128.-Le point où en est la science oblige de conserver au moins pour un tems les noms anciens pour les acides & oxides animaux & végétaux, 129.
O
Odeur fétide. Elle est produite par la dissolution des corps combustibles dans le gaz hydrogène, 156.
Opérations manuelles de la Chimie.-Se divisent en plusieurs classes, 325.-Les unes ne sont que méchaniques, elles ne font que diviser les corps.-Les autres sont véritablement chimiques, 325 & suiv.
Or, se dissout dans l'acide nitro-muriatique.-S'oxide avant sa dissolution, 259.-Se volatilise lentement au feu alimenté par le gaz oxigène, 556.
Os des animaux. Ce sont de véritables phosphates de chaux, 224.
Oxides. Nom générique pour exprimer le premier degré d'oxigénation de toutes les substances, 85.-Le règne végétal & le règne animal ont leurs oxides, ibid.
— A deux bases, moyen d'expliquer sans périphrase le principe qui est en excès, 126.
— Animaux. Leur nombre est encore indéterminé, 130.-Il entre ordinairement dans leur composition 4 bases oxidables, 125.-Les principes qui les constituent se désunissent à un très-léger changement de température, 131.
Oxides métalliques. Combinaisons de l'oxigène avec les métaux, 82.-Les anciens Chimistes les confondoient sous le nom de chaux, avec un grand nombre de substances de nature très-différente, 84.-On les spécifie par leur couleur qui varie en raison de la quantité plus ou moins grande d'oxigène qu'ils contiennent, 85.-Brûlent avec flamme au feu alimenté par le gaz oxigène, 556.-Réflexions sur ce phénomène, ibid.
— Végétaux. Leur nomenclature, 138 & suiv.-Se décomposent à un degré de chaleur supérieur à l'eau bouillante; le calorique rompt l'équilibre qui existoit entre les parties qui les constituoient, 130.-Comment ils different entr'eux, 210.-Leur décomposition par la fermentation vineuse, 139.
— Rouge de mercure. L'oxigène y tient très-peu. Moyens d'oxider les corps à une chaleur médiocre, 206.
Oxigénation. Combinaison d'un corps avec l'oxigène, 66.
Oxigène, a une grande affinité pour la lumière.-Elle contribue avec le calorique à le constituer dans l'état de gaz, 201.-Dans cet état il forme la partie respirable de l'air, 54.-Il entre pour un tiers dans le poids de notre atmosphère; l'azote constitue les deux autres tiers, 203.-Abandonne le calorique pour s'unir à l'hydrogène dans la combustion, 95.-C'est le principe acidifiant de tous les acides, 69.-Un premier degré de combinaison de ce principe avec l'azote forme le gaz nitreux, 80.-Un second degré constitue l'acide nitreux, ibid.-Un troisieme constitue l'acide nitrique, 214.-Ses combinaisons avec les substances simples se nomment binaires, ternaires, quaternaires, selon le nombre de ces substances, 207.-Tableau de ses combinaisons binaires avec les substances simples métalliques & non métalliques, 203.-Se dégage pendant la décomposition du nitre par l'acide sulfurique, 78.-Il tient peu à l'acide nitrique, 207.-Condition nécessaire pour sa combinaison, 203 & suiv.-Il est le moyen d'union entre les métaux & les acides, 179.-Tout porte à croire que les substances qui ont une grande affinité avec les acides contiennent de l'oxigène, 179.-Et qu'il entre dans la composition des terres regardées comme simples, 180.-Quantité que le sucre en contient, 142.-Il conserve une grande partie de son calorique en se combinant au gaz nitreux, 110.
P
Pesanteur spécifique. On a désigné sous ce nom le poids absolu des corps divisé par leur volume.-On détermine cette pesanteur par le moyen de la balance hydrostatique, 337.
Pese-liqueurs, servent à déterminer la pesanteur spécifique des fluides, 338.-Leur description.-Manière de s'en servir. On les construit en verre & en métal, 338 & suiv.
Phosphore. Substance inconnue des anciens Chimistes. C'est un produit de l'art. Epoque de sa découverte. On le retire à présent des os des animaux.-Manière de le préparer, 224.-C'est un corps combustible simple.-Il se rencontre, à ce qu'il paroît, dans toutes les substances animales & dans quelques plantes, 198, 199, 225.-Il y est ordinairement combiné avec l'azote, l'hydrogène, &c.-Il s'allume à 32 degrés de chaleur, 225.-Décompose le gaz oxigène à cette température, 58 & suiv.-Absorbe une fois & demie son poids d'oxigène, 63.-Se convertit en un acide, 66.-Il devient incombustible par la combinaison avec l'oxigène, 65.-Appareils pour sa combustion, 58, 61, 482 & suiv.-Quantité de calorique qui se dégage pendant sa combustion, 62 & 107.-Ses combinaisons avec les substances simples, 223.-Avec les métaux, 118.-Avec le gaz hydrogène, ibid.-Il paroît qu'il demeure combiné avec le charbon dans la distillation des végétaux, 136.-Enleve l'oxigène à l'acide nitrique & à l'acide muriatique oxigéné, 249.-C'est une des bases des acides animaux, 124.
Pierres composées, se fondent au feu alimenté par le gaz oxigène, 556.
— Précieuses. Celles qui sont décolorées par le feu alimenté de gaz oxigène, ont l'apparence d'une terre blanche, & de la porcelaine, 557.
Plantes. La couleur des feuilles & la diversité de celles des fleurs tient à la combinaison de la lumière avec elles, 201.-Contiennent du phosphore, 225.
Poids. Division de la livre en fractions décimales, moyen de simplifier les calculs, 333.-Table pour convertir les fractions décimales en fractions vulgaires & réciproquement.
Porphirisation. Instrumens propres à l'opérer, 403.
Potasse. Son origine.-Procédés pour l'extraire, 165 & suiv.-Il n'est pas démontré qu'elle existe dans le charbon avant la combustion, 228.-Il ne paroît pas qu'on puisse l'extraire des végétaux sans des intermedes qui fournissent de l'azote & de l'oxigène, 169.-Presque toujours saturée d'acide carbonique, pourquoi, 167.-Elle est soluble dans l'eau, 168.-Elle attire l'humidité de l'air avec une grande rapidité.-Elle est en conséquence très-propre à opérer la dessication des gaz, 168.-Elle est soluble dans l'esprit-de-vin, ibid.
Poudre à canon. Il se dégage de l'azote & du gaz acide carbonique dans son inflammation, 525 & 526.
Pression de l'atmosphère. Elle met obstacle à l'écartement des molécules des corps, 8.-Sans elle il n'y auroit pas de fluides proprement dits, ibid.-Expériences qui le prouvent, 9 & 10.
Pulvérisation. Instrumens propres à l'opérer, 403.
Putréfaction. Ses phénomènes sont dus en partie à la décomposition de l'eau, 101.-Est très-lente lorsque le corps qui l'éprouve ne contient pas d'azote, 155.-C'est dans le mêlange des substances végétales & animales que consiste toute la science des amendemens & des fumiers, 155.
— Des végétaux, n'est autre chose que l'analyse des substances végétales dans laquelle la totalité de leurs principes se dégage sous la forme de gaz, 154.
Pyrites, nom que les anciens donnoient à la combinaison du soufre & des métaux, 117.
R
Radical acéteux. Tableau de ses combinaisons, 294.-Acide à deux bases.-C'est le plus oxigéné des acides végétaux.-Contient un peu d'azote.-Moyens de l'obtenir & de l'avoir pur.-Libre de toute combinaison, il est dans l'état de gaz au degré de température dans lequel nous vivons.-La plupart des sels qu'il forme avec les bases salifiables ne sont pas cristallisables, 295 & suiv.
— Boracique. Sa nature est inconnue, 229.
— Fluorique. Sa nature est inconnue, 229.-Ses combinaisons avec l'oxigène, ibid.
Radical malique. Tableau de ses combinaisons, 281.
— Muriatique. Sa nature est encore inconnue, 229.
— Tartareux. Tableau de ses combinaisons, 227.
Radicaux des acides, leur tableau, 196.-Combinaisons des radicaux simples avec l'oxigène, 203 & suiv.-Combinaison des radicaux composés avec l'oxigène, 208 & suiv.
— Hydro-carboneux & Carbone-hydreux, 198.
— Oxidables & Acidifiables. Sont simples dans le règne minéral.-Sont composés dans les deux autres, 209.
Rape. Sert à diviser les substances pulpeuses, 405.
Réductions métalliques. Ne sont autre chose que des oxigénations du charbon par l'oxigène contenu dans les oxides métalliques, 206.
Respiration. Raisons qui ont empêché d'en parler dans cet ouvrage, 202.
Rubis. Se ramollit, se soude & se fond sans altération de sa couleur, par l'action du feu alimenté par le gaz oxigène, 556.
— du Brésil. Se décolore & perd un cinquième de son poids au feu alimenté par le gaz oxigène, 557.
S
Salpêtre. Combinaisons de l'acide nitrique & de la potasse, 233.-Moyens d'obtenir ce sel, ibid.-Son rafinage fondé sur la différente solubilité des sels, 439, 440.
Sang. La partie rouge est un oxide animal, 130.
Sécrétions animales. Sont de véritables oxides, 130.
Sel marin. Combinaison de l'acide muriatique & de la soude, 259.
— Muriatique oxigéné de potasse. Fournit un gaz oxigène absolument pur, 507.
— Sédatif. Voy. Acide Boracique, 265.
— Neutres. Leur formation, 162 & 189.-Ils résultent de la réunion d'une substance simple oxigénée avec une base quelconque, 164.-Ou, ce qui est la même chose, de l'union des acides avec les substances métalliques terreuses & alkalines, 162.-Quelles sont les bases. salifiables susceptibles de se combiner avec les acides, 162, & 164.-Le nombre des sels connus a augmenté en raison des acides qui ont été découverts, 209.-Dans l'état actuel de nos connoissances, il est de 1152, 182.-Mais il est probable que toutes ces combinaisons salines ne sont pas possibles, 183.-Combinaisons salines présentées sous la forme de tableaux.-On a suivi pour les classer les mêmes principes que pour les substances simples, 183 & suiv.-Leur nomenclature, 183.-On les distingue par le nom de leur base salifiable, 184 & suiv.-Plan d'expériences sur les sels neutres, 187.-De leur solution, 403.-Par le calorique, 424 & 438.-On confondoit autrefois la solution & la dissolution, 423 & 424.-Des différens degrés de solubilité des sels, 426 & suiv.-Travail à faire sur les sels neutres, 428.
Siphon. Sa description, 412.
Soufre. Substance combustible qui est dans l'état concret à la température de l'atmosphère, & qui se liquéfie, à une chaleur supérieure à l'eau bouillante, 221.-Sa combinaison avec les substances simples, ibid.-Avec le gaz hydrogène, 118.-Avec différens autres gaz, 66.-Avec le charbon, 67.-Il décompose l'air, 66.-Enleve l'oxigène au calorique, ibid.-Il est susceptible de plusieurs degrés de saturation en se combinant avec l'oxigène, 72.-Moyen d'exciter sa combustion pour la formation de l'acide sulfurique, 241.
Sublimation.-Distillation des matières qui se condensent sous forme concrète, 448.
Substances animales sont composées d'hydrogène, de carbone, de phosphore, d'azote & de soufre, le tout porté à l'état d'oxide par une portion d'oxigène, 158.-Leur distillation donne les mêmes résultats que les plantes crucifères, 136.-Elles donnent seulement plus d'huile & plus d'ammoniaque, en raison de l'azote & de l'hydrogène qu'elles contiennent dans une plus grande proportion, 136.-Elles favorisent la putréfaction, parce qu'elles contiennent de l'azote, 155.-Elles peuvent varier en raison de la proportion de leurs principes constituans & de leur degré d'oxigénation, 213.-Sont décomposées par le feu, 132.
Substances combustibles. Ce sont celles qui ont une grande appétence pour l'oxigène, 116.-Peuvent s'oxigéner par leur combinaison avec les nitrates & les muriates oxigénés, 206 & 207.
— Métalliques. A l'exception de l'or & quelquefois de l'argent, elles se présentent rarement dans la nature sous la forme métallique, 173.-Celles que nous pouvons réduire sous forme métallique sont au nombre de 17, 174.-Celles qui ont plus d'affinité avec l'oxigène qu'avec le carbone ne sont pas susceptibles d'être amenées à cet état, 174.-Considérées comme bases salifiables, 175.-Ne peuvent le dissoudre que lorsqu'elles s'oxident, 176 & 177.-L'effervescence qui a lieu pendant leur dissolution dans les acides prouve qu'elles s'oxident, ibid.-Se dissolvent sans effervescence dans les acides lorsqu'elles ont été préalablement oxidées, 178.-Se dissolvent sans effervescence dans l'acide muriatique oxigéné, ibid.-Dans l'acide sulfureux, 245.-Celles qui sont trop oxigénées s'y dissolvent & forment des sulfates métalliques, ibid.-Décomposent toutes le gaz oxigène, excepté l'or & l'argent, 82, 203 & suiv.-Elles s'oxident & perdent leur éclat métallique, 83.-Pendant cette opération elles augmentent de poids à proportion de l'oxigène qu'elles absorbent, ibid.-Les anciens donnoient improprement le nom de chaux aux métaux calcinés ou oxides métalliques, 83.-Appareils pour accélérer l'oxidation, 514 & suiv.-N'ont pas toutes le même degré d'affinité pour l'oxigène, 513.-Lorsqu'on ne peut en séparer l'oxigène, elles demeurent constamment dans l'état d'oxides & se confondent pour nous avec les terres, 174.-Décomposent l'acide sulfurique en lui enlevant une portion de son oxigène, & alors elles s'y dissolvent, 242.-Leurs combinaisons les unes avec les autres, 230.-Les alliages qui en résultent sont plus cassans que les métaux alliés, 116.-C'est à leurs différens degrés de fusibilité que sont dus une partie des phénomènes que présentent ces combinaisons, 117.-Brûlent avec flamme colorée & se dissipent entiérement au feu alimenté par le gaz oxigène, 556.-Toutes, excepté le mercure, s'y oxident sur un charbon, ibid.
Substances salines se volatilisent au feu alimenté par le gaz oxigène, 556.
— Simples. Leur définition. Ce sont celles que la chimie n'a pas encore pu parvenir à décomposer, 193 & suiv.-Leur tableau, 192.-Leurs combinaisons avec le soufre, 221.-Avec le phosphore, 223.-Avec le carbone, 227.-Avec l'hydrogène, 217.-Avec l'azote, 213.
— Végétales. Leurs principes constitutifs sont l'hydrogène & le carbone, 132.-Contiennent quelquefois du phosphore & de l'azote, 136.-Manière d'envisager leur composition & leur décomposition, 132.-Leur décomposition se fait en vertu d'affinités doubles & triples, 135.-Tous les principes qui les composent sont en équilibre entr'eux au degré de température dans lequel nous vivons, 133.-Leur distillation fournit la preuve de cette théorie, 135.-A un degré peu supérieur à l'eau bouillante, une partie du carbone devient libre, 134.-L'hydrogène & l'oxigène se réunissent pour former de l'eau, ibid.-Une portion d'hydrogène & de carbone s'unissent & forment de l'huile volatile, ibid.-A une chaleur rouge l'huile formée seroit décomposée, 135.-L'oxigène alors s'unit au carbone avec lequel il a plus d'affinité à ce degré, 134.-L'hydrogène s'échappe sous la forme de gaz en s'unissant au calorique, ibid.
Sucre. Oxide végétal à deux bases, 125.-Son analyse, 142 & suiv.-En l'oxigénant on forme de l'acide oxalique, de l'acide malique, de l'acide acéteux, selon la proportion d'oxigène, 294.-Moyens de rompre l'équilibre de ses principes par la fermentation, 142.-Récapitulation des résultats obtenus par la fermentation, 148.-Contient les substances propres à former de l'eau, mais non de l'eau toute formée, 151.
— de lait oxigéné forme l'acide saccholactique, 311.
Sulfates. Combinaisons de l'acide sulfurique avec les différentes bases, 245.
— Métalliques. Combinaisons des métaux avec l'acide sulfurique, 245.
Sulfites. Combinaisons de l'acide sulfureux avec les différentes bases, 245.
— Métalliques pourroient bien ne pas exister, 245.
Sulfures. Combinaisons du soufre avec les métaux, 118.
T
Tableau des acides & de leurs bases salifiables, 180 & suiv.-Des substances simples, 192.-Des radicaux composés, 196.-Des combinaisons de l'oxigène, 203, 208.-Des combinaisons de l'azote, 212.-De l'hydrogène, 216.-Du soufre, 220.-Du phosphore, 222.-Du carbone, 226.-De l'acide nitrique, 232.-De l'acide sulfurique, 238.-De l'acide sulfureux, 243.-De l'acide phosphoreux, 246.-De l'acide phosphorique, 247.-De l'acide carbonique, 250.-De l'acide muriatique, 253.-De l'acide muriatique oxigéné, 254.-De l'acide nitro-muriatique, 258.-De l'acide fluorique, 261.-De l'acide boracique, 264.-De l'acide arsenique, 268.-De l'acide molybdique, 272.-De l'acide tunstique, 274.-De l'acide tartareux, 277.-De l'acide malique, 281.-De l'acide citrique, 284.-De l'acide pyro-ligneux, 286.-De l'acide pyro-tartareux, 288.-De l'acide pyro-muqueux, 290.-De l'acide oxalique, 292.-De l'acide acétique, 298,-De l'acide succinique, 300.-De l'acide benzoïque, 302.-De l'acide camphorique, 304.-De l'acide gallique, 306.-De l'acide lactique, 308.-De l'acide saccholactique, 310.-De l'acide formique, 312.-De l'acide bombique, 314.-De l'acide sébacique, 316.-De l'acide lithique, 318.-De l'acide prussique, 320.
Tamisage. Moyen de séparer les corps en molécules de grosseurs à-peu-près uniformes, 409.
Tartre est composé de l'acide appelé tartarum, & de potasse.-Moyen de le décomposer pour en obtenir l'acide pur, 378, 379.
Tartrite acidule de potasse. Combinaison de la potasse & de l'acide tartareux, avec excès d'acide, 280.
— de potasse. Sel parfaitement neutre, résultant de la combinaison de l'acide tartareux & de la potasse, 280.
Terre ou terreau. Principe fixe qui reste après l'analyse des substances végétales fermentées, 154.
— On les regarde comme des êtres simples, 172.-Il y a quelques raisons de penser qu'elles contiennent de l'oxigène, 180, ibid.-Et peut-être qu'elles sont des métaux oxidés, ibid.-Elles ont une grande tendance à la combinaison, 172.
Terres composées. Se fondent au feu alimenté par le gaz oxigène sous la forme d'un verre blanc, 556.
Thermomètre. Corrections du volume des gaz relatives aux différens degrés du thermomètre.-Modèle de calcul pour ces corrections, 380 & suiv.
Topaze de Saxe. Se décolore & perd un cinquième de son poids au feu alimenté par le gaz oxigène, 557.
Trituration. Instrumens propres à l'opérer, 403.
Tunstène. Métal particulier souvent confondu avec l'étain.-Sa cristallisation.-Sa pesanteur spécifique.-Il se trouve naturellement dans l'état d'oxide.-Il fait fonction d'acide.-Il y est uni à la chaux, 275.
V
Vaisseaux évaporatoires. Leur forme, 434 & suiv.
Vaporisation. Passage d'un fluide liquide à l'état aériforme, 12.
Verres ardens. Ne produisent pas d'aussi grands effets qu'on avoit lieu de l'attendre 552.
Vers à soie. Sa crysalide fournit l'acide bombique, 315.
W
Wolfram. Substance métallique.-Véritable tunstène, 275.
Fin de la Table des Matières.
EXTRAIT des Registres de l'Académie Royale des Sciences.
Du 4 Février 1789.
L'Académie nous a chargés, M. d'Arcet & moi, de lui rendre compte d'un Traité élémentaire de Chimie, que lui a présenté M. Lavoisier.
Ce Traité est divisé en trois parties: la première a principalement pour objet, la formation des fluides aëriformes & leur décomposition, la combustion des corps simples, & la formation des acides.
Les molécules des corps peuvent être considérées comme obéissant à deux forces, l'une répulsive, l'autre attractive. Pendant que la derniere de ces forces l'emporte, le corps demeure dans l'état solide; si, au contraire, l'attraction est plus foible, les parties du corps perdent l'adhérence qu'elles avoient entr'elles, & il cesse d'être un solide.
La force répulsive est due au fluide très-subtil qui s'insinue à travers les molécules de tous les corps, & qui les écarte; cette substance, quelle qu'elle soit, étant la cause de la chaleur, ou, en d'autres termes, la sensation que nous appelons chaleur, étant l'effet de l'accumulation de cette substance, on ne peut pas, dans un langage rigoureux, la désigner par le nom de chaleur, parce que la même dénomination ne peut pas exprimer la cause & l'effet; c'est ce qui a déterminé M. Lavoisier, avec les autres Auteurs de la Nomenclature chimique, à la désigner sous le nom de calorique.
Nous nous contenterons, dans ce rapport, d'employer la nomenclature adoptée par M. Lavoisier; mais dans le cours de son ouvrage, après avoir établi, par les expériences les plus exactes, les faits qui doivent servir de base aux connoissances chimiques, il a toujours soin de justifier la nomenclature dont il fait usage, & de suivre les rapports qui doivent se trouver entre les idées & les mots qui les représentent.
S'il n'existoit que la force attractive des molécules de la matière, & la force répulsive du calorique, les corps passeroient brusquement de l'état de solide à celui de fluide aëriforme; mais une troisième force, la pression de l'atmosphère, met obstacle à cet écartement, & c'est à cet obstacle qu'est due l'existence des fluides. M. Lavoisier établit, par plusieurs expériences, quel est le degré de pression qui est nécessaire pour contenir différentes substances dans l'état liquide, & quel est le degré de chaleur nécessaire pour vaincre cette résistance. Mais il y a un certain nombre de substances qui, à la pression de notre atmosphère & au degré de froid connu, n'abandonnent jamais l'état de fluide aëriforme; ce sont celles-là qu'on désigne sous le nom de gaz.
Puisque les molécules de tous les corps de la nature sont dans un état d'équilibre entre l'attraction, qui tend à les rapprocher & à les réunir, & les efforts du calorique, qui tend à les écarter, non-seulement le calorique environne de toutes parts les corps, mais encore il remplit les intervalles que leurs molécules laissent entr'elles, & comme c'est un fluide extrêmement compressible, il s'y accumule, il s'y resserre & s'y combine en partie. De ces considérations, M. Lavoisier déduit l'explication de ce qu'on doit entendre par le calorique libre, le calorique combiné, la capacité de calorique, la chaleur absolue, la chaleur latente, la chaleur sensible. On pourroit lui reprocher d'avoir insisté trop peu sur la propriété élastique & compressible du calorique, & de-là résulte une différence entre ses principes & la théorie de M. Black, sur la capacité de chaleur, mais en écartant cette considération, les idées de M. Lavoisier ont acquis l'avantage d'avoir plus de clarté.
Après ces principes généraux, M. Lavoisier décrit le moyen qu'a imaginé M. de la Place pour déterminer par la quantité de glace fondue, celle du calorique qui s'est dégagé au milieu de cette glace, d'un corps qui étoit élevé à une certaine température, ou d'une combinaison qui s'y est formée. Il passe ensuite à des vues générales sur la formation & la constitution de l'atmosphère de la terre, non-seulement en la considérant dans l'état où elle se trouve, mais encore dans différens états hypothétiques.
Notre atmosphère est formée de toutes les substances susceptibles de demeurer dans l'état aëriforme au degré habituel de température & de pression que nous éprouvons. Il étoit bien important de déterminer quel est le nombre & quelle est la nature des fluides élastiques qui composent cette couche inférieure que nous habitons. On sait que les connoissances que nous avons acquises sur cet objet, font la gloire de la Chimie moderne; que non-seulement on a analysé ces fluides, mais qu'on a encore appris à connoître une foule de combinaisons qu'ils formoient avec les substances terrestres, & que par-là le vide immense que les anciens Chimistes cherchoient à déguiser par quelques suppositions, a été comblé pour la plus grande partie. Il est bien intéressant de voir celui qui a le plus contribué à nous procurer ces connoissances nouvelles, en tracer lui-même le tableau, rapprocher les résultats des expériences qui ont fait l'objet d'un grand nombre de ses Mémoires, perfectionner ces expériences & tous les appareils qu'il a fallu imaginer; mais il n'est pas possible de suivre dans un extrait les descriptions que M. Lavoisier présente avec beaucoup de concision, sur l'analyse de l'air de l'atmosphère, la décomposition du gaz oxigène par le soufre, le phosphore & le charbon, sur la formation des acides en général, la décomposition du gaz oxigène par les métaux, la formation des oxides métalliques, le principe radical de l'eau, sa décomposition par le charbon & par le fer, la quantité de calorique qui se dégage des différentes espèces de combustion, & la formation de l'acide nitrique.
Après tous ces objets, M. Lavoisier examine la combinaison des substances combustibles les unes avec les autres.
Le soufre, le phosphore, le charbon ont la propriété de s'unir avec les métaux, & de-là naissent les combinaisons que M. Lavoisier désigne sous le nom de sulfures, phosphures & carbures.
L'hydrogène peut aussi se combiner avec un grand nombre de substances combustibles; dans l'état de gaz, il dissout le carbone ou charbon pur, le soufre, le phosphore, & de-là viennent les différentes espèces de gaz inflammable.
Lorsque l'hydrogène & le carbone s'unissent ensemble, sans que l'hydrogène ait été porté à l'état de gaz par le calorique, il en résulte, selon M. Lavoisier, cette combinaison particuliere qui est connue sous le nom d'huile, & cette huile est fixe ou volatile, selon les proportions de l'hydrogène & du carbone. Il a exposé dans les Mémoires de 1784, les expériences qui l'ont conduit à cette opinion.
Cependant il nous paroît que cette opinion n'est pas à l'abri des objections, nous nous contenterons d'en proposer une. Toutes les huiles donnent un peu d'eau & un peu d'acide lorsqu'on les distille, & en réitérant les distillations, on peut les réduire entièrement en eau, en acide, en charbon, en gaz carbonique & en gaz hydrogène carboné. Cet acide & cette eau qu'on retire dans chaque opération, n'annoncent-ils pas qu'il entroit de l'oxigène dans la composition de l'huile; car il est facile de prouver que l'air qui est contenu dans les vaisseaux qui servent à la distillation, n'a pas pu contribuer d'une manière sensible à leur production?
Il falloit d'abord examiner les phénomènes que présente l'oxigénation des quatre substances combustibles simples, le phosphore, le soufre, le carbone & l'hydrogène; mais ces substances, en se combinant les unes avec les autres, ont formé des corps combustibles composés, tels que les huiles, dont l'oxigénation doit présenter d'autres résultats. Selon M. Lavoisier, il existe des acides & des oxides à base double & triple: il donne en général le nom d'oxide à toutes les substances qui ne sont pas assez oxigénées pour prendre le caractère acide. Tous les acides du règne végétal ont pour base l'hydrogène & le carbone, quelquefois l'hydrogène, le carbone & le phosphore. Les acides & oxides du règne animal sont encore plus composés; il entre dans la composition de la plupart quatre bases acidifiables, l'hydrogène, le carbone, le phosphore & l'azote. M. Lavoisier tâche de rendre raison par ces principes très-simples, de la nature & de la différence des acides végétaux & des autres substances d'une nature végétale & d'une nature animale; il ne seroit pas juste dans ce moment de juger avec sévérité ces apperçus ingénieux, parce que l'Auteur se propose de les développer dans des Mémoires particuliers.
L'hydrogène, l'oxigène & le carbone, sont des principes communs à tous les végétaux, & pour cette raison, M. Lavoisier les appelle primitifs. Ces principes, en raison de la quantité de calorique avec lequel ils se trouvent combinés dans les végétaux, sont tous à-peu-près en équilibre à la température dans laquelle nous vivons; ainsi les végétaux ne contiennent ni huile, ni eau, ni acide carbonique, & seulement les élémens de toutes ces substances; mais un changement léger dans la température suffit pour renverser cet ordre de combinaison. L'hydrogène & l'oxigène s'unissent plus intimément & forment de l'eau qui passe dans la distillation; une portion de l'hydrogène & une portion du carbone se réunissent ensemble pour former de l'huile volatile, une autre partie du carbone devient libre & reste dans la cornue. Dans les substances animales, l'azote, qui est un de leurs principes primitifs, s'unit à une portion d'hydrogène pour former l'alkali volatil. M. Lavoisier donne des explications analogues à celles que nous venons d'indiquer, des phénomènes & des produits de la fermentation vineuse, & de la putréfaction.
Il y a un grand rapport entre ces dernieres idées de M. Lavoisier & celles que M. Higgins a exposées dans un traité sur l'acide acéteux, la distillation, la fermentation, &c. qu'il a publié en 1786, & dans lequel il admet la formation de l'eau & des huiles par l'action de la chaleur; mais n'ayant pas distingué le gaz hydrogène qu'il appelle phlogistique (ce qui est tout-à-fait indifférent), du charbon & de leur combinaison, il n'a pu déterminer les effets de la chaleur & de la fermentation avec autant d'exactitude que M. Lavoisier.
Les substances acidifiables, en s'unissant avec l'oxigène & en se convertissant en acides, acquièrent une grande tendance à la combinaison: elles deviennent propres à s'unir avec des substances terreuses & métalliques. Mais une circonstance remarquable distingue ces deux espèces de combinaison; c'est que les métaux ne peuvent contracter d'union avec les acides que par l'intermède de l'oxigène, de manière qu'il faut qu'ils soient réduits en oxides, ou qu'ils décomposent l'eau dont ils dégagent alors le gaz hydrogène, ou qu'ils trouvent de l'oxigène dans l'acide, & c'est ainsi qu'ils forment du gaz nitreux avec l'acide nitrique.
La considération des phénomènes qui accompagnent les dissolutions, conduit M. Lavoisier à celle des bases alkalines, des terres & des métaux, & à déterminer le nombre des sels qui peuvent résulter de la combinaison de ces différentes bases avec tous les acides connus.
Dans la seconde partie de son ouvrage, M. Lavoisier présente successivement le tableau des substances simples, ou plutôt de celles que l'état actuel de nos connoissances nous oblige à considérer comme telles, celui des radicaux ou bases oxidables & acidifiables, composées de la réunion de plusieurs substances simples, ceux des combinaisons de l'azote, de l'hydrogène, du carbone, du soufre & du phosphore, avec des substances simples, & enfin ceux des combinaisons de tous les acides connus, avec les différentes bases. Chaque tableau est accompagné d'une explication sur la nature & les préparations de la substance qui en est l'objet, & sur ses principales combinaisons.
M. Lavoisier a réuni, dans la troisième partie de son ouvrage, la description sommaire de tous les appareils & de toutes les opérations manuelles qui ont rapport à la Chimie élémentaire. Les détails indispensables dans lesquels il faut entrer, auroient interrompu la marche des idées rapides qu'il a présentées dans les deux premières parties, & en auroient rendu la lecture fatigante.
Cette description est d'autant plus précieuse, que non-seulement elle est faite avec beaucoup de méthode & de clarté, mais encore qu'elle a particulièrement pour objet les appareils relatifs à la Chimie moderne, dont plusieurs sont dûs à M. Lavoisier lui-même, & qui, en général, sont encore peu connus, même de ceux qui font une étude particulière de la Chimie; mais il est impossible de tracer une esquisse de ces descriptions, & nous sommes obligés de nous borner à l'énumération des chapitres dans lesquels elles sont classées.
Le chapitre premier traite des instrumens propres à déterminer le poids absolu & la pesanteur spécifique des corps solides & liquides.
Le second est destiné à la gazométrie, ou à la mesure du poids & du volume des substances aëriformes.
Le chapitre troisième contient la description des opérations purement mécaniques, qui ont pour objet de diviser les corps, telles que la trituration, la porphirisation, le tamisage, la filtration, &c.
M. Lavoisier décrit, dans le chapitre cinquième, les moyens que la Chimie emploie pour écarter les unes des autres les molécules des corps sans les décomposer, & réciproquement pour les réunir, ce qui comprend la solution des sels, leur lexiviation, leur évaporation, leur cristallisation, & les appareils distillatoires.
Les distillations pneumato-chimiques, les dissolutions métalliques, & quelques autres opérations qui exigent des appareils très-compliqués, sont l'objet du sixième chapitre.
Le chapitre septième contient la description des opérations relatives à la combustion & à la détonnation. Les appareils qui sont décrits dans ce chapitre sont entièrement nouveaux.
Enfin le chapitre huitième est destiné aux instrumens nécessaires pour opérer sur les corps à de très-hautes températures.
Toutes ces descriptions sont rendues sensibles par un grand nombre de planches qui présentent tous les détails qu'on peut desirer, & qui sont gravées avec beaucoup de soin. Nous ne devons pas laisser ignorer à la reconnoissance des Chimistes, qu'elles ne sont point l'ouvrage d'un burin mercenaire, mais qu'elles sont dûes au zèle & aux talens variés du traducteur de l'ouvrage de M. Kirwan sur le phlogistique.
Ces nouveaux élémens sont terminés par quatre tables; la première donne le nombre des pouces cubiques correspondans à un poids déterminé d'eau; la seconde est destinée à convertir les fractions vulgaires en fractions décimales, & réciproquement; la troisième présente le poids des différens gaz, & la quatrième, la pesanteur spécifique des différentes substances.
Ainsi M. Lavoisier, en partant des notions les plus simples & des objets les plus élémentaires, conduit successivement aux combinaisons plus composées. Ses raisonnemens sont presque toujours fondés sur des expériences rigoureuses, ou plutôt ils n'en sont que le résultat; & il finit par donner les élémens de l'art des expériences qui doit servir de guide aux Chimistes qui, au lieu de se livrer à de vaines hypothèses, veulent établir leurs opinions la balance à la main.
L'ouvrage est précédé d'un discours dans lequel M. Lavoisier rend compte des motifs qui l'ont engagé à l'entreprendre, & de la marche qu'il a suivie dans son exécution.
S'étant imposé la loi de ne rien conclure au-delà de ce que les expériences présentent & de ne jamais suppléer au silence des faits, il n'a point compris dans ses élémens la partie de la Chimie la plus susceptible peut-être de devenir un jour une science exacte, c'est celle qui traite des affinités ou attractions chimiques; mais les données principales manquent, ou du moins celles que nous avons ne sont encore ni assez précises, ni assez certaines pour devenir la base sur laquelle doit porter une partie aussi importante de la Chimie.
M. Lavoisier a la modestie d'avouer qu'une considération secrète a peut-être donné du poids aux raisons qu'il pouvoit avoir de se taire sur les affinités; c'est que M. de Morveau est au moment de publier l'article affinité de l'Encyclopédie méthodique, & qu'il a redouté de traiter en concurrence avec lui, un objet qui exige des discussions très-délicates.
Quoique les Savans s'empressent de toutes parts de rendre justice aux connoissances profondes de M. de Morveau, il doit néanmoins être flatté d'un aveu qui honore également celui qui l'a fait.
Si M. Lavoisier ne parle point, dans ce Traité, des parties constituantes & élémentaires des corps, c'est qu'il regarde comme hypothétique tout ce qu'on a dit sur les quatre élémens: il est probable que nous ne connoissons pas les molécules simples & indivisibles qui composent les corps; mais il est un terme auquel nous conduisent nos analyses, & ce sont les derniers résultats que nous en obtenons, qui sont pour nous des substances simples, ou, si l'on veut, des élémens.
Mais l'objet principal de ce discours est de faire sentir la liaison qui se trouve entre l'abus des mots & les idées fausses, & entre la précision du langage & les progrès des sciences.
Nous pensons que ces nouveaux Elémens sont très-dignes d'être imprimés sous le privilége de l'Académie.
Fait à l'Académie, le 4 Février 1789.
Signé, d'Arcet & Bertholet.
Je certifie le présent extrait conforme à l'original, & au jugement de l'Académie. A Paris, ce 7 Février 1789.
Signé, le Marquis de Condorcet.
EXTRAIT des Registres de la Société Royale de Médecine.
Du 6 Février 1789.
La Société nous a chargés, M. de Horne & moi, d'examiner un Ouvrage de M. Lavoisier, ayant pour titre, Traité élémentaire de Chimie, présenté dans un ordre nouveau, & d'après les découvertes modernes. Comme ce Traité, que nous avons lu avec le plus vif intérêt, offre une méthode élémentaire différente de toutes celles qu'on a suivies dans les Ouvrages du même genre, nous avons cru devoir en rendre un compte très-détaillé à la Compagnie.
Les Physiciens, & tous les hommes, qui s'adonnent à l'étude de la Philosophie naturelle, savent que c'est aux expériences de M. Lavoisier qu'est due la révolution que la Chimie a éprouvée depuis quelques années; à peine M. Black eut-il fait connoître, il y a bientôt vingt ans, l'être fugace qui adoucit la chaux & les alkalis, & qui avoit jusques-là échappé aux recherches des Chimistes; à peine M. Priestley eut-il donné ses premières expériences sur l'air fixe & ce qu'il appeloit les différentes espèces d'air, que M. Lavoisier, qui ne s'étoit encore appliqué qu'à mettre dans les opérations de Chimie de l'exactitude & de la précision, conçut le vaste projet de répéter & de varier toutes les expériences des deux célèbres Physiciens Anglois, & de poursuivre avec une ardeur infatigable une carrière nouvelle, dont il prévoyoit dès-lors l'étendue. Il sentit sur-tout que l'art de faire des expériences vraiment utiles, & de contribuer aux progrès de la science de l'analyse, consistoit à ne rien laisser échapper, à tout recueillir, à tout peser. Cette idée ingénieuse, à laquelle sont dues toutes les découvertes modernes, l'engagea à imaginer, pour les effervescences, pour les combustions, pour la calcination des métaux, &c. des appareils capables de porter la lumière la plus vive sur la cause & les résultats de ces opérations. On connoît trop généralement aujourd'hui la plupart des faits & des découvertes que cette route expérimentale nouvelle a fait naître, pour que nous ayons besoin d'en suivre ici les détails; nous nous contenterons de rappeler que c'est à l'aide de ces procédés, à l'aide de ce nouveau sens, ajouté, pour ainsi dire, à ceux que le Physicien possédoit déjà, que M. Lavoisier est parvenu à établir des vérités & une doctrine nouvelles sur la combustion, sur la calcination des métaux, sur la nature de l'eau, sur la formation des acides, sur la dissolution des métaux, sur la fermentation & sur les principaux phénomènes de la nature. Ces instrumens si ingénieux, cette méthode expérimentale si exacte & si différente des procédés employés autrefois par les Chimistes, n'ont cessé, depuis 1772, de devenir entre les mains de M. Lavoisier & des Physiciens qui ont suivi la même route, une source féconde de découvertes. Les Mémoires de l'Académie des Sciences offrent, depuis 1772 jusqu'en 1786, une suite non interrompue de travaux, d'expériences, d'analyses faites par ce Physicien sur le même plan. Ce qu'il y a de plus frappant pour ceux qui aiment à suivre les progrès de l'esprit humain dans ce genre de recherches, dont on n'avoit aucune idée il y a vingt ans, c'est que toutes les découvertes qui se sont succédées depuis cette époque, n'ont fait que confirmer les premiers résultats trouvés par M. Lavoisier, & donner plus de force & plus de solidité à la doctrine qu'il a proposée. Une autre considération, qui nous paroît également importante, c'est que les expériences de Bergman, de Schéele, de MM. Cavendish, Priestley, & d'un grand nombre d'autres Chimistes dans différentes parties de l'Europe, quoique faites sous des points de vue & avec des moyens différens en apparence, se sont tellement accordées avec les résultats généraux dont nous parlions plus haut, que cet accord, bien propre à convaincre les Physiciens qui cherchent la vérité sans prévention, & avec le courage nécessaire pour résister aux préjugés, n'a fait que rendre plus solides & plus inébranlables les fondemens sur lesquels repose la nouvelle doctrine chimique. C'est dans cet état de la science, c'est à l'époque où les faits nouveaux, généralement reconnus, n'excitent encore des discussions entre les Physiciens, que relativement à leur explication, que M. Lavoisier, auteur de la plus grande partie de ces découvertes, & de la théorie simple & lumineuse qu'elles ont créée, s'est proposé d'enchaîner dans un nouvel ordre les vérités nouvelles, & d'offrir aux Savans, ainsi qu'à ceux qui veulent le devenir, l'ensemble de ses travaux. Ceux qui ont suivi avec soin les progrès successifs de la Chimie, ne trouveront dans l'Ouvrage dont nous nous occupons, que les faits qu'ils connoissent déjà; mais ils se présenteront à eux dans un ordre qui les frappera par sa clarté & sa précision. Ce sera donc spécialement sur la marche des faits, des idées & des raisonnemens tracés par M. Lavoisier, que nous insisterons dans ce rapport.
Ce Traité est divisé en trois parties. Dans la première, M. Lavoisier expose les élémens de la science & les bases sur lesquelles elle est fondée. C'est sur les corps les plus simples, & sur le premier ordre de leurs combinaisons, que roule cette première partie, comme nous le dirons tout-à-l'heure.
La seconde partie présente les tableaux de toutes les combinaisons de ces corps simples entr'eux, & des mixtes qu'ils forment les uns avec les autres. Les composés salins neutres en sont particulièrement le sujet.
Dans la troisième partie, M. Lavoisier décrit les appareils nouveaux, dont il a imaginé la plus grande partie, & à l'aide desquels il a établi les vérités exposées dans la première partie.
Considérons chacune de ces parties plus en détail, & suivons l'Auteur jusqu'à ses dernières divisions, pour faire connoître l'utilité & l'importance de son Ouvrage.
Première Partie.
En exposant, dans un Discours préliminaire, les motifs qui l'ont engagé à écrire son Ouvrage, M. Lavoisier annonce que c'est en s'occupant de la nomenclature & en développant ses idées sur les avantages & la nécessité de lier les mots aux faits, qu'il a été entraîné comme malgré lui à faire un Traité élémentaire de Chimie; que cette nomenclature méthodique l'ayant conduit du connu à l'inconnu, cette marche qu'il s'est trouvé forcé de suivre, lui a paru propre à guider les pas de ceux qui veulent étudier la Chimie; il pense que, quoique cette science ait encore beaucoup de lacunes & ne soit pas complette comme la Géométrie élémentaire, les faits qui la composent s'arrangent cependant d'une manière si heureuse dans la doctrine moderne, qu'il est permis de la comparer à cette dernière, & qu'on peut espérer de la voir s'approcher, de nos jours, du degré de perfection qu'elle est susceptible d'atteindre. Son but a été de ne rien conclure au-delà de l'expérience, de ne jamais suppléer au silence des faits.
C'est pour cela qu'il n'a point parlé des principes des corps, sur lesquels on a depuis si long-temps donné des idées vagues, dans les écoles & dans les Ouvrages élémentaires; qu'il n'a rien dit des attractions ou affinités chimiques, qui ne sont point encore connues, suivant lui, avec l'exactitude nécessaire pour en exposer les généralités dans des élémens. Il termine ce discours en retraçant les raisons & les motifs qui ont guidé les Chimistes dans le travail de la nouvelle nomenclature, & en faisant voir quelle influence les noms exacts proposés dans ce travail, peuvent avoir sur les progrès & l'étude de la science.
La première partie qui suit immédiatement ce Discours préliminaire, comprend dix-sept chapitres.
M. Lavoisier annonce qu'il traite, dans cette première Partie, de la formation des fluides aëriformes & de leur décomposition; de la combustion des corps simples, & de la formation des acides. Ce titre, qui n'auroit certainement pas rappelé aux anciens Chimistes l'ensemble de leur science, le comprend cependant tout entier pour ceux qui la possèdent, & en effet, l'un de nous en traçant la marche & l'état de toutes les connoissances chimiques modernes dans quelques séances sur les fluides élastiques, a fait voir que toute la science est comprise dans l'histoire de leur développement & de leur fixation. Il est donc vrai de dire, que quoique le domaine de la Chimie ait été singulièrement agrandi par le nombre considérable de faits nouveaux qu'elle a acquis depuis quelques années, le rapprochement, la liaison & la cohérence de ces faits, peuvent en resserrer les élémens dans l'esprit de ceux qui les possèdent, & de ceux qu'une méthode exacte guide dans leurs études; si les expériences semblent effrayer l'imagination par leur nombre, les résultats simples qu'on en tire, & les données générales qu'elles fournissent, font évanouir les difficultés, & rendent le travail de la mémoire plus facile. Cette vérité sera mise dans tout son jour, par l'exposé des divers objets compris dans cette première partie de l'ouvrage de M. Lavoisier.
Le premier Chapitre traite de la combinaison des corps avec le calorique ou la matière de la chaleur, & de la formation des fluides élastiques. Le calorique dilate tous les corps en écartant leurs molécules, qui tendent à se rapprocher par la force d'attraction. On peut donc considérer son effet comme celui d'une force répulsive ou opposée à l'attraction. Lorsque l'attraction des molécules est plus forte, que l'écartement ou la force répulsive communiquée par le calorique, le corps est solide; si la force répulsive l'emporte sur l'attraction, les molécules s'écartent jusqu'à un certain point, la fusion, & enfin la fluidité élastique naissent de cet effet. Comme la diminution ou l'enlèvement du calorique permet le rapprochement des molécules des corps dont l'attraction agit alors librement, & comme on peut concevoir un refroidissement toujours croissant, beaucoup plus fort que celui que nous connoissons, & conséquemment un rapprochement proportionné dans les molécules des corps, il s'ensuit que ces molécules ne se touchent pas, qu'il existe des intervalles entr'elles; ces intervalles sont remplis par le calorique. On peut l'y accumuler; c'est cette accumulation qui détruit l'attraction de ces molécules, & qui donne enfin naissance à un fluide élastique. Tous les corps liquides prendroient, à la surface du globe, cette forme de fluides élastiques, si la pression de l'air atmosphérique ne s'y opposoit pas, c'est en raison de cette pression qu'il faut que la température de l'eau soit élevée à 80 degrés pour qu'elle se réduise en vapeur; l'éther à 30 ou 33 degrés, l'alkool à 67, Mais les fluides supposés réduits en vapeurs par la suppression du poids de l'atmosphère, se formeroient bientôt un obstacle à eux-mêmes par leur pression.
On voit d'après cela qu'un fluide élastique ou un gaz n'est qu'une combinaison d'un corps quelconque ou d'une base avec le calorique. On voit encore que, suivant les espaces ou les intervalles compris entre les molécules des différens corps, il faudra plus ou moins de calorique pour les dilater au même point; c'est cette différence qu'on nomme capacité de chaleur, & la quantité de calorique nécessaire pour élever chaque corps à la même température, se nomme chaleur ou calorique spécifique. Comme les corps, en se combinant au calorique, deviennent des fluides élastiques, l'élasticité paroît être due à la répulsion des molécules du calorique, ou plutôt à une attraction plus forte entre ces dernières, qu'entre celles des corps fluides élastiques, qui sont alors repoussées par l'effet du premier.
Ces idées simples & fondées sur des expériences exactes, conduisent l'Auteur à donner, dans le second chapitre, des vues sur la formation & la constitution de l'atmosphère de la terre; elle doit être formée des substances susceptibles de se volatiliser au degré ordinaire de chaleur qui existe sur le globe, & à la pression moyenne qui soutient le mercure à 28 pouces. La terre étant supposée à la place d'une planète beaucoup plus rapprochée du soleil, comme l'est Mercure, l'eau, le mercure même entreroient en expansion, & se mêleroient à l'air jusqu'à ce que cette expansion fût limitée par la pression exercée par ces nouveaux fluides élastiques. Si le globe étoit, au contraire, transporté à une distance beaucoup plus éloignée du soleil qu'il ne l'est, l'eau seroit solide & comme une pierre dure & transparente. La solidité, la liquidité, la fluidité élastique sont donc des modifications des corps dues au calorique. Les fluides habituellement vaporeux qui forment notre atmosphère, doivent, ou se mêler lorsqu'ils ont de l'affinité, ou se séparer suivant l'ordre de leurs pesanteurs spécifiques, s'ils ne sont pas susceptibles de s'unir. M. Lavoisier pense que la couche supérieure de l'atmosphère est surmontée des gaz inflammables légers qu'il regarde comme la matière & le foyer des météores lumineux.
Il étoit très-naturel que ces considérations générales sur l'atmosphère de la terre fussent suivies de l'analyse de l'air qui la compose; cette analyse fait le sujet du troisième chapitre, dans lequel est consignée une des plus belles découvertes du siècle & de la Chimie moderne. La combustion du mercure dans un ballon, la perte de poids d'un sixième de l'air, l'augmentation correspondante du poids du mercure, la qualité délétère des cinq sixièmes d'air restant; la séparation de l'air de la chaux de mercure fortement échauffée, la pureté de celui-ci, la recomposition de l'air semblable à celui de l'atmosphère par l'addition de cette partie tirée du mercure à celle restée dans le ballon; la chaleur vive & la flamme brillante dégagée de l'air par le fer qu'on y brûle, suffisent à M. Lavoisier pour prouver que l'air atmosphérique est un composé de deux fluides élastiques différens, l'un respirable, l'autre non respirable, que le premier forme 0,27, & le second 0,73.
Dans le quatrième chapitre, ce Savant expose les noms donnés à ces deux gaz qui composent l'air atmosphérique, & les raisons qui les ont fait proposer; le premier porte, comme on sait, le nom d'air vital & de gaz oxigène, & le second celui de gaz azote.
La quantité des deux principes de l'atmosphère étant connue, la nature du gaz oxigène occupe ensuite M. Lavoisier. Le cinquième chapitre est destiné à l'examen de la décomposition du gaz oxigène ou air vital par le soufre, le phosphore, le charbon, & de la formation des acides. Cent grains de phosphore brûlé dans un ballon bien plein d'air vital, absorbent 154 grains de cet air ou de sa base, & forment 254 grains d'acide phosphorique concret. Vingt-huit grains de charbon absorbent 72 grains d'air vital, & forment 100 grains d'acide carbonique. Le soufre en absorbe plus que son poids & devient acide sulfurique. La base de cet air a donc la propriété, en se combinant avec ces trois corps combustibles, de les convertir en acides; de-là le nom d'oxigène donné à cette base de l'air vital, & celui d'oxigénation donné à l'opération par laquelle cette base se fixe.
La nomenclature des différens acides forme le sujet du sixième chapitre; le nom général d'acide désigne la combinaison avec l'oxigène; les noms particuliers appartiennent aux bases différentes unies à l'oxigène. Le soufre forme l'acide sulfurique, le phosphore l'acide phosphorique, le carbone ou charbon pur l'acide carbonique. La terminaison variée dans ces mots exprime la proportion d'oxigène; ainsi le soufre combiné avec peu d'oxigène & dans l'état d'un acide foible, donne l'acide sulfureux, tandis qu'une plus grande proportion de ce principe acidifiant, forme l'acide sulfurique. Nous n'insisterons pas davantage sur les principes de cette nomenclature, qui sont déjà bien connus de la Société. M. Lavoisier donne, à la fin de ce chapitre, les proportions d'azote & d'oxigène qui constituent l'acide du nitre en différens états, comme l'a découvert M. Cavendish.
Il parle, dans le septième chapitre, de la décomposition du gaz oxigène par les métaux. On sait que ces corps combustibles absorbent la base de l'air vital plus ou moins facilement, & à des températures plus ou moins élevées; mais comme l'affinité de ces corps pour l'oxigène est en général rarement plus forte que celle de celui-ci pour le calorique, les métaux s'y combinent plus ou moins difficilement. Les composés des métaux & d'oxigène n'étant pas des acides, on a proposé le nom d'oxides pour les désigner, au lieu de celui de chaux, qui étoit équivoque, & fondé sur une fausse analogie. M. Lavoisier donne les détails de cette nomenclature à la fin de ce chapitre.
Il traite, dans le huitième, du principe radical de l'eau, & de la décomposition de ce fluide par le charbon & le fer. L'eau que l'on fait passer à travers un tube de verre ou de porcelaine rougi au feu, se réduit seulement en vapeur, sans éprouver d'altération. En passant à travers le même tube chargé de vingt-huit grains de charbon, il y a 85 grains d'eau changée de nature, & le charbon disparoît. On obtient 100 grains ou 144 pouces d'acide carbonique, qui contiennent, outre les 28 grains de carbone, 72 grains d'oxigène, provenant nécessairement de l'eau, puisqu'aucun autre corps n'a pu le lui fournir; ce gaz acide carbonique est mêlé de 13 grains ou 380 pouces cubes de gaz inflammable; ces 13 grains ajoutés aux 72 grains d'oxigène enlevé par le carbone, font les 85 grains d'eau qui manquent; & en effet, en brûlant dans un appareil fermé 85 grains d'air vital & 15 de gaz inflammable, on a 100 grains d'eau. L'eau est donc composée de ces deux principes. L'oxigène est déjà connu par les détails précédens; la base du gaz inflammable a été nommée hydrogène, ou principe radical de l'eau; M. Lavoisier en décrit les propriétés & sur-tout celles qu'il a dans l'état de gaz.
Le neuvième chapitre contient des détails absolument neufs sur la quantité de calorique qui se dégage dans la combustion de différens corps combustibles, ou, ce qui est la même chose en d'autres termes, pendant la fixation de l'air vital ou gaz oxigène. Pour bien concevoir l'objet de cet article important, rappelons que l'air vital est, comme tous les autres fluides élastiques, une base solidifiable unie à du calorique; que ce gaz ne peut se fixer, ou sa base devenir solide dans les combinaisons où elle entre, qu'en perdant le calorique qui la tenoit écartée & divisée en fluide élastique. Cela posé, il est clair qu'en partant d'une expérience où l'air vital paroît laisser déposer sa base la plus solide possible en perdant tout le calorique qu'il contient, on aura une mesure à peu de chose près exacte de la quantité absolue de calorique contenu dans une quantité donnée de gaz oxigène. Mais comment mesurer cette chaleur. M. Lavoisier s'est servi, pour cela, d'un appareil ingénieux, dont la première idée est due à M. Wilcke, Physicien Anglois, mais qui a été changé & bien perfectionné par M. de la Place. Ce sont des enveloppes de tôle garnies de glace, & laissant un espace vide dans lequel on fait les expériences de combustion, absolument comme dans une sphère de glace assez épaisse pour que la température extérieure n'influe en aucune manière sur sa cavité intérieure. Le calorique se sépare pendant la fixation de l'oxigène, fond une partie de cette glace, proportionnelle à la quantité qui s'en dégage. En opérant ainsi la combustion du phosphore, M. Lavoisier a vu qu'une livre de ce combustible fond 100 livres de glace, en absorbant une livre 8 onces d'air vital; & comme l'acide phosphorique concret qui résulte de cette combustion paroît contenir l'oxigène le plus solide & le plus séparé de calorique, il en conclut que, dans l'état d'air vital, une livre d'oxigène contient une quantité de calorique suffisante pour fondre 66 livres 10 onces 5 gros 24 grains de glace à zero. En partant de cette expérience, M. Lavoisier a trouvé qu'une livre de charbon absorbant 2 livres 9 onces 1 gros 10 grains d'oxigène, & ne faisant fondre que 96 livres 8 onces de glace, tout le calorique contenu dans cette quantité d'air vital n'est pas dégagé, puisqu'il se seroit fondu 171 livres 6 onces 5 gros de glace; la différence de cette quantité de calorique, c'est-à-dire, une quantité capable de fondre 74 livres 14 onces 5 gros de glace, est employée à tenir sous forme de gaz 3 livres 9 onces 1 gros 10 grains d'acide carbonique, produit dans cette opération. La combustion du gaz hydrogène brûlé dans l'appareil de glace, lui a présenté le résultat suivant relativement au dégagement du calorique. Une livre de ce gaz absorbe 5 livres 10 onces 5 gros 24 grains d'air vital en brûlant; il se dégage dans cette combustion une quantité de calorique capable de faire fondre 295 livres 9 onces 3 gros & demi de glace; or, comme cette dose d'air vital auroit donné, si on l'avoit fait servir à la combustion du phosphore, où l'oxigène paroît être le plus solide possible, une quantité de calorique suffisante pour fondre 377 livres 12 onces 3 gros de glace, il s'ensuit que la différence de ces deux quantités de calorique, qui est exprimée par celle de 82 livres 9 onces 7 gros & demi de glace fondue, reste dans l'eau à 0 de température, & que chaque livre de ce liquide à cette température, contient dans la portion d'oxigène qui fait un de ses principes, une quantité de calorique capable de fondre 12 livres 5 onces 2 gros 48 grains de glace. M. Lavoisier a trouvé, par les mêmes expériences, la quantité de calorique contenu dans l'oxigène de l'acide nitrique, & celle qui se dégage dans la combustion de la cire & de l'huile; & si ces recherches avoient été suivies avec un soin égal sur la quantité de calorique que chaque métal dégage de l'air vital en absorbant l'oxigène, ou en se calcinant, cette appréciation seroit, comme le dit M. Lavoisier à la fin de ce chapitre, d'une grande utilité pour l'explication de beaucoup de phénomènes chimiques.
L'Auteur décrit dans le dixieme chapitre la nature générale des combinaisons des substances combustibles déjà examinées dans les chapitres précédens, les unes avec les autres. Les alliages des métaux, les dissolutions du soufre, du phosphore, du charbon dans le gaz hydrogène, l'union du carbone & de l'hydrogène qui constitue les huiles en général, sont indiqués successivement. Dans ce chapitre comme dans tous les précédens, on trouve des vues neuves sur l'union encore inconnue de plusieurs substances combustibles entr'elles.
Dans tous les chapitres précédens qui ont pour objet la décomposition de l'air vital, l'absorption de l'oxigène par les corps combustibles & les phénomènes de leur combustion & de leurs produits, il n'est question que des substances combinées, une à une avec l'oxigène. Le deuxième chapitre présente les combinaisons de ce principe acidifiant avec plusieurs bases à la fois, conséquemment des oxides & des acides à plusieurs bases, & de la composition des matieres végétales & animales. On reconnoît par la lecture de ce chapitre la clarté des principes de la Chimie moderne, & en même tems la richesse de la nature dans la variété des composés qu'elle forme avec très-peu d'élémens. L'analyse la plus exacte prouve que l'hydrogène & le carbone privés de la plus grande quantité de leur calorique & unis ensemble dans des proportions différentes, à des quantités diverses d'oxigène constituent les matieres végétales, M. Lavoisier range ces matieres parmi les oxides lorsque la quantité d'oxigène est trop peu abondante pour leur donner le caractère acide, ou parmi les acides lorsque ce principe y est plus abondant. Le phosphore & l'azote font quelquefois partie de ces composés; & alors ils se rapprochent des matieres animales. Ainsi trois ou quatre corps simples unis en différentes proportions & dans différens états de pression ou de privation de calorique, suffisent à la Chimie moderne pour rendre raison de la diversité des matieres végétales, oxides & acides; & en y ajoutant l'azote, le phosphore & le soufre, les composés plus compliqués qui en résultent, donnent une idée exacte de la nature des substances animales, oxides ou acides. M. Lavoisier fait voir qu'on pourroit suivant les regles de la nouvelle Nomenclature désigner les principales especes des matieres végétales composées d'hydrogène, de carbone & d'oxigène, soit oxides, soit acides; mais la nécessité d'associer trop de mots pour désigner ces composés formeroit un langage barbare, & l'Auteur préfère les noms des treize acides végétaux & des six acides animaux, adoptés dans la nouvelle Nomenclature. Il termine ce chapitre par le dénombrement de ces acides.
Ces principes aussi clairs que simples sur la composition des substances végétales & animales, conduisent M. Lavoisier à faire connoître avec une égale clarté dans le douzieme chapitre, la décomposition de ces matières par le feu. Des trois principes les plus abondans qui les constituent, l'hydrogène & l'oxigène tendent à prendre la forme de gaz par leur combinaison avec le calorique; le troisième ou le carbone n'a pas la même propriété. Une chaleur au-dessus de celle où ces principes restent en équilibre, doit donc détruire cet équilibre. A une température supérieure à celle de l'eau bouillante, l'oxigène s'unit à l'hydrogène & forme de l'eau qui se dégage; une partie du carbone unie séparément à l'hydrogène forme de l'huile; une autre se précipite seule. Une chaleur beaucoup plus forte, comme celle qu'on nomme chaleur rouge, sépare ces principes dans un autre ordre, décompose même l'huile formee par la premiere chaleur, & réduit entièrement les matières végétales à de l'acide carbonique, à de l'eau & à une partie de charbon isolée. L'azote, le phosphore & le soufre ajoutés à ces premiers principes, dans les matières animales compliquent cet effet du feu, & donnent naissance à l'ammoniaque que ces matieres fournissent dans leur distillation. Tous ces phénomènes ne tiennent qu'à des changemens de proportions dans l'union des principes & à leur diverse affinité pour le calorique.
Des changemens également simples ont lieu dans les fermentations vineuse, putride & acéteuse, dont M. Lavoisier expose avec soin les phénomènes dans les chapitres 13, 14 & 15. Ces opérations naturelles paroissoient autrefois inexplicables aux Chimistes, & il n'y a pas plus de quinze ans qu'on désespéroit encore d'en apprécier la cause. M. Lavoisier par des procédés ingénieux est parvenu à prouver que dans la fermentation vineuse, la matiere sucrée qu'il regarde comme un oxide & qui est formée suivant ses recherches, de 8 parties d'hydrogène, 28 de carbone, & 64 d'oxigène, sur cent parties de cette matière, est séparée en deux portions (par le changement & le partage seul de l'oxigène entre les deux bases oxidables), une grande partie du carbone prend plus d'oxigène en se séparant de l'hydrogène, & se convertit en gaz acide carbonique qui se dégage pendant cette fermentation, tandis que l'hydrogène, privé de l'oxigène & uni à un peu de carbone, & à l'eau ajoutée, constitue l'alkool. Ainsi la nature change par cette fermentation des combinaisons ternaires en combinaisons binaires. Un effet analogue a lieu dans la putréfaction. Les cinq substances simples & combustibles qui forment les bases oxidables & acidifiables des matières animales, l'hydrogène, le carbone, l'azote, le soufre & le phosphore, & qui sont unies en différentes proportions à l'oxigène, se dégagent peu-à-peu en gaz hydrogène sulfuré, carboné, phosphoré, en gaz azote, en gaz acide carbonique, & en gaz ammoniaque. La fermentation acéteuse ne consiste que dans l'absorption de l'oxigène qui y porte plus de principe acidifiant. Il semble que l'acide carbonique n'ait besoin que d'hydrogène pour devenir acide acéteux, puisqu'en effet, ôtez ce dernier principe au vinaigre, il passe à l'état d'acide carbonique. Quoique cette théorie de la putréfaction & de l'acétification paroisse presque aussi simple que celle de la fermentation vineuse, M. Lavoisier convient que la Chimie n'est pas aussi avancée dans la connoissance de ces deux phénomènes, que dans celle du premier.
Dans le seizième chapitre, l'auteur considère la formation des sels neutres & les bases de ces sels. Les acides dont M. Lavoisier a exposé la nature dans les premiers chapitres, peuvent se combiner avec quatre bases terreuses, trois bases alkalines & dix-sept bases métalliques. Il expose succinctement l'origine, l'extraction & les principales propriétés de la potasse, de la soude, de l'ammoniaque, de la chaux, de la magnésie, de la baryte & de l'alumine; ces matières, si l'on en excepte l'ammoniaque, sont les moins connues de tous les corps naturels, & quoique, d'après quelques expériences, on pense qu'elles sont composées, on n'en a point encore séparé les élémens; aussi M. Lavoisier n'en parle-t-il que très-brièvement. Il termine cet exposé en annonçant qu'il est possible que les alkalis fixes se forment pendant la combustion des substances végétales à l'air. L'un de nous a déjà fait présumer dans plusieurs mémoires & dans ses leçons, que l'azote, qu'il a considéré comme principe des alkalis ou comme alkaligène, pourroit bien se précipiter de l'atmosphère dans les substances végétales qu'on brûle dans l'atmosphère. Alors l'air atmosphérique seroit un réservoir des principes acidifiant & alkalifiant où la nature puiseroit sans cesse ces principes pour les fixer dans des bases, & produire les diverses matières salines, acides & alkalines. Mais cette assertion, loin d'être une vérité démontrée, ne doit être regardée que comme une hypothèse, jusqu'à ce que les expériences dont on s'occupe en ce moment dans plusieurs laboratoires, aient permis de prononcer.
Le chapitre dix-septième & dernier de cette première partie de l'ouvrage de M. Lavoisier, contient une suite de réflexions sur la formation des sels neutres, & sur leurs bases qu'il nomme salifiables. Il y fait voir que les terres & les alkalis s'unissent aux acides sans éprouver d'altération, & qu'il n'en est pas de même des métaux. Aucun de ces corps ne peut se combiner avec les acides sans s'oxigéner; ils enlèvent l'oxigène soit à l'eau dont ils séparent l'hydrogène en gaz, soit aux acides eux-mêmes dont ils volatilisent une portion de la base unie à une portion d'oxigène. De ce dégagement naît l'effervescence qui accompagne la dissolution des métaux dans les acides. On pourroit peut-être désirer dans ce chapitre des détails plus étendus sur les dissolutions métalliques; mais M. Lavoisier vouloit mettre une grande précision dans cette partie de son Ouvrage, & celle qu'il y a mise en effet, en rend la marche plus rapide sans nuire à la clarté des principes qui y sont exposés. Ce chapitre est terminé par un dénombrement des quarante-huit substances simples qui peuvent être oxidées & acidifiées dans différens états, en y comprenant les dix-sept substances métalliques, qu'il croit devoir aussi considérer comme des acides, lorsqu'elles sont portées à un grand degré d'oxigénation. Il résulte de ce dénombrement que quarante-huit acides qui peuvent être unis à vingt-quatre bases terreuses, alkalines & métalliques, donnent 1152 sels neutres, dont la nature & les propriétés n'auroient jamais été connues avec précision si, comme l'observe M. Lavoisier, on avoit continué à leur donner des noms, ou impropres, ou insignifians, comme on l'avoit fait à l'époque des premières découvertes de Chimie, & qui cependant peuvent être placés avec ordre dans la mémoire, à l'aide de la nouvelle nomenclature.
Tels sont les faits, tel est l'ordre qui les lie, telles sont les conséquences qui en découlent naturellement, consignés dans la première partie de ce Traité élémentaire. Nous les avons fait connoître assez en détail, pour que la Société pût apprécier l'ensemble du travail de M. Lavoisier, & le comparer à ce qu'étoit encore la science chimique il y a vingt ans. On a pu y voir qu'à l'aide des expériences modernes, les élémens de cette science sont aujourd'hui beaucoup plus faciles à saisir qu'ils n'étoient autrefois, parce que tout se réduit à concevoir les effets généraux du calorique, à distinguer les matières simples, bases de toutes les combinaisons possibles, à considérer leur union avec l'oxigène; c'est presque sur ces trois faits généraux que sont fondés les détails contenus dans la première partie. En y ajoutant les attractions de l'oxigène pour les différens corps, les décompositions qui résultent des effets de ces attractions, on auroit l'ensemble complet de ces Elémens. Mais M. Lavoisier a omis cet objet à dessein, & nous avons exposé ailleurs les raisons qui l'ont déterminé à prendre ce parti.
Seconde Partie.
Après avoir rendu un compte exact de la marche nouvelle que M. Lavoisier a suivie dans la première partie, qui constitue seule les élémens de la science, il ne sera pas nécessaire d'entrer dans des détails aussi étendus pour faire connoître les deux autres parties.
La seconde est entièrement destinée à présenter dans des tableaux les combinaisons salines neutres, ou les composés de deux mixtes, car on se rappellera facilement que les acides sont des mixtes formés de bases unies à l'oxigène, les oxides métalliques également formés de l'oxigène uni aux métaux, & enfin les terres & les alkalis vraisemblablement des composés. Mais pour rendre cette seconde partie plus complette, M. Lavoisier a mis avant les tableaux des sels neutres, dix tableaux qui offrent les combinaisons simples dont il a été parlé dans la première partie, & qui sont destinés à servir de résumé à cette première partie. On trouve dans ces 10 tableaux, 1o. les substances simples, ou au moins celles que les Chimistes ne sont pas parvenus à décomposer, au nombre de 33, savoir la lumière, le calorique, l'oxigène, l'azote, l'hydrogène, le soufre, le phosphore, le carbone, le radical muriatique, le radical fluorique, le radical boracique, les dix-sept substances métalliques, la chaux, la magnésie, la baryte, l'alumine & la silice; 2o. les bases oxidables & acidifiables, composées au nombre de 20, qui comprennent le radical nitro-muriatique, les radicaux des douze acides végétaux, & ceux des sept acides animaux; 3o. les combinaisons de l'oxigène avec les substances simples; 4o. les combinaisons des vingt radicaux composés, avec l'oxigène; ou les acides nitro-muriatiques, les douze acides végétaux, & les sept acides animaux; 5o. les combinaisons binaires de l'azote avec les substances simples: M. Lavoisier nomme celles de ces combinaisons qui ne sont pas connues, des azotures; 6o. les combinaisons binaires de l'hydrogène avec les mêmes substances simples: M. Lavoisier désigne par le nom d'hydrures celles de ces combinaisons qui n'ont point été examinées; 7o. les combinaisons binaires du soufre avec les corps simples; excepté les acides sulfurique & sulfureux, toutes ces combinaisons sont des sulfures; 8o. celles du phosphore avec les mêmes corps; tels sont l'oxide de phosphore, les acides phosphoreux & phosphorique, & les phosphures; 9o. celles du carbone avec les substances simples, savoir l'oxide de carbone, l'acide carbonique & les carbures; 10o. enfin celles de quelques autres radicaux avec les substances simples. A ces tableaux sont jointes des observations dans lesquelles M. Lavoisier donne l'explication, & retrace sous de nouveaux points de vue, une partie des faits consignés dans la première partie.
Les tableaux des sels neutres sont au nombre de trente-quatre; on y trouve successivement les nitrites, les nitrates, les sulfates, les sulfites, les phosphites, les phosphates, les carbonates, les muriates, les muriates oxigénés, les nitro-muriates, les fluates, les borates, les arséniates, les molybdates, les tunstates, les tartrites, les malates, les citrates, les pyrolignites, les pyrotartrites, les pyromucites, les oxalates, les acétites, les acétates, les succinates, les benzoates, les camphorates, les gallates, les lactates, les saccholates, les formiates, les bombiates, les sebates, les lithiates & les prussiates. Le nombre de chaque classe de ces sels neutres contenus dans ces tableaux, est presque dans tous de vingt-quatre. M. Lavoisier a eu soin de disposer ces sels suivant l'ordre connu des affinités de leurs bases pour les acides. Comme la plupart de ces acides sont nouvellement découverts, l'Auteur a joint à chaque tableau des observations sur la manière de préparer ces sels, sur l'époque de leurs découvertes, sur les Chimistes à qui elles sont dues, & souvent même sur la comparaison de leur nature & de leurs propriétés. M. Lavoisier n'a point eu l'intention d'offrir, dans cette seconde partie, une histoire des sels neutres; il n'a rien dit de la forme, de la saveur, de la dissolubilité, de la décomposition des sels neutres, ni de la proportion & de l'adhérence de leurs principes. Ces détails, que l'on trouve dans les Elémens de Chimie de l'un de nous, n'entroient point dans le plan de M. Lavoisier; son but étoit de présenter une esquisse rapide de ces combinaisons, & il est très-bien rempli par les tableaux & par les courtes notices qui les accompagnent.
Troisième Partie.
La troisième partie, qui a pour titre: Description des appareils & des opérations manuelles de la Chimie, montre aussi bien que les deux premières, combien la science a acquis de moyens, & la différence qui existe entre les expériences que l'on fait aujourd'hui & celles que l'on faisoit autrefois. M. Lavoisier a rejetté cette description à la fin, parce que les détails qu'elle exige, auroient détourné l'attention & trop occupé l'esprit des Lecteurs, si elle avoit été placée avec la théorie, & parce que d'ailleurs elle suppose des connoissances qu'on n'a pu acquérir qu'en lisant les deux premières parties. Quoique M. Lavoisier l'ait présentée comme une explication des planches qu'on place ordinairement à la fin d'un ouvrage, nous y avons trouvé une méthode descriptive très-claire, & des observations intéressantes sur l'usage des instrumens & sur les phénomènes que présentent les corps qu'on soumet à leur action. Sans prétendre donner ici un extrait de cette troisième partie, qui n'en est pas susceptible, nous nous bornerons à offrir un léger apperçu des principaux objets contenus dans les huit chapitres qui la composent.
Le premier traite des instrumens nécessaires pour déterminer le poids absolu & la pesanteur spécifique des corps solides & fluides; telles sont les balances exactes de différentes sensibilités, depuis celles où l'on pèse 50 à 60 livres, jusqu'à celles qui trébuchent à des 512e. de grain (M. Lavoisier y propose des poids en fractions décimales de la livre, au lieu des divisions de la livre en onces, gros & grains); tels sont encore la balance hydrostatique, les aréomètres, sur-tout celui dont se sert M. Lavoisier, & qui lui est particulier.
Dans le chapitre second, sont décrits les instrumens propres à mesurer les gaz, les cuves pneumato-chimiques à l'eau & au mercure, les différens récipiens, le ballon à peser les gaz, la machine construite par les soins de M. Lavoisier, pour mesurer le volume & connoître la quantité des gaz suivant la pression & la température qu'ils éprouvent. M. Lavoisier nomme cette ingénieuse machine gazomètre.
Le chapitre III est destiné à la description d'un instrument imaginé par M. de la Place, pour déterminer la chaleur spécifique des corps & la quantité de calorique qui se dégage dans les combustions, dans la respiration des animaux & dans toutes les opérations de la Chimie. Cette utile machine, dont nous avons déjà indiqué les avantages dans la première partie, est nommée calorimètre par M. Lavoisier.
On trouve exposés, dans le quatrième chapitre, les instrumens dont on se sert dans les simples opérations mécaniques de la Chimie, telles que la trituration, la porphyrisation, le tamisage, le lavage, la filtration & la décantation.
Le cinquième chapitre contient la description des moyens & des instrumens qu'on emploie pour opérer l'écartement ou le rapprochement des molécules des corps; tels sont les vases destinés à la solution des sels, à la lixiviation, à l'évaporation, à la cristallisation, & à la distillation simple, ou évaporation en vaisseaux clos.
M. Lavoisier décrit, dans le sixième chapitre, les instrumens qui servent aux distillations composées & pneumato-chimiques, & sur-tout les appareils de Woulfe, variés de beaucoup de manières; ceux qu'on emploie dans les dissolutions métalliques; ceux qu'il a imaginés pour recueillir les produits des fermentations vineuse & putride, pour la décomposition de l'eau. Il y joint une histoire des différens luts & de leurs diverses utilités.
Les détails contenus dans le septième chapitre, font connoître les appareils dont ce Physicien s'est servi avec succès pour connoître avec exactitude les phénomènes qui ont lieu dans la combustion du phosphore, du charbon, des huiles, de l'alkool, de l'éther, du gaz hydrogène, & conséquemment dans la recomposition de l'eau, ainsi que dans l'oxidation des métaux.
Enfin le huitième & dernier chapitre de l'Ouvrage traite des instrumens & des procédés propres à exposer les corps à de hautes températures; il y est question de la fusion, des creusets, des fourneaux, de la théorie de leur construction, du moyen d'augmenter considérablement l'action du feu, en substituant à l'air atmosphérique l'air vital ou gaz oxigène.
Quand ces détails ne seroient que des descriptions simples des machines auxquelles la Chimie doit toutes ses nouvelles connoissances, ils n'en seroient pas moins utiles, & on n'en auroit pas moins d'obligation à M. Lavoisier, pour avoir publié des procédés & des appareils trop peu connus, même d'une partie de ceux qui professent aujourd'hui la Chimie, comme l'a dit l'Auteur. Mais ce n'est point seulement une description sèche & aride que présente cette troisième partie; on y décrit l'usage des diverses machines, on y fait connoître la manière de s'en servir, & les phénomènes qu'elles offrent à l'observateur; souvent même des points particuliers de la théorie générale exposée dans tout l'ouvrage, portent un jour éclatant sur le résultat des opérations auxquelles servent ces instrumens. On peut considérer cette troisième partie comme une histoire des principaux appareils nécessaires aux opérations de la Chimie moderne, & sans lesquels on ne pourroit plus espérer de faire faire des progrès à cette science.
Les planches placées à la fin de l'ouvrage, ont été gravées avec soin par la personne qui nous a déjà donné la traduction de Kirwan, & qui sait allier la culture des Lettres à celle des Arts & des Sciences.
L'ouvrage est terminé par des tables où sont exposées la pesanteur du pied cube des différens gaz, la pesanteur spécifique d'un grand nombre de corps naturels, les méthodes pour convertir les fractions vulgaires en fractions décimales & réciproquement, des moyens de correction pour la pesanteur des gaz relativement à la hauteur du mercure dans le baromètre & dans le thermomètre. Ces tables deviennent aujourd'hui aussi nécessaires aux Chimistes pour obtenir des résultats exacts dans leurs expériences, que le sont les tables de logarithmes aux Géomètres & aux Astronomes, pour l'exactitude & la rapidité de leurs calculs.
Nous pensons que l'Ouvrage de M. Lavoisier mérite l'approbation de la Société, & d'être imprimé sous son privilége.
Au Louvre, le 6 Février 1789.
Signé, de Horne & de Fourcroy.
La Société Royale de Médecine ayant entendu, dans sa séance tenue au Louvre le 6 du présent mois, la lecture du Rapport ci-dessus, en a entièrement adopté le contenu.
Ce que je certifie véritable. Ce 7 Février 1789.
Signé, Vicq d'Azyr, Secrétaire perpétuel.
EXTRAIT des Registres de la Société Royale d'Agriculture.
Du 5 Février 1789.
Nous avons été chargés par la Société Royale d'Agriculture, M. de Fourcroy & moi, de lui rendre compte d'un Traité élémentaire de Chimie, par M. Lavoisier.
Des Savans de l'Europe, l'un de ceux qui a le plus contribué à l'heureuse révolution que la Chimie pneumatique a éprouvée de nos jours, c'est, sans contredit, M. Lavoisier. Les Mémoires importans qu'il a publiés depuis quinze ans, les faits brillans dont on lui est spécialement redevable, toutes les expériences connues qu'il a vérifiées avec un zèle infatigable, l'élégance & la précision des appareils qu'il a imaginés, la théorie nouvelle enfin sur laquelle il a singulièrement influé, & qu'on peut vraiment regarder comme lui étant propre, faisoient desirer que M. Lavoisier réduisît ces nombreux matériaux en un corps d'ouvrage, & sur-tout qu'il en fît un ouvrage élémentaire: il étoit difficile de mieux remplir ce vœu.
Ce Traité peut servir à l'étude de la Chimie par la méthode & l'ordre qui y regnent; quant au Chimiste déjà familiarisé avec la science, il y trouvera les faits réunis & classés, ainsi que de grandes vues sur le systême de notre atmosphère, de la végétation, de l'animalisation, &c. ce qui offre une vaste carrière à ses recherches.
La Chimie recule de jour en jour ses bornes; elle embrasse maintenant toutes les sciences physiques, & l'Agriculture est peut-être une de celles qui aura le plus à s'applaudir des succès de la Chimie; l'analyse étant le seul moyen de conduire sûrement à la connoissance des terres, des amendemens & des engrais: enfin la Chimie pneumatique peut seule expliquer les grands phénomènes de la végétation, la formation des différens principes des végétaux, l'étiolement des plantes, &c. c'est elle qui nous a fait connoître cette double émission d'un gaz homicide & d'un gaz vital.
Dans le petit nombre d'ouvrages qui ont été récemment publiés sur la Chimie, tout étant neuf, la nomenclature, les faits, l'application de la méthode des Géomètres à ces mêmes faits, & la théorie entière, l'analyse d'un pareil Traité seroit une tâche longue & difficile à remplir; nous nous bornerons donc à des réflexions sur ce nouvel ordre de choses, qui, au milieu de beaucoup de prosélites, a encore quelques détracteurs.
On peut établir comme vérité qu'il n'y a pas d'art mécanique, le dernier de tous, dont la nomenclature ne soit moins vicieuse, moins insignifiante, que ne l'étoit celle de l'ancienne Chimie. Pas un mot dans l'ancienne langue chimique qui n'ait été enfanté par l'amour du mystère, & quelquefois même par le charlatanisme. Glauber, Stahl, emportés par le torrent & l'espèce de mode régnante alors, introduisent, l'un, son sel admirable, l'autre, son double arcane. Un mot neuf, mot qui n'a aucune acception, peut en recevoir une, il n'en est pas de même d'un mot déjà usité.
Il falloit donc une langue nouvelle pour une nouvelle science, des mots nouveaux pour de nouveaux produits; enfin, il falloit créer des expressions pour les phénomènes que créoit journellement la Chimie. Il importoit sur-tout que cette nomenclature fût raisonnée, que le mot fixât l'idée, & que, semblable à la langue des Grecs & des Latins, les augmentatifs, les privatifs, & le changement naître des idées accessoires & précises, & c'est l'objet que remplissent, par exemple, les mots soufre, sulfate, sulfite, sulfure. Tel est le but qu'ont rempli les Savans qui se sont réunis pour former cette nouvelle nomenclature, & le Traité de M. Lavoisier la rend très-intelligible.
Rien de plus imposant dans l'ouvrage de M. Lavoisier que ce nombre d'expériences ingénieuses, dont beaucoup lui appartiennent, toutes présentées avec cette précision mathématique, inconnue avant cette époque, que Rouelle avoit devinée, & qui, soumettant l'analyse à la rigueur du calcul, fait le complément de la science, en rendant la recomposition des corps aussi facile que leur décomposition.
L'ancienne Chimie parvenoit bien quelquefois à la synthèse: elle décomposoit & recomposoit l'alun, les vitriols, les sels neutres en général, elle minéralisoit & révivifioit les métaux; mais l'eau, mais l'air échappoient à son analyse. Elle les regardoit comme des corps simples & élémentaires, il étoit réservé à la Chimie pneumatique de leur faire subir la double loi de la décomposition & de la recomposition.
Il nous reste à parler de la théorie, puisque nous sommes restreints à des généralités. Cette théorie pose sur une grande masse de faits, qui lui forment un rempart solide où elle paroît inattaquable: elle ne le seroit pas, sans doute, si elle prétendoit tout expliquer, mais elle sait s'arrêter quand les faits lui manquent, ou qu'ils sont en trop petit nombre pour consolider de nouveaux points de doctrine. Tel est le caractère de sagesse qui la distingue de l'ancienne théorie, qui expliquoit tout de dix manières différentes, parce qu'au défaut de routes, il faut se pratiquer des sentiers. Dans la théorie actuelle, les faits s'enchaînent; chaque proposition est étayée d'expériences qui se pressent, & on paroît réduit à ne pouvoir pas en tirer d'autres conséquences que celles que présente cette même théorie.
Nous pensons donc que cet Ouvrage, dont plusieurs chapitres sont immédiatement applicables à la Physique de terminaison devinssent autant de moyen de faire végétale, mérite l'approbation de la Société Royale d'Agriculture.
Signé, de Fourcroy & Cadet de Vaux.
Je certifie cet Extrait conforme à l'original & au jugement de la Société.
A Paris, ce 6 Février 1789.
Signé, Broussonet, Secrétaire perpétuel.
De l'Imprimerie de Chardon, rue de la Harpe. 1789.
Fautes à corriger, & Additions.
Page 43, lignes 4 & 9, copeaux lisez coupeaux
Page 44, ligne 9, figure 14 lis. figure 16
Page 75, ligne 14, dans un ballon e lis. dans le ballon cb.
Page 77, pén. mtreux lis. nitreux
Page 78, ligne 6, à mesure que l'acide passe ajoutez une partie se condense dans le ballon, l'autre est absorbée par l'eau.
Page 94, ligne 21, ajoutez en note au bas de la page:
On a critiqué même avec assez d'amertume cette expression hydrogène, parce qu'on a prétendu qu'elle signifioit fils de l'eau, & non pas qui engendre l'eau. Mais qu'importe, si l'expression est également juste dans les deux sens? les expériences rapportées dans ce Chapitre, prouvent que l'eau, en se décomposant, donne naissance à l'hydrogène, & sur-tout l'hydrogène donne naissance à l'eau en se combinant avec l'oxigène. On peut donc dire également que l'eau engendre l'hydrogène, & que l'hydrogène engendre l'eau.
Page 96, antépénul. Bc lis. BC
Page 118, ligne 22 & suiv. gaz hydrogène carbonisé, gaz hydrogène sulfurisé, gaz hydrogène phosphorisé lis. carboné, sulfuré, phosphoré. La même faute a pu échapper dans d'autres endroits.
Page 133, pénul. & dern. ainsi les végétaux ne contiennent ni huile, ni eau, ni acide carbonique, ajoutez la note suivante au bas de la page:
Nota. On conçoit que je suppose ici des végétaux réduits à l'état de dessication parfaite, & qu'à l'égard de l'huile, je n'entends pas parler des végétaux qui en fournissent, soit par expression à froid, soit par une chaleur qui n'excède pas celle de l'eau bouillante. Il n'est ici question que de l'huile empyreumatique qu'on obtient par la distillation à feu nud, à un degré de feu supérieur à l'eau bouillante. C'est cette huile seule que j'annonce être un produit de l'opération. On peut voir ce que j'ai publié à cet égard dans le volume de l'Académie, année 1786.
Page 146, lignes 16 & 17, 397 livres 9 onces 29 grains lis. 460 livres 11 onces 6 gros 53 grains
Page 163, ligne 7, dont lis. que
Page 172, ligne 1, ammoniaque lis. ammoniac
Page 196, ligne 8, tartarique lis. tartareux
Ibid. ligne 11, pyrolignique lis. pyroligneux
Ibid. ligne 12, pyromucique lis. pyromuqueux
Ibid. ligne 13, pyrotartarique lis. pyrotartareux
Ibid. ligne 15, acétique lis. acéteux
Page 254, Supprimez du Tableau muriate oxygéné d'ammoniaque, attendu que cette combinaison n'existe pas.
Page 294, lignes 14, 15 & 16, effacez & ce même sel saturé de chaux, oxalate acidule de potasse & de chaux
Page 384, ligne 22, d'un robinet l lis. d'un robinet lm










