VINGT-CINQUIÈME LEÇON.
Considérations générales sur la statique céleste.
Avant l'admirable découverte de Newton, les phénomènes célestes étaient liés entre eux, à un certain degré, par les trois grandes lois de Képler. Mais cette liaison, quoique infiniment précieuse, était nécessairement fort imparfaite; car elle laissait entièrement indépendans les uns des autres les phénomènes qui se rattachaient à deux lois différentes. La réduction de ces trois divers faits généraux à un fait unique et encore plus général, a établi, au contraire, parmi tous les phénomènes intérieurs de notre monde, une harmonie rigoureusement universelle, qui permet toujours d'apercevoir exactement, d'une manière plus ou moins indirecte, la relation intime et nécessaire de deux quelconques d'entre eux, constamment rattachés désormais à une théorie commune, qui les lie en outre à nos principaux phénomènes terrestres. C'est ainsi que la science astronomique a enfin acquis la plus haute perfection spéculative dont nos études soient jamais susceptibles, l'entière systématisation mathématique de toutes ses diverses parties; en sorte qu'il n'y aurait rien à gagner, sous ce rapport, à découvrir un principe encore plus étendu, quand même un tel espoir ne devrait pas être regardé comme éminemment chimérique.
On ne connaîtrait donc pas convenablement la conception fondamentale de la mécanique céleste en se bornant à l'envisager en elle-même, ainsi que nous avons dû le faire dans la leçon précédente. Afin d'en sentir dignement toute la valeur philosophique, il est indispensable de caractériser maintenant, sous ses divers aspects principaux, l'application de la théorie de la gravitation à l'explication mathématique des phénomènes célestes et au perfectionnement de leur étude. Tel est l'objet spécial de cette leçon et de la suivante.
Pour faciliter cet aperçu général, je crois utile de transporter ici la distinction élémentaire que j'ai établie dans l'examen de la géométrie céleste, entre les phénomènes propres à chaque astre envisagé comme immobile, et ceux qui concernent ses divers mouvemens. Cette division est sans doute, en mécanique céleste, plus astronomique que mathématique; car les deux genres de questions ne présentent point d'ailleurs des différences bien tranchées quant à leur degré de difficulté, ni quant à la nature des considérations employées, toujours nécessairement relatives à une même pensée fondamentale. Mais elle me paraît propre à éclaircir cette importante exposition, en la rendant plus méthodique que ne le permet l'ordre essentiellement arbitraire qu'on y suit ordinairement. La leçon actuelle sera consacrée aux phénomènes statiques, et la suivante aux phénomènes dynamiques.
La détermination des masses de nos différens astres est aussi fondamentale, en mécanique céleste, que celle de leurs distances en géométrie céleste, puisque, sans elle, on ne pourrait évidemment se former aucune idée exacte de leur gravitation mutuelle. Une telle connaissance présente en même temps la manifestation la plus saillante des ressources générales que la théorie de la gravitation nous a procurées pour obtenir à l'égard des astres des notions entièrement nouvelles, qui devaient jusque alors nous paraître, quoique à tort, radicalement inaccessibles. Essayons de caractériser successivement les trois procédés principaux qu'on applique à cette importante recherche, et qui diffèrent beaucoup, soit en généralité, soit en simplicité.
Le moyen le plus général, le seul même qui soit réellement applicable à tous les cas, mais aussi celui dont l'emploi est le plus difficile, consiste à analyser, aussi exactement que possible, la part spéciale de chaque astre dans les perturbations qu'éprouve le mouvement principal d'un autre, en translation ou en rotation. Cette influence ne dépend évidemment que de deux élémens, la distance et la masse de l'astre considéré. Le premier est bien connu; et le second, qui est constant, étant introduit dans le calcul comme un coefficient indéterminé, sa valeur pourra être appréciée par la comparaison du résultat avec les observations directes. Malheureusement, dans l'état présent de la mathématique abstraite, l'analyse des perturbations ne saurait être, par sa nature, que simplement approximative, comme l'indiquera la leçon suivante. Il est surtout extrêmement difficile d'isoler, dans chaque perturbation totale, ce qui tient spécialement à l'action de tel astre proposé; quelque soin qu'on apporte dans le choix des divers dérangemens, on ne parvient guère à établir cette séparation d'une manière aussi précise que l'exigerait une semblable détermination. Aussi les astronomes et les géomètres sont-ils loin de compter autant jusqu'ici sur les masses qui n'ont pu être obtenues que par cette méthode, que sur celles qui ont permis l'application des autres procédés.
Tel était à cet égard l'état de la mécanique céleste, lorsque, dans ces dernières années, M. Poinsot a imaginé pour ces évaluations fondamentales un moyen parfaitement rationnel, le plus direct et le plus sûr de tous, quoique, par sa nature, son emploi exige malheureusement beaucoup de temps [12]. Au lieu de se borner à démêler péniblement dans les diverses perturbations naturelles l'influence détournée et peu distincte de chaque masse envisagée séparément, M. Poinsot propose de déterminer désormais toutes les masses à la fois, par l'examen d'un nouveau genre de perturbations, en quelque sorte artificielles, spécialement adaptées à un tel usage, et les seules qui observent nécessairement entre elles une relation invariable, aussi simple que rigoureuse. Il s'agit des changemens que l'action mutuelle des astres de notre monde fait subir aux aires décrites en un temps donné par leurs rayons vecteurs autour du centre de gravité général. On sait, d'après la mécanique rationnelle, que parmi ces diverses variations il s'opère nécessairement une telle compensation, que la somme algébrique de toutes ces aires, projetées en un instant quelconque sur un même plan d'ailleurs arbitraire, et multipliées chacune par la masse correspondante, demeure rigoureusement invariable. Ainsi, en comparant entre eux les divers états du ciel à des époques suffisamment distinctes, l'égalité mutuelle de toutes ces sommes peut fournir, dans la suite des temps, autant d'équations qu'on voudra, propres à faire connaître, si l'on a eu soin d'en former le nombre convenable, les valeurs des différentes masses, seules inconnues qu'elles contiennent, puisque les aires sont d'ailleurs exactement mesurables, d'après les positions et les vitesses effectives des astres considérés.
[Note 12: ][ (retour) ] Voyez le beau Mémoire de ce grand géomètre sur la vraie théorie du plan invariable, maintenant annexé à la dernière édition de sa Statique.
Indépendamment de sa rationnalité parfaite et de son entière généralité, cette méthode présente un caractère philosophique bien remarquable, en ce que, comme l'indique avec raison M. Poinsot, elle rend l'évaluation des masses relatives de tous les astres de notre monde entièrement indépendante de la loi de gravitation, suivant l'esprit de la théorie des aires, ce que jusque alors aucun géomètre n'eût jamais jugé possible. Il en résulte d'ailleurs que les résultats ne sont plus affectés des approximations relatives à cette loi dans les calculs ordinaires de la mécanique céleste.
On doit vivement regretter que la nature de cette méthode ne permette point son application immédiate, ne fût-ce que pour obtenir, par la confrontation de ses résultats avec ceux déjà connus, une des confirmations les plus décisives de la théorie de la gravitation. Mais la nécessité évidente d'attendre que toutes les aires individuelles aient assez varié pour rendre significative la comparaison de leurs sommes, exige un intervalle considérable entre les époques successives, dont le nombre dépend d'ailleurs de celui des masses cherchées. Le temps total doit même être d'autant plus grand que, d'après la rectification importante apportée par M. Poinsot à la théorie générale des aires, il est mathématiquement indispensable de prendre en considération celles qui résultent des rotations, comme je l'indiquerai plus tard au sujet du plan invariable. Cette obligation, en introduisant dans les équations les divers momens d'inertie, tendrait à doubler le nombre des époques nécessaires pour obtenir des résultats parfaitement rigoureux; mais en procurant, à la vérité, une nouvelle détermination essentielle, qui devait sembler d'abord encore plus inaccessible que celle des masses. Les observations suffisamment précises sont encore si peu anciennes que le passé nous offrirait à cet égard un bien petit nombre d'équations, en sorte qu'un tel procédé ne deviendrait entièrement applicable, sans aucun auxiliaire, que dans un avenir assez lointain. Je n'ai pas cru néanmoins pouvoir me dispenser d'indiquer cette méthode générale et directe, dont le caractère spéculatif est si parfait. On doit reconnaître d'ailleurs qu'en la réservant pour les masses qui ne sont pas encore bien connues d'une autre manière, et en négligeant d'abord les termes peu influens, le temps nécessaire à son application effective se trouverait notablement abrégé [13].
[Note 13: ][ (retour) ] Cette méthode de M. Poinsot me fait naître l'idée d'un nouveau moyen rationnel, analogue au précédent, pour déterminer simultanément les masses de tous les astres de notre monde, d'après un autre théorème fondamental de mécanique rationnelle, la conservation nécessaire du mouvement du centre de gravité de l'ensemble de ces astres, quelles que puissent être les perturbations provenant de leur action mutuelle. Il en résulte la constance, à une époque quelconque, de la somme des produits de toutes les diverses masses par les vitesses correspondantes, décomposées suivant une même droite arbitraire; ce qui peut fournir autant d'équations qu'on voudra comparer d'époques. Dans l'estimation de ces produits pour les différentes molécules de chaque astre, il est clair, quant à la translation, qu'on pourrait traiter l'astre comme condensé à son centre de gravité, d'après la propriété fondamentale de ce point; et, quant à la rotation, cette même propriété indique qu'il n'y aurait pas lieu à la considérer, puisque l'ensemble des produits qui en résulteraient serait nécessairement nul pour l'astre entier. Ce procédé me semblerait donc plus simple que celui fondé sur le théorème des aires: il exigerait moins d'équations, et par suite beaucoup moins de temps pour son application complète, en ne procurant point, il est vrai, l'évaluation des momens d'inertie, indispensable à la détermination du plan invariable. La durée totale de l'opération serait d'autant moindre, que les vitesses varient avec plus de rapidité que les aires, ce qui permettrait de rapprocher davantage les époques comparatives d'observation.
Après le procédé général fondé sur l'analyse des perturbations, soit sous sa forme ordinaire, soit avec la modification si heureusement imaginée par M. Poinsot, le moyen le moins restreint pour évaluer les masses des astres de notre monde, est celui que Newton créa, dès l'origine, à l'égard des planètes pourvues d'un satellite. La méthode, aussi simple qu'immédiate, consiste à comparer le mouvement du satellite autour de la planète, au mouvement de celle-ci autour du soleil. On sait que, dans chacun d'eux, la gravitation exercée par l'astre central, et qui doit être en raison de sa masse, est proportionnelle au rapport entre le cube du demi-grand axe de l'orbite et le quarré du temps périodique, en ramenant l'action, suivant la loi ordinaire, à l'unité de distance. Ainsi, il suffit de comparer entre elles les deux valeurs bien connues que prend cette fraction dans les deux cas, pour obtenir aussitôt le rapport des masses du soleil et de la planète. À la vérité, on néglige alors nécessairement la masse de la planète vis-à-vis de celle du soleil, ou au moins du satellite envers la planète. Mais l'erreur qui en résulte est trop peu importante, dans presque tous les cas de notre monde, pour que le degré de précision auquel nous pouvons réellement prétendre à l'égard des masses planétaires en soit sensiblement affecté. La masse de Jupiter, déterminée ainsi par Newton, n'a reçu qu'un très léger changement des divers moyens qu'on a pu y appliquer depuis; et encore la différence tient-elle, presqu'en totalité, à ce que les données du procédé newtonien sont aujourd'hui mieux connues.
Enfin, la méthode la plus simple et la plus directe de toutes, mais aussi la plus particulière, puisqu'elle est nécessairement bornée à la planète qu'habité l'observateur, consiste à évaluer les masses relatives par la comparaison des pesanteurs qu'elles produisent. Si la masse d'un astre bien connu était exactement déterminée, elle permettrait évidemment d'apprécier l'énergie de la pesanteur à sa surface, ou à une distance quelconque donnée: donc, réciproquement, la mesure directe de cette intensité suffira pour estimer la masse. Ainsi, les expériences du pendule ayant mesuré, avec la dernière précision, la pesanteur terrestre; en la diminuant, inversement au quarré de la distance, on saura quelle serait sa valeur à la distance dit soleil; et l'on n'aura dès lors qu'à la comparer avec la quantité, préalablement bien connue, qui exprime l'action du soleil sur la terre, pour trouver immédiatement le rapport de la masse de la terre à celle du soleil. Envers toute autre planète, ce serait, au contraire, l'évaluation de sa masse qui permettrait seule l'estimation de la gravité correspondante. Ce procédé n'est, en réalité, qu'une modification du précédent, où la chute du satellite se trouvait être au fond indirectement évaluée, au lieu de résulter d'une expérience immédiate, qui permet sans doute un peu plus de précision, surtout à cause de la masse du satellite, relativement à celles qui nous servent à mesurer la pesanteur.
L'ensemble de tous ces divers moyens étant applicable à la terre, sa masse comparée à la masse solaire, unité naturelle à cet égard, doit être regardée comme la mieux connue de notre monde. La masse de la lune, et surtout celle de Jupiter, sont aujourd'hui estimées presque aussi parfaitement; viennent ensuite les masses de Saturne et d'Uranus; on compte moins sur les trois autres déjà évaluées, celles de Mercure, de Vénus et de Mars, quoique l'incertitude ne puisse pas y être très grande. On ignore presque entièrement les masses des quatre planètes télescopiques, et surtout celles des comètes, ce qui tient à leur extrême petitesse, qui ne leur permet aucune influence appréciable sur les perturbations. Ce caractère est particulièrement remarquable à l'égard des comètes, qui, dans leur course allongée, passent fréquemment dans le voisinage de forts petits astres, comme les satellites de Jupiter et de Saturne, sans y produire aucun dérangement perceptible. Quant aux satellites, en exceptant la lune, on ne connaît encore que les valeurs approchées des masses de ceux de Jupiter.
Aucune exacte comparaison générale des résultats obtenus n'a pu jusqu'ici faire apercevoir entre eux une harmonie quelconque. La seule circonstance essentielle qu'ils présentent est l'immense supériorité de la masse du soleil à l'égard de tout le reste de notre monde, dont la masse, même réunie, en fait à peine la millième partie. On devait évidemment s'y attendre, du moins à un certain degré, quoique rien n'indiquât directement une aussi grande disproportion, si ce n'est la petitesse des perturbations planétaires, qui en dépend essentiellement. Du reste, à partir du soleil, on voit alterner, sans aucun ordre sensible, des masses tantôt décroissantes, tantôt croissantes. On avait pensé d'abord, conformément à une supposition à priori de Képler, que les masses étaient régulièrement liées aux volumes (d'ailleurs irréguliers eux-mêmes, comme nous l'avons remarqué); en sorte que les densités moyennes fussent continuellement moindres en s'éloignant du soleil, en raison inverse des racines quarrées des distances. Mais, indépendamment de cette loi numérique, qui ne s'observe jamais exactement, le simple fait du décroissement des densités présente quelques exceptions, entre autres pour Uranus. On ne saurait d'ailleurs lui assigner aucun motif rationnel.
Tels sont, en aperçu, les divers moyens que possède aujourd'hui l'astronomie, quant à l'évaluation relative des différentes masses qui composent notre système solaire. Mais, pour compléter cette connaissance fondamentale, il reste à indiquer comment on a pu rapporter enfin toutes ces masses à nos unités de poids habituelles, par l'importante détermination directe du véritable poids total de la terre, qui constitue une des applications les plus simples et les plus intéressantes de la théorie générale de la gravitation.
Bouguer est le premier qui ait aperçu distinctement la possibilité d'une telle évaluation, en reconnaissant, dans sa célèbre expédition scientifique au Pérou, l'influence du voisinage des grosses montagnes pour altérer légèrement la direction de la pesanteur. On conçoit en effet, d'après la loi fondamentale de la gravitation, qu'une masse considérable, envisagée comme condensée en son centre de gravité, peut, quand le fil-à-plomb s'en trouve très rapproché, déterminer en lui, à raison de cette proximité, une gravitation secondaire, extrêmement petite sans doute vis-à-vis de celle de l'ensemble de la terre, mais néanmoins perceptible, qui le fasse dévier vers elle d'une quantité presque insensible, susceptible cependant d'être mesurée par des observations très délicates sur la comparaison de sa direction effective avec la verticale naturelle du lieu, préalablement bien connue. Cette déviation étant exactement appréciée, l'équation d'équilibre facile à établir entre l'action de la montagne et celle de la terre doit permettre d'en déduire le rapport des deux masses, et par suite la valeur de la masse terrestre, d'après le poids de la montagne, puisque toutes les autres quantités que renferme cette équation sont déjà évidemment données. Les observations astronomiques ne pouvaient pas être assez précises à l'époque de Bouguer pour que ce procédé fut dès lors réellement applicable, tant est minime la déviation sur laquelle il repose. Mais un demi-siècle après, Maskelyne parvint à constater, en Écosse, une altération de cinq à six secondes dans la direction naturelle de la pesanteur, et Hutton en déduisit le poids de la terre égal à 4-1/8 fois celui d'un pareil volume d'eau distillée à son maximum de densité. Toutefois, un tel procédé présente évidemment, outre la petitesse de la déviation, une source notable d'incertitude, dans l'impossibilité de connaître avec assez d'exactitude le poids de la montagne, qui ne peut être que grossièrement obtenu d'après son volume.
Quand Coulomb eut créé sa célèbre balance de torsion, destinée à la mesure précise des plus petites forces quelconques, Cavendish conçut la possibilité de déterminer beaucoup plus exactement la masse de la terre en la comparant, à l'aide de cet appareil, à des masses artificielles, susceptibles d'être parfaitement connues. C'est ainsi que, dans l'immortelle expérience qu'il imagina, il parvint à rendre sensible l'action de deux sphères de plomb sur un petit pendule horizontal, dont les oscillations, comparées à celles que produit la pesanteur, permettaient de déterminer mathématiquement, avec une précision remarquable, le rapport de la masse de ces sphères à celle de la terre. Par ce procédé bien plus parfait, Cavendish trouva la densité moyenne de notre globe égale à 5-1/2 fois celle de l'eau; d'où l'on peut déduire, si on le juge à propos, le vrai poids de la terre en kilogrammes ou en tonneaux.
Indépendamment de l'importance d'une telle détermination, pour faire connaître les masses et les densités effectives de tous les astres de notre monde, ce qui est peu utile en astronomie, où l'on n'a besoin que de leurs rapports, ce résultat présente la propriété essentielle de nous fournir, sur la constitution intérieure de notre globe, une première donnée générale, qui, fort incomplète sans doute, n'en est pas moins infiniment précieuse, en vertu de son incontestable positivité, qui peut déjà suffire à exclure plusieurs conjectures hasardées. En effet, la densité moyenne de la terre étant, d'après cette mesure, très supérieure à la densité des couches qui composent sa surface, formée d'eau en si grande partie, il est indispensable que les couches deviennent, en général, de plus en plus denses, en se rapprochant du centre, sauf les irrégularités accidentelles, ce qui est d'ailleurs parfaitement en harmonie avec l'indication mathématique de la mécanique céleste à l'égard de toutes les planètes, comme nous le mentionnerons ci-après. Une conjecture quelconque sur la structure interne de la terre est donc désormais assujettie à cette indispensable condition, en sorte que celles qui n'y satisferaient pas, en supposant vide par exemple l'intérieur du globe, seraient, par cela même, radicalement fausses. Mais, ce renseignement, le seul réel qui existe encore à cet égard, est malheureusement très imparfait; car il ne donne évidemment aucun indice, même sur l'état physique des couches internes, qu'on pourrait supposer liquides et peut-être gazeuses, aussi bien que solides, sans que cette condition fût effectivement violée.
La seconde grande détermination statique que nous devions caractériser dans la mécanique céleste, concerne l'importante et difficile étude mathématique de la figure des astres, envisagée comme déduite de la théorie générale de leur équilibre, indépendamment d'aucune mesure géométrique.
Si la terre, ou toute autre planète, avait toujours été dans l'état de consistance que nous observons, la mécanique céleste n'aurait évidemment aucune base pour déterminer à priori sa figure, puisque l'équilibre d'un système solide est certainement compatible avec une forme extérieure quelconque. C'est pourquoi les géomètres, afin d'étudier la figure des astres d'après les règles générales de la statique, ont dû les supposer antérieurement fluides, du moins à la surface, ce qui ne permet plus l'équilibre qu'avec certaines formes spéciales. L'accord remarquable des principaux résultats de cette hypothèse indispensable avec l'ensemble des observations directes, a démontré ensuite la justesse d'une conjecture indiquée d'ailleurs, surtout envers la terre, par beaucoup d'autres phénomènes.
En considérant ainsi la question d'une manière générale, il est d'abord évident que, si les astres n'avaient aucun mouvement de rotation, la figure parfaitement sphérique conviendrait à l'équilibre de leurs molécules, puisque la pesanteur, dès lors constamment dirigée au centre, serait toujours perpendiculaire aux couches de niveau, pourvu qu'on les supposât homogènes, et que la densité variât seulement de l'une à l'autre, suivant une loi d'ailleurs arbitraire. Mais on conçoit aisément que la force centrifuge engendrée par la rotation doit nécessairement modifier cette forme primitive, en altérant plus ou moins soit la direction, soit l'intensité de la pesanteur proprement dite.
Sous le premier point de vue, qui est celui d'Huyghens, il est facile de constater que si la terre, par exemple, était exactement sphérique, la force centrifuge écarterait sensiblement le fil-à-plomb de la direction perpendiculaire à la surface. Cette déviation, nécessairement nulle au pôle, où la force centrifuge n'existe pas, et à l'équateur, où elle agit suivant la même droite que la pesanteur, atteindrait son maximum vers quarante-cinq degrés de latitude, où elle devrait être d'environ six minutes, et, par conséquent, très appréciable. Ainsi, la droite décrite par les corps dans leur chute naturelle, c'est-à-dire celle suivant laquelle se dirige, en chaque lieu, la résultante de la gravité et de la force centrifuge, ne saurait être, conformément à toutes les observations et à la théorie générale de l'équilibre des fluides, exactement perpendiculaire à la surface, qu'autant que la planète cesse d'être une sphère parfaite, pour devenir un sphéroïde aplati aux pôles et renflé à l'équateur.
Il en est de même sous le point de vue de l'intensité, que Newton adopta. Deux colonnes fluides menées du centre de l'astre à son pôle et à son équateur, doivent nécessairement, pour l'égalité de leurs poids, avoir des longueurs inégales, puisque la gravité naturelle n'est nullement affaiblie dans la première par la force centrifuge, qui, au contraire, diminue diversement la pesanteur propre à chacun des points de la seconde. La comparaison des colonnes correspondantes à deux latitudes quelconques donnerait lieu évidemment à une remarque analogue, la différence y étant seulement moins prononcée. Les divers rayons de l'astre doivent donc augmenter graduellement depuis le pôle jusqu'à l'équateur, et rester seulement égaux entre eux à la même latitude, comme dans une surface de révolution.
Cette première vue du sujet explique donc, d'une manière aussi élémentaire que satisfaisante, et la forme presque sphérique de tous nos astres, et le léger aplatissement que chacun d'eux nous présente à ses pôles. Mais quand on veut aller au-delà de cet aperçu général, et déterminer mathématiquement la véritable figure, ainsi que la valeur exacte de l'aplatissement, la question devient tout-à-coup transcendante, et présente des obstacles qui ne sauraient jamais être entièrement surmontés.
La cause essentielle de ces hautes difficultés tient à ce que, par sa nature, le fond d'une telle recherche présente une sorte de cercle vicieux, qui ne comporte point d'issue parfaitement rationnelle. En effet, la théorie mathématique de l'équilibre des fluides exige évidemment que, pour former l'équation de la surface, on connaisse d'abord la vraie loi de la pesanteur dont ses diverses molécules sont animées. Or, d'un autre côté, cette loi ne saurait être exactement déterminée, d'après la théorie fondamentale de la gravitation, qu'autant que la forme de l'astre, et même le mode de variation de la densité dans son intérieur, seraient préalablement donnés. Il est donc impossible, même en supposant l'astre homogène, d'obtenir une solution directe et complète qui indique avec une pleine certitude les formes propres à l'équilibre, en donnant une exclusion nécessaire à toutes les autres. On ne peut réellement qu'essayer si telle figure proposée remplit ou non les conditions fondamentales. Aussi les géomètres attachent-ils avec raison un très grand prix au beau théorème découvert par Maclaurin, qui est devenu le fondement nécessaire de toutes leurs recherches à ce sujet [14], en démontrant que l'ellipsoïde de révolution satisfait exactement aux conditions de l'équilibre. Ce point de départ, que Maclaurin avait établi seulement dans l'hypothèse de l'homogénéité, fut ensuite étendu par Clairaut au cas d'un astre composé de couches dont la densité varie arbitrairement, et qui ne serait même que partiellement fluide [15]. La question a dès lors été réduite à la détermination du rapport des deux axes. Or, cette évaluation ne présente aucune difficulté en regardant l'astre comme homogène. Mais les mesures directes ayant toujours montré, à l'égard des diverses planètes, un aplatissement moindre que celui obtenu ainsi, cette hypothèse, directement reconnue fausse d'ailleurs envers la terre, comme nous l'avons vu plus haut, et évidemment invraisemblable en général, a dû être définitivement exclue. Dès ce moment, l'aplatissement a cessé de comporter une détermination directe et rigoureuse, puisque nous ignorons nécessairement la vraie loi suivant laquelle la densité croît de la surface au centre dans un astre quelconque, et qu'il serait strictement indispensable d'y avoir égard. Néanmoins, les travaux des géomètres, et surtout de Laplace, sur l'influence de diverses lois de la densité, ont fait connaître des limites très précieuses, souvent fort resserrées, entre lesquelles l'aplatissement doit inévitablement tomber. La plus générale et la plus usuelle consiste en ce que cet aplatissement est compris, de toute nécessité, pour un astre quelconque, entre les cinq quarts et la moitié du rapport de la force centrifuge à l'équateur à la gravité correspondante, puisque la première valeur aurait lieu si l'astre était homogène, et la seconde si la densité croissait avec une telle rapidité qu'elle devînt infinie au centre. C'est ainsi que l'aplatissement terrestre ne peut excéder un deux cent trentième, ni être moindre qu'un cinq cent soixante-dix-huitième; ce qui est parfaitement conforme aux mesures directes, que cette règle mathématique a plus d'une fois servi à contrôler.
[Note 14: ][ (retour) ] Le travail de Newton ne fit réellement que poser la question, puisqu'il y avait supposé, sans aucune démonstration, la figure elliptique des méridiens, ce qui réduisait dès lors la recherche à la mesure de l'aplatissement, extrêmement facile dans l'hypothèse d'homogénéité qu'il avait adoptée.
[Note 15: ][ (retour) ] M. Jacobi a fait tout récemment, pour le seul cas de l'homogénéité, la découverte remarquable de la possibilité de l'équilibre avec un ellipsoïde à trois axes inégaux, dont le moindre est toujours nécessairement celui du pôle.
Au reste, dans presque toutes les planètes, l'aplatissement exerce, comme nous l'indiquerons prochainement, une influence nécessaire et appréciable sur certains phénomènes de perturbation, ce qui fournit de nouveaux moyens indirects de le déterminer, en éludant la difficulté insurmontable que présente à cet égard la théorie de l'équilibre des astres.
L'ensemble de ces évaluations coïncide avec les mesures immédiates plus parfaitement qu'on n'avait lieu de l'espérer d'après les causes fondamentales d'incertitude inhérentes à une telle recherche. Le seul cas qui semble présenter une exception réelle, est celui de Mars, qui, suivant sa grandeur, sa masse, et la durée de sa rotation, ne devrait être guère plus aplati que la terre, et qui cependant le serait presque autant que Jupiter, si les observations d'Herschell sont parfaitement exactes.
Quoique l'équilibre soit compatible avec la figure ellipsoïdique, d'après le théorème de Maclaurin, la nature de cette question ne permet nullement d'assurer que cette forme doive être regardée comme exclusive. Aussi notre monde nous offre-t-il, dans les anneaux de Saturne, un exemple très prononcé d'une figure différente. Laplace a démontré qu'ils pouvaient être en équilibre, même à l'état fluide, en les supposant engendrés par la révolution d'une ellipse autour d'une droite extérieure, menée, parallèlement à son petit axe et dans son plan, par le centre de Saturne. L'équilibre subsisterait même encore avec l'inégalité de ces méridiens elliptiques, qui semble indiquée par les observations.
La plus utile conséquence finale de la théorie mathématique des formes planétaires, consiste dans l'importante relation qu'elle a naturellement établie entre la valeur des différens degrés terrestres et l'intensité de la pesanteur correspondante mesurée par la longueur du pendule à secondes aux diverses latitudes. Il en est résulté l'heureuse faculté de multiplier ainsi presqu'à volonté, de la manière la plus commode, nos renseignemens indirects sur la figure de notre globe, tandis que l'estimation géométrique des degrés est une opération longue et pénible, qui ne saurait être fréquemment répétée avec tout le soin qu'elle exige. Mais, en général, plus une mesure est indirecte, tout étant d'ailleurs égal, moins elle est certaine. Aussi, quelque précise que soit réellement cette ressource, il faut reconnaître, ce me semble, que les procédés géodésiques convenablement appliqués n'en continuent pas moins à mériter la préférence, à cause de la loi intérieure des densités terrestres, élément inconnu qui affecte nécessairement les indications fournies par les expériences du pendule pour la figure de la terre.
Un appendice naturel et intéressant de la théorie hydrostatique de la figure des planètes, consiste dans les conditions de la stabilité de l'équilibre des fluides qui recouvrent, en totalité ou en partie, la surface des astres. Laplace a établi à ce sujet un théorème général, aussi simple qu'important, qu'un premier aperçu semble d'ailleurs devoir indiquer d'avance. Il fait dépendre cette stabilité, quels que puissent être et le mode de répartition du fluide et la loi interne des densités, de la seule supériorité de la densité moyenne de l'astre sur celle du fluide; caractère si évidemment constaté, pour la terre, par la belle expérience de Cavendish. On pourrait aisément en faire le texte d'une cause finale, puisque la perpétuité des espèces terrestres exige clairement que l'équilibre des mers tende à se rétablir spontanément, après avoir été momentanément troublé d'une manière quelconque. Mais l'examen attentif du sujet fait aussitôt disparaître la finalité, en rendant sensible la nécessité d'un tel arrangement dans la formation primitive des planètes, la densité des couches ayant dû naturellement croître de la surface au centre, comme l'indique si nettement toute la théorie de la figure des astres.
La grande question des marées constitue la dernière recherche essentielle que je crois devoir classer parmi les études principales de la statique céleste. Sous le point de vue astronomique, le caractère statique de cette théorie se montre évidemment, puisque l'astre y est essentiellement envisagé comme immobile. Mais ce caractère n'est pas, au fond, moins réel sous le point de vue mathématique, en considérant le véritable esprit de la solution, où l'on ne s'occupe surtout que de la figure vers laquelle tend l'Océan par l'équilibre périodique des diverses forces qui le sollicitent, sans penser aux mouvemens que produisent les variations de cet équilibre. Enfin, cette étude fait naturellement suite à celle de la figure des astres.
Ce beau problème, indépendamment de son importance propre, présente un intérêt philosophique tout particulier, en établissant une transition naturelle et évidente de la physique du ciel à celle de la terre, par l'explication céleste d'un grand phénomène terrestre.
Descartes est réellement le premier philosophe qui ait tenté de fonder une théorie positive des marées, exclusivement rattachées jusque alors à des conceptions métaphysiques, dont Képler lui-même n'avait pas cru pouvoir se passer. Quoique l'explication proposée par Descartes soit, sans doute, entièrement inadmissible, c'est néanmoins à lui que nous devons l'observation fondamentale de l'harmonie constante entre la marche générale de ce phénomène et le mouvement de la lune, qui a certainement contribué à mettre Newton sur la voie de la vraie théorie. Il suffisait, en quelque sorte, d'être averti que la cause réelle de ce grand phénomène devait nécessairement se trouver dans le ciel, pour que la théorie de la gravitation dévoilât aussitôt son explication générale, tant elle en résulte naturellement.
L'inégale gravitation des diverses parties de l'Océan vers un quelconque des astres de notre monde, et particulièrement vers le soleil et la lune: tel est le principe, éminemment simple et lucide, d'après lequel Newton a ébauché la véritable théorie des marées, approfondie ensuite par Daniel Bernouilli, dont le beau travail n'a réellement subi depuis aucun perfectionnement essentiel. Essayons de caractériser nettement l'esprit général de cette grande recherche. La théorie convient en elle-même aussi bien à l'atmosphère qu'à l'Océan. Mais je considérerai seulement ce dernier cas, puisque les marées atmosphériques, d'ailleurs infiniment moindres, à cause de la masse si minime de notre enveloppe gazeuse, échappent essentiellement, par leur nature, à toute observation réelle, malgré les efforts tentés quelquefois pour en manifester l'influence, surtout dans les variations diurnes du baromètre, dont l'examen attentif pendant plusieurs années a cependant indiqué à M. Flaugergues une relation certaine avec le mois lunaire.
En joignant le centre de la terre à un astre quelconque, les deux points correspondans de la surface terrestre doivent graviter évidemment l'un un peu plus, l'autre un peu moins que le centre lui-même, inversement aux quarrés de leurs distances respectives. Le premier tend donc à s'éloigner du centre, ce qui doit produire une certaine élévation de la surface fluide, et le centre tend, au contraire, à s'éloigner du second point, où doit survenir ainsi une élévation analogue et à très peu près égale. Cet effet diminue nécessairement à mesure qu'on s'écarte davantage de ces deux points dans un sens quelconque, et devient nul à quatre-vingt-dix degrés de là, où, les parties de l'Océan gravitant comme le centre, le niveau doit baisser pour fournir à l'exhaussement du reste, indépendamment d'une dépression directe presque insensible. En même temps, ces divers changemens de niveau font varier la pesanteur terrestre des eaux correspondantes; et cette seconde cause, la plus difficile et la plus incertaine à calculer, agit évidemment dans le même sens que la première, quoique avec moins d'énergie, pour l'établissement définitif du niveau général.
On voit ainsi comment l'action d'un astre quelconque sur l'Océan, qui ne pourrait nullement altérer sa surface naturelle, si elle avait partout la même intensité, tend nécessairement, à raison de son inégale énergie sur les divers lieux, à la modifier un peu, en lui faisant prendre la forme d'un sphéroïde allongé vers l'astre. Sous ce rapport fondamental, la question est parfaitement semblable à celle considérée ci-dessus de la figure mathématique de la terre, la force centrifuge étant ici remplacée par la différence entre la gravitation du centre de notre globe et celle de sa surface vers l'astre proposé. La recherche est seulement encore plus compliquée, puisqu'il faut évidemment y tenir compte aussi de l'ellipticité naturelle du globe. Mais l'esprit et la marche générale de la solution mathématique doivent être essentiellement identiques dans les deux cas. C'est ainsi que Newton a pu d'abord calculer aisément la partie principale du phénomène, en supposant, sans la démontrer, une figure ellipsoïdique, comme il l'avait déjà fait pour l'autre question, et se bornant à comparer immédiatement, dans l'hypothèse de l'homogénéité, les deux axes de l'ellipse. De même encore, le théorème de Maclaurin est aussi devenu plus tard, pour Daniel Bernouilli, la base naturelle d'une exacte théorie des marées.
Jusque là, toutefois, il n'y a point de marées proprement dites, c'est-à-dire ces élévations et dépressions alternatives et périodiques, qui en font le caractère le plus saillant. Le phénomène semble consister en un simple renflement fixe de la partie de l'Océan située sous l'astre considéré. Mais, quoiqu'un tel effet paraisse différer beaucoup d'une véritable marée, il n'en constitue pas moins la principale base mathématique de cette grande question. Il est maintenant très facile de concevoir la périodicité fondamentale du phénomène en introduisant la considération du mouvement diurne, jusque alors écartée. Si ce mouvement n'avait pas lieu, ou si seulement il s'exécutait autour de la droite qui joint l'astre au centre de la terre, toutes les parties de l'Océan conservant sans cesse la même situation envers cet astre, la surface de la mer resterait invariable, après avoir pris, dès l'origine, la forme convenable à son équilibre. Mais, en réalité, la rotation quotidienne de notre globe transporte successivement les eaux qui le recouvrent dans toutes les positions où l'astre tend à les élever et dans celles où il doit les abaisser. C'est ainsi que la marche journalière du phénomène se compose nécessairement de quatre alternatives périodiques à peu près également réparties: les deux plus grandes élévations correspondent aux deux passages de l'astre par le méridien du lieu, et les moindres niveaux à son lever et à son coucher; la période totale étant d'ailleurs exactement fixée par la combinaison de la rotation terrestre avec le mouvement propre de l'astre en un jour.
Un dernier élément indispensable nous reste à indiquer, pour avoir établi toutes les bases de la notion abstraite des marées; c'est la règle générale d'après laquelle on peut apprécier à cet égard l'énergie des différens astres, dont aucun ne semble mathématiquement devoir être négligé. Cette énergie est évidemment mesurée par la différence entre la gravitation du centre de notre globe et celle des points extrêmes de sa surface vers l'astre proposé. En exécutant, d'après la loi fondamentale de la gravitation, cette différentiation très facile, on trouve aussitôt que la puissance de chaque astre pour produire nos marées est en raison directe de sa masse et en raison inverse du cube de sa distance à la terre. Il résulte de cette règle essentielle la précieuse faculté de déterminer rationnellement, parmi tous les astres de notre monde, quels sont ceux qui peuvent concourir sensiblement au phénomène, et de mesurer à chacun d'eux sa part d'influence. On reconnaît ainsi que le soleil, en vertu de sa masse immense, et la lune, par son extrême proximité, doivent seuls produire des marées appréciables; tous les autres corps célestes sont ou trop éloignés ou de trop peu de poids pour qu'il en résulte aucun effet perceptible. Enfin, l'action de la lune est de deux fois et demi à trois fois plus grande que celle du soleil. Ainsi, lors même que les deux astres agissent en sens opposé, c'est sur la lune que doit se régler constamment la marche générale du phénomène; ce qui explique parfaitement l'observation fondamentale de Descartes, quant à la continuelle coïncidence de la période des marées avec le jour lunaire.
Toutes les considérations mathématiques précédemment indiquées ne s'appliquent directement qu'à la marée simple et abstraite, produite par un astre unique. Mais la nécessité d'envisager simultanément les actions de deux astres différens rendrait la solution analytiquement inextricable, si Daniel Bernouilli ne l'eût radicalement simplifiée, en y appliquant son célèbre principe dynamique sur la coexistence des petites oscillations, que j'ai exposé à la fin du premier volume de ce cours. Suivant ce principe, les marées lunaire et solaire se superposent sans altération, ce qui réduit aussitôt le problème à l'analyse partielle de chacune d'elles. Toutes les grandes variations régulières du phénomène s'expliquent dès lors avec une admirable facilité. Considérons seulement les plus importantes et les plus simples, celles qui correspondent aux diverses phases mensuelles de la lune. Aux deux syzygies, l'action solaire et l'action lunaire coïncident exactement; donc la marée effective doit alors atteindre son maximum, égal à la somme des deux marées élémentaires. Dans les deux quadratures, au contraire, le moindre niveau produit par l'un des astres accompagne nécessairement le plus haut niveau correspondant à l'autre; en sorte que l'on doit alors observer le minimum d'effet, égal à la différence des marées simples. Aux diverses époques intermédiaires, la marée solaire modifie toujours inégalement la marée lunaire, et ces variations se reproduisent par périodes d'un mois lunaire synodique, dont elles doivent suivre les irrégularités séculaires. La comparaison des deux cas extrêmes, si les observations permettaient de l'établir avec assez d'exactitude, conduirait même évidemment à estimer à posteriori le vrai rapport entre l'action de la lune et celle du soleil. Or, ce rapport dépendant des distances et des masses relatives des deux astres, suivant la règle exposée ci-dessus, on en pourrait déduire la raison de leurs masses, celle de leurs distances étant déjà bien connue. Cette considération, quoique ne devant pas être exclusivement employée, peut utilement concourir avec d'autres moyens pour déterminer la masse de la lune.
Suivant la mesure fondamentale de chaque marée simple, cette classe de phénomènes doit éprouver un nouvel ordre de modifications régulières et périodiques, en vertu des changemens naturels qu'éprouve, pendant le cours de l'année ou du mois, la distance de la terre au soleil ou à la lune. Cette influence est ici proportionnellement plus sensible que dans beaucoup d'autres phénomènes, puisqu'elle y dépend du cube de la distance. Elle doit affecter particulièrement l'action lunaire, non-seulement comme étant la plus forte, mais encore en vertu de l'excentricité bien supérieure de l'orbite lunaire. Enfin, les deux variations peuvent se combiner de diverses manières, tantôt convergentes, tantôt divergentes; et elles doivent aussi modifier très diversement les inégalités principales, dues aux phases de la lune.
Dans tout ce qui précède, le mouvement diurne de l'astre proposé est censé avoir exactement lieu suivant le plan de l'équateur. Mais, à une époque quelconque, son action doit évidemment être décomposée en deux; l'une, selon l'axe de rotation de la terre, et qui est nulle pour produire une marée; l'autre, parallèlement à l'équateur, et qui, seule, détermine le phénomène. Voilà donc, à cet égard, un dernier genre de modifications générales, indépendantes de la distance, et uniquement dues à la direction: en sorte que, toutes choses d'ailleurs égales, chaque marée élémentaire doit varier proportionnellement au cosinus de la déclinaison de l'astre correspondant. Telle est la raison simple de la différence notable, si généralement remarquée, quant à l'ensemble des marées, entre le mois lunaire équinoxial et le mois lunaire solsticial, surtout en considérant, pour notre hémisphère, le solstice d'été, où l'affaiblissement déterminé par la distance du soleil concourt avec celui qui résulte de sa direction.
Quant aux variations du phénomène dans nos divers climats, la théorie ne peut apprécier jusqu'ici d'autre influence régulière que celle de la latitude. Aux deux pôles, il ne saurait exister évidemment que de faibles marées indirectes dues à la nécessité d'y prendre ou d'y envoyer les eaux qui s'élèvent ou s'abaissent ailleurs; car, là, il n'y a plus, à proprement parler, de mouvement diurne. À l'équateur, au contraire, le phénomène doit se manifester au plus haut degré possible, non-seulement à cause de la diminution de la pesanteur, mais surtout en vertu de la diversité plus complète des positions successives occupées par les eaux pendant la rotation journalière. En tout autre lieu, l'intensité de la marée doit varier proportionnellement à l'énergie de cette rotation, et, par conséquent, en raison du cosinus de la latitude.
Tel est, en aperçu, l'esprit général de la grande théorie mathématique des marées, envisagée sous ses divers aspects réguliers. Toutes ses différentes parties, abstraction faite des évaluations numériques, sont dans une admirable harmonie avec l'ensemble des observations directes. On a même lieu d'être surpris, quant aux nombres, de ne pas les trouver plus différens de la réalité, convenablement explorée, lorsqu'on pense aux hypothèses que les géomètres ont dû faire pour rendre les calculs exécutables, et aux données nécessairement inaccessibles qu'exigerait une estimation parfaitement rationnelle. Il ne suffirait point, en effet, de connaître exactement l'étendue et la forme du lit de l'Océan. La question dépend encore évidemment d'une notion bien plus inabordable, la vraie loi de la densité dans l'intérieur de la terre, comme à l'égard de la figure des astres. Il y a même ici une circonstance nouvelle, suivant la judicieuse remarque de Daniel Bernouilli; car il faudrait connaître aussi quel est l'état, fluide ou solide, des couches internes, pour savoir si elles participent ou non au phénomène, et si, par conséquent, elles modifient l'effet produit à la surface. L'ensemble de ces considérations peut faire apprécier la profondeur du conseil général donné par Daniel Bernouilli, qui possédait à un degré si éminent le véritable esprit mathématique, consistant surtout dans la relation du concret à l'abstrait, comme je me suis efforcé de le faire sentir en traitant de la philosophie mathématique. Il recommande prudemment aux géomètres, à cet égard, ainsi que Clairaut, «de ne point trop presser les conséquences des formules, de peur d'en tirer des conclusions contraires à la vérité.» Laplace, en détaillant davantage la théorie de son illustre prédécesseur, n'a peut-être pas toujours fait assez d'attention à cette sage maxime philosophique.
Quant à la comparaison générale et exacte de la théorie mathématique des marées avec leur observation effective, on doit reconnaître, ce me semble, qu'elle n'a point encore été convenablement faite, puisque toutes les mesures ont été prises dans des ports, ou du moins très près des côtes. Or, dans de telles localités, on ne peut apercevoir essentiellement que des marées indirectes, qui ne doivent représenter que fort imparfaitement les marées régulières dont elles émanent, leur intensité étant principalement déterminée le plus souvent par l'étendue et la configuration du sol, tant au fond qu'à la surface, et pouvant même être influencée par sa structure. C'est à de telles circonstances, qu'aucune théorie mathématique ne saurait évidemment considérer, qu'il faut sans doute attribuer ces énormes différences que présente en quelques lieux la hauteur des marées, aux mêmes époques, et dans des positions presque identiques; comme, par exemple, les marées comparatives de Granville et Dieppe, ou de Bristol et Liverpool. Afin d'apprécier empiriquement l'exactitude numérique de la théorie des marées, il serait indispensable d'entreprendre, pendant un nombre d'années assez grand pour que les diverses variations régulièrement prévues fussent plusieurs fois reproduites, une suite continue d'observations précises, dans une île très petite, située à l'équateur, et à trente degrés au moins de tout continent. Tel est le seul contrôle réellement susceptible de contribuer essentiellement à vérifier et surtout à perfectionner la théorie générale des marées mathématiques.
Quelque incertitude inévitable que présentent plusieurs données de cette grande théorie, surtout dans son application à nos ports, elle n'en reçoit pas moins, de notre expérience journalière, la sanction la plus décisive et la plus utile, puisqu'elle atteint le but définitif de toute science réelle, une exacte prévision des événemens, propre à régler notre conduite. Les principales circonstances locales devant avoir, à l'exception des vents, une influence essentiellement constante, il a été possible de modifier heureusement, d'après l'observation, pour chaque port, les deux coefficiens fondamentaux, relatifs à la hauteur moyenne des marées, et à l'heure de leur entier établissement; ce qui a permis de rendre toutes les déterminations mathématiques suffisamment conformes à la réalité. C'est ainsi que, depuis un siècle, une classe importante de phénomènes naturels, généralement regardés jusque alors comme inexplicables, a été ramenée avec précision à des lois invariables, qui en excluent irrévocablement toute intervention providentielle et toute conception arbitraire.
Tels sont les caractères philosophiques des trois hautes questions dont se compose la mécanique céleste, envisagée sous le point de vue statique. Il nous reste maintenant à entreprendre, dans la leçon suivante, le même examen général à l'égard des phénomènes vraiment dynamiques que présente notre monde, et dont l'étude a été précédemment ébauchée par la géométrie céleste, résumée dans les trois grandes lois de Képler, qui éprouvent en réalité des modifications indispensables à connaître pour l'exacte prévision de l'état du ciel à une époque quelconque.