EXPÉRIENCES RELATIVES AU TÉLÉPHONE.
Depuis les expériences de M. Bell rapportées dans la première partie de ce travail, bien des essais ont été entrepris par divers savants et divers inventeurs pour étudier les effets produits dans ce curieux instrument, en bien préciser la théorie et en déduire des perfectionnements pour sa construction. Nous allons passer successivement en revue ces différentes recherches.
Expériences sur les effets produits par les courants voltaïques et les courants induits.—L'une des premières et des plus importantes a été l'étude comparative des effets produits dans le téléphone par les courants voltaïques et les courants induits. Dès l'année 1873, M. Elisha Gray avait, comme on l'a vu, transformé les courants voltaïques qu'il employait pour faire vibrer les lames de son transmetteur, en courants induits, par l'intermédiaire d'une bobine d'induction analogue à celle de Ruhmkorff. Les courants voltaïques traversaient alors l'hélice primaire de la bobine, et c'étaient les courants induits qui réagissaient sur l'appareil récepteur en déterminant sur les systèmes électro-magnétiques qui le composaient les vibrations provoquées au poste de transmission. Quand M. Edison combina son système de téléphone à pile, il eut recours au même moyen pour actionner son téléphone récepteur, parce qu'il avait reconnu lui-même que les courants induits étaient plus avantageux que les courants voltaïques. Mais cette particularité du dispositif de M. Edison n'avait pas été bien comprise d'après les descriptions parvenues en Europe; de sorte que plusieurs personnes ont cru avoir imaginé cette disposition avantageuse, et parmi elles nous citerons le colonel Navez et MM. Pollard et Garnier.
Le colonel Navez, dans une note intéressante sur un système nouveau de téléphone présenté à l'Académie royale de Belgique le 2 février 1878, ne fait qu'indiquer cette disposition comme moyen de reproduire la parole à de longues distances; mais il ne cite aucune expérience qui montre nettement les avantages de cette combinaison. MM. Pollard et Garnier vingt jours après M. Navez, et sans avoir eu connaissance du travail de ce dernier, m'ont envoyé les résultats qu'ils avaient obtenus par un moyen semblable, et ces résultats m'ont paru si intéressants que j'en ai fait l'objet d'une communication à l'Académie des sciences, le 25 février 1878. Pour qu'on puisse être bien fixé sur l'importance de ces résultats, je vais rapporter textuellement ce qu'en dit M. Pollard dans la lettre qu'il m'a écrite le 20 février 1878.
«Dans le but d'accroître les variations de l'intensité électrique dans le système d'Edison, nous faisons passer le courant dans le circuit inducteur d'une petite bobine de Ruhmkorff, et nous adaptons le téléphone récepteur aux extrémités du fil induit. Le courant reçu a alors pour intensité la dérivée de celle du courant inducteur, et par suite, les variations produites dans le courant actionnant le téléphone ont beaucoup plus d'amplitude. L'intensité des sons transmis est fortement augmentée, et la valeur de cette augmentation dépend du rapport entre les nombres des tours de spires des circuits inducteurs et induits. Les essais que nous faisons pour déterminer les meilleures proportions sont pénibles, puisqu'il faut faire autant de bobines que d'expériences; jusqu'ici nous avons obtenu d'excellents résultats avec une petite bobine de Ruhmkorff réduite à sa plus simple expression, c'est-à-dire sans condensateur ni interrupteur. Le fil inducteur est du no 16 et forme 5 couches; le fil induit est du no 32 et forme 20 couches. La longueur de la bobine est de 10 centimètres.
«L'expérience la plus remarquable et la plus saisissante est la suivante: en faisant fonctionner le transmetteur avec un seul élément Daniell, on n'obtient rien d'appréciable à la réception, du moins dans le téléphone que j'ai construit, quand il est adapté directement au circuit. En intercalant la petite bobine d'induction, on perçoit alors les sons avec une grande netteté et une intensité égale à celle des bons téléphones ordinaires. L'amplification est alors considérable et très nettement accusée. Comme le courant de pile est alors peu intense, les pointes de plombagine ne s'usent pas, et le réglage persiste longtemps. En employant une pile plus énergique, six éléments au bichromate de potasse (en tension) ou douze éléments Leclanché, on obtient, par l'action directe, une intensité suffisante pour percevoir les sons un peu plus faiblement qu'avec les téléphones ordinaires; mais en intercalant la bobine d'induction, on a alors des sons bien plus intenses et qui peuvent être entendus à 50 ou 60 centimètres de l'embouchure. Des chants peuvent, dans ces mêmes circonstances, être entendus à plusieurs mètres; mais le rapport d'amplification ne paraît pas jusqu'ici être aussi grand que pour le cas d'un seul élément Daniell.»
D'un autre côté, on voit dans les Mondes du 7 mars 1878, la description d'une série d'expériences faites par M. Luvini, professeur de physique à l'académie militaire de Turin qui montrent que l'introduction d'électro-aimants dans le circuit réunissant deux téléphones augmente assez sensiblement l'intensité du son. En en plaçant un près du téléphone transmetteur, l'autre près du téléphone récepteur, on obtient le maximum d'effet, et l'introduction d'un plus grand nombre de ces organes ne produit rien d'utile. Le fil inducteur d'une bobine de Ruhmkorff introduit dans le circuit dont il vient d'être question, n'a provoqué aucun effet d'induction sensible dans le circuit induit, et par conséquent n'a pu faire fonctionner le téléphone correspondant à ce circuit. En revanche, le courant d'une machine de Clarke détermine des sons prononcés qui ressemblent assez à des coups de caisse et sont assourdissants quand l'oreille est appliquée contre l'instrument; mais ils deviennent très-faibles à un mètre de distance. Les courants d'une machine de Ruhmkorff donnent des effets encore plus énergiques: le son remplit toute une chambre. En modifiant la position du marteau de la bobine, le son passe par des tons différents qui sont toujours à l'unisson des interruptions du courant, du moins jusqu'à une certaine hauteur de ton.
Cette propriété des courants induits de la bobine de Ruhmkorff a permis à M. Gaiffe d'obtenir, par leur intermédiaire, un moyen très-facile de réglage pour les téléphones afin de les placer dans leurs conditions de maximum de sensibilité. Il met pour cela à contribution un de ses appareils d'induction à hélices mobiles et à intensités graduées dans le circuit duquel il interpose le téléphone à régler. Les sons résultant du vibrateur se trouvent alors répercutés par le téléphone, et s'entendant à distance de l'instrument, on peut au moyen d'un tournevis, réagir sur la vis à laquelle est fixée l'extrémité libre du barreau aimanté de l'appareil. En la serrant ou en la desserrant, on rapproche ou on éloigne l'autre extrémité de ce barreau de la lame vibrante du téléphone, et on répète ces essais jusqu'à ce qu'on soit arrivé à obtenir le maximum de l'intensité du son.
D'un autre côté, comme les sons rendus par les deux téléphones en correspondance sont d'autant plus intenses que les vibrations produites par eux se rapprochent plus de l'unisson, il est nécessaire de les choisir de manière à émettre les mêmes sons pour une même note donnée, et le moyen indiqué précédemment peut être très-avantageusement employé; car il suffit de noter ceux de ces appareils qui, pour un même réglage de la machine d'induction, donnent la même note dans les conditions de maximum de sensibilité. Un bon accouplement des deux téléphones en correspondance est non-seulement très-important au point de vue de la netteté des transmissions, mais il doit être encore considéré par rapport à la hauteur de la voix de ceux qui sont destinés à en faire usage. Plus cette hauteur est en rapport avec celle des sons produits par les appareils, mieux les sons sont perçus; c'est pourquoi il est des téléphones qui résonnent beaucoup mieux avec la voix des enfants et des femmes qu'avec la voix des hommes, tandis que l'inverse a lieu pour d'autres.
Les vibrations des téléphones sont très-différentes d'un appareil à l'autre, et les moyens que nous venons d'indiquer permettent facilement de s'en rendre compte.
Si on place dans le circuit induit d'une bobine d'induction reliée à un téléphone, un condensateur de grande surface et que l'on éloigne assez le contact de plombagine de la lame vibrante pour ne la toucher que momentanément à chaque vibration, on ne reçoit plus naturellement les articulations des sons, mais seulement les notes d'un air que l'on chante devant la plaque du transmetteur; seulement le courant inducteur ayant des interruptions brusques, engendre des courants induits très-intenses, et suivant MM. Pollard et Garnier, on entend dans tout un appartement l'air chanté, mais avec un timbre particulier qui dépend de la construction du téléphone et du condensateur.
Les avantages des courants induits dans les transmissions téléphoniques se comprennent aisément, si l'on réfléchit que les variations de résistance du circuit qui résultent de la plus ou moins grande amplitude des vibrations de la lame transmettrice étant des valeurs constantes, ne peuvent manifester distinctement leurs effets que sur des circuits courts; par conséquent les articulations des sons qui en résultent, doivent ne plus être très-appréciables sur des circuits très-résistants. Toutefois, si on considère que d'après les expériences de M. Warren de la Rue (voir le Telegraphic journal du 1er mars 1878, p. 97), les courants produits par les vibrations de la voix dans un téléphone ordinaire, représentent en intensité ceux d'un élément Daniell traversant 100 megohms de résistance (soit 10 000 000 de kilomètres de fil télégraphique), on peut comprendre qu'il y a autre chose à considérer dans les effets avantageux des courants induits que la simple question d'intensité plus ou moins grande des courants agissant sur le téléphone récepteur. Avec une pile énergique, il est évident, en effet, que les courants différentiels qui agiront seront toujours plus intenses que les courants induits déterminés par le jeu de l'instrument. Je ne serais pas, quant à moi, éloigné de croire que c'est surtout à leurs inversions successives et à leur faible durée, que les courants induits doivent les avantages qu'ils présentent. Ces courants en effet dont la durée ne dépasse guère, suivant M. Blaserna, 1/200 de seconde, se prêtent beaucoup mieux que les courants voltaïques aux vibrations multipliées qui sont le propre des vibrations phonétiques, et cela d'autant mieux que les inversions successives qui se produisent, déchargent la ligne, renversent les effets magnétiques et contribuent à rendre les actions plus nettes et plus promptes. On ne doit donc pas s'étonner si les courants induits de la bobine d'induction, qui peuvent se produire dans des conditions excellentes au poste de transmission, puisque le circuit du courant voltaïque est alors très-court, soient capables de fournir des résultats non-seulement plus avantageux que les courants voltaïques qui leur donnent naissance, mais même que les courants induits résultant du jeu des téléphones Bell, puisqu'ils sont infiniment plus énergiques.
Quant aux effets relativement considérables produits par les courants si minimes des téléphones Bell, ils s'expliquent facilement par cette considération que, prenant naissance sous l'influence même des vibrations de la lame téléphonique, leurs variations d'intensité conservent toujours le même rapport, quelle que soit la résistance du circuit, et ne sont pas, en conséquence, effacées par la distance séparant les deux téléphones.
Expériences sur le rôle des différents organes d'un téléphone dans la transmission de la parole.—Pour pouvoir apporter au téléphone tous les perfectionnements dont il est susceptible, le point important était d'être bien fixé sur la nature des effets déterminés dans les différentes parties qui le composent et sur le rôle joué par les différents organes qui s'y trouvent mis en jeu. C'est pour être fixé à cet égard qu'un certain nombre de savants et de constructeurs ont entrepris une série d'expériences qui ont fourni de très-intéressantes indications.
L'un des points les plus intéressants à élucider était celui de savoir si la lame vibrante dont MM. Bell et Gray ont muni leur récepteur téléphonique, détermine à elle seule les vibrations complexes qui reproduisent la parole, ou bien si les différentes parties du système électro-magnétique de l'appareil concourent toutes à cet effet. Les expériences faites dès l'année 1837 par M. Page sur les sons produits par les tiges électro-magnétiques résonnantes, et les recherches entreprises en 1846 par MM. de la Rive, Wertheim, Matteucci, etc. sur ce phénomène curieux, permettaient certainement de poser la question, et nous verrons à l'instant qu'elle est beaucoup plus complexe qu'on ne pourrait le croire à première vue.
Pour avoir un point de départ fixe, il fallait avant tout reconnaître si un téléphone dépourvu de lame vibrante peut reproduire la parole. Les expériences faites dès le mois de novembre 1877 par M. Edison[16] avec des téléphones munis d'un diaphragme en cuivre, téléphones qui avaient pu cependant fournir des sons, pouvaient le faire croire, et ces expériences confirmées par M. Preece et surtout par M. Blyth, donnaient plus de poids à cette hypothèse; mais, quand M. Spottiswoode eut assuré, (voir le Telegraphic-Journal du 1er mars 1878, p. 95) que l'on pouvait supprimer entièrement la lame vibrante d'un téléphone sans empêcher la transmission de la parole, pourvu que l'extrémité polaire de l'aimant fût placée très-près de l'oreille, le doute ne fut plus permis, et c'est alors que je présentai à l'Académie des sciences ma note sur la théorie du téléphone qui provoqua bientôt de la part de MM. Navez et Luvini une discussion intéressante dont je parlerai à l'instant. On voulut d'abord nier l'authenticité de ces résultats, puis on chercha à expliquer les sons entendus par M. Spottiswoode par une transmission mécanique des vibrations effectuée de la même manière que dans les téléphones à ficelle; mais de nombreuses expériences entreprises depuis par MM. Warwich, Rossetti, Hughes et beaucoup d'autres ont montré qu'il n'en était pas ainsi, et qu'un téléphone sans diaphragme pouvait transmettre électriquement la parole.
M. Navez lui-même qui, dans l'origine, avait nié le fait, convient aujourd'hui qu'un téléphone sans diaphragme peut émettre des sons, et, même dans certaines conditions exceptionnelles de phonation et d'audition téléphonique, reproduire la voix humaine; mais il croit toujours que l'on ne peut reconnaître s'il y a ou non articulation des mots.
Cette incertitude dans les résultats obtenus par les différents physiciens qui se sont occupés de cette question prouve, toutefois, que les sons ainsi reproduits ne sont pas très-accentués et que, dans des phénomènes physiques appréciables seulement à nos sens, la constatation d'un effet peu accentué dépend surtout de la perfection de nos organes. Nous verrons à l'instant comment cet effet si faible peut se développer dans de grandes proportions par suite de la disposition adoptée par MM. Bell et Gray.
Un second point était encore à éclaircir. Il s'agissait de savoir si le diaphragme d'un téléphone vibre réellement, ou du moins si ses vibrations peuvent entraîner son déplacement, comme cela a lieu dans un trembleur électrique ou un instrument à anches que l'on fait vibrer par un courant d'air. M. Antoine Bréguet a fait à cet égard des expériences intéressantes qui ont montré que ce mouvement n'était pas admissible, car il a pu faire parler très-distinctement des téléphones avec des lames vibrantes de toutes les épaisseurs, et il a poussé les expériences jusqu'à employer des lames de 15 centimètres d'épaisseur. La superposition sur ces lames épaisses de morceaux de bois, de caoutchouc et en général de substances quelconques n'empêchait pas l'effet de se produire. Or on ne peut admettre dans ce cas que les lames puissent être animées d'un mouvement de va-et-vient. J'ai d'ailleurs constaté en superposant une couche d'eau ou de mercure sur ces lames et même sur des diaphragmes minces, qu'aucun mouvement sensible ne les animait, du moins en n'employant, comme source électrique, que les courants induits déterminés par l'action de la parole. Aucunes rides ne se distinguaient à la surface de la couche liquide, même quand pour les apercevoir on employait des appareils à réflexion lumineuse. Comment d'ailleurs pourrait-on admettre qu'un courant qui n'est pas plus intense que celui d'un élément de Daniell ayant traversé dix millions de kilomètres de fil télégraphique, courant qui ne peut fournir de déviation que sur un galvanomètre Thomson, et encore en admettant que le courant a été provoqué en appuyant le doigt sur le diaphragme, ait une énergie suffisante pour faire vibrer mécaniquement par attraction une lame de fer aussi tendue que l'est celle d'un téléphone!!!
Il résulte toutefois d'expériences photographiques très-précises, que des vibrations sont produites par le diaphragme d'un téléphone récepteur; elles sont infiniment petites, si l'on veut, mais elles sont, suivant M. Blake, suffisantes pour qu'un index très-léger, porté par ce diaphragme, puisse fournir quelques petites inflexions sur une ligne décrite par lui sur un enregistreur. Toutefois, de ce qu'un petit mouvement de vibration existe sur ce diaphragme, il ne s'ensuit pas qu'il doive être rapporté à un effet d'attraction, car il peut résulter d'une vibration déterminée par l'action même de la magnétisation au sein du diaphragme[17].
Voici, du reste, une expérience très-intéressante de M. Hughes, répétée d'ailleurs dans d'autres conditions par M. Millar, qui prouve bien en faveur de notre opinion.
Si l'aimant d'un téléphone récepteur est constitué par deux barreaux aimantés parfaitement égaux, séparés l'un de l'autre par un isolant magnétique, et qu'on les place dans la bobine de manière à présenter en face du diaphragme tantôt des pôles de même nom, tantôt des pôles contraires, on reconnaît que le téléphone reproduit mieux la parole dans ce dernier cas que dans le premier. Or, si les effets étaient attractifs il n'en serait pas ainsi, car les actions sont en discordance quand des pôles de noms contraires sont soumis à une même action électrique, tandis qu'elles sont conspirantes dans un même sens quand ces pôles sont de même nom.
D'un autre côté, on reconnaît que si on emploie plusieurs lames de fer superposées pour constituer le diaphragme d'un téléphone récepteur, la transmission des sons est beaucoup plus forte que quand le diaphragme est simple, et pourtant l'attraction, si tant est qu'elle pût se faire, ne pourrait se produire que sur l'un des diaphragmes.
Une expérience très-intéressante de M. A. Bréguet a montré encore que les différentes parties constituantes d'un téléphone, aussi bien le manche, les bornes de cuivre, la coquille que la plaque et le barreau aimanté, peuvent transmettre les sons; et pour arriver à constater ce résultat, M. Bréguet a employé des téléphones à ficelle dont il attachait le fil en différents points du téléphone expérimenté. Il a pu de cette manière non-seulement établir une correspondance entre une personne faisant agir le téléphone électrique et une autre écoutant dans le téléphone à ficelle, mais encore faire parler plusieurs téléphones à ficelle, reliés en plusieurs points du téléphone électrique.
Ces deux séries d'expériences montrent que des sons peuvent être obtenus des diverses parties d'un téléphone sans mouvements vibratoires très-appréciables; mais M. J. Luvini a voulu s'en assurer d'une manière plus nette encore, en examinant si définitivement l'aimantation d'un corps magnétique suivie de sa désaimantation entraînerait une variation dans la forme et les dimensions de ce corps. Il a en conséquence fait construire un grand électro-aimant tubulaire qu'il remplissait d'une assez grande quantité d'eau pour que, ses deux extrémités étant bouchées, le liquide pût apparaître dans un tube capillaire adapté à l'un des bouchons. De cette manière, les plus petites variations dans la capacité de la partie creuse de l'électro-aimant étaient accusées par une ascension ou une descente de la colonne liquide. Or, en faisant traverser l'électro-aimant par un courant électrique de différente intensité, il n'a jamais observé aucun changement dans le niveau de l'eau dans le tube. Avec cette disposition il pouvait mesurer pourtant un changement de volume de 1/30 de millimètre cube. Donc, il résulte de ces effets, que les vibrations produites dans un corps magnétique sous l'influence d'aimantations et de désaimantations successives, sont tout à fait moléculaires. Nous examinerons à l'instant comment ces différentes déductions peuvent être interprétées pour que l'on puisse comprendre la véritable théorie du téléphone; mais avant d'entamer cette étude nous devrons indiquer encore quelques autres expériences qui ont aussi leur intérêt.
Nous avons vu que MM. Edison, Blyth et Preece avaient fait des expériences qui ont montré que des sons pouvaient être reproduits par un téléphone dont le diaphragme était constitué avec une matière non magnétique, mais ils ont fait voir aussi, chose plus curieuse encore, que ces sons pouvaient être transmis sous l'influence de courants induits provoqués par ces diaphragmes mis en vibration devant l'aimant. Déjà MM. Edison et Blyth avaient avancé ce fait, mais M. B.-W. Warwich, dans un article publié dans l'English-mecanic (voir les Mondes du 2 mai 1878), l'a confirmé malgré l'incrédulité qui avait accueilli cette nouvelle; «Il semblerait, dit-il, que pour agir sur l'aimant de manière à produire des courants induits, quelque chose doit d'abord vibrer d'une manière quelconque et être en possession de plus de force vive qu'un gaz; mais il n'est pas nécessaire que la substance soit magnétique, car les corps diamagnétiques agissent très-bien[18].» M. Preece en avait recherché la cause dans les courants induits développés dans un corps conducteur quelconque quand on fait mouvoir devant lui un aimant, courants qui donnent lieu au phénomène découvert par Arago et connu sous le nom de magnétisme de rotation. Ces faits toutefois ne nous paraissent pas encore assez bien établis pour qu'on puisse s'occuper sérieusement de leur théorie, et il pourrait se faire que les effets observés fussent la conséquence de simples transmissions mécaniques.
S'il faut en croire M. Preece, il paraîtrait qu'on pourrait transmettre avec un téléphone dont on remplacerait l'aimant par un simple noyau de fer doux, et il attribue ce résultat au magnétisme rémanent du fer et à l'action magnétique exercée sur ce barreau par le magnétisme terrestre. M. Blake de Boston a constaté aussi le même phénomène, mais il ne l'observait d'une manière marquée que quand le noyau de fer doux était placé dans une direction inclinée par rapport à la terre.
Suivant M. Navez, l'intensité du son reproduit dans un téléphone dépend, non-seulement de l'amplitude des vibrations, mais aussi de la surface vibrante par suite de l'action qu'elle exerce sur la couche d'air qui doit transmettre les sons. (Voir le mémoire de M. Navez dans le Bulletin de l'Académie de Belgique, du 7 juillet 1878).
Expériences sur les effets résultant de chocs mécaniques communiqués à différentes parties d'un téléphone.—Si dans un téléphone ordinaire on adapte une pièce de fer contre la vis qui tient l'aimant, on reconnaît que les sons transmis sont un peu plus accentués, ce qui tient au renforcement du pôle actif de l'aimant; mais on entend au moment où l'on applique la pièce de fer contre la vis, un bruit assez prononcé qui semble être dû aux vibrations mécaniques déterminées dans le barreau au moment du choc. M. le lieutenant de vaisseau des Portes a fait dernièrement sur ce genre de phénomènes des expériences intéressantes. Ainsi il a reconnu que, si sur un circuit téléphonique de 100 mètres complété par le sol, le téléphone transmetteur est réduit au simple aimant muni de sa bobine qui constitue son organe électro-magnétique, et que cet aimant soit suspendu verticalement par un fil de soie, la bobine en haut, un coup frappé sur cet aimant, soit au moyen d'un morceau de bois, soit au moyen d'une tige de cuivre, pourra déterminer dans le téléphone récepteur, des sons distincts qui augmenteront d'autant plus d'intensité que le coup sera frappé plus près de la bobine, et qui deviendront plus forts encore, mais moins nets, quand on mettra en contact avec le pôle supérieur de l'aimant une lame vibrante de fer doux.
Quand le corps avec lequel on frappe est en fer, les sons dont il vient d'être question sont plus accentués qu'avec le morceau de bois, et quand l'aimant est muni de sa lame vibrante appliquée sur son pôle actif, on saisit en même temps que le bruit du choc une vibration de la plaque.
Si le corps percuteur est un aimant, les bruits produits sont semblables à ceux que l'on obtient avec un percuteur en fer, quand l'effet est produit entre pôles de même nom, mais si ce sont des pôles de noms contraires, on entend après chaque coup un second bruit produit par l'arrachement de l'aimant et qui paraît être un coup frappé beaucoup moins fort. Naturellement ces bruits augmentent si l'aimant est muni de sa lame vibrante.
Si on parle sur la plaque vibrante du téléphone transmetteur quand elle est appliquée sur le pôle de l'aimant, on entend sur le téléphone récepteur des sons variés assez semblables à ceux produits par les vibrations d'une corde à violon, et le bruit que fait la plaque quand on la retire du contact de l'aimant est parfaitement entendu au récepteur.
Quand on parle au récepteur, la personne qui a l'oreille appliquée sur la plaque vibrante du transmetteur, disposé comme ci-dessus, entend très-bien, mais ne distingue pas les paroles, ce qui tient sans doute au magnétisme condensé au point de contact de l'aimant et de la lame vibrante, et qui rend les variations magnétiques plus lentes et plus difficiles à s'effectuer.
Pour percevoir les coups frappés sur l'aimant avec une tige de fer doux, la présence de la bobine n'est pas nécessaire. En enroulant trois tours seulement du fil conducteur dénudé, servant de fil de ligne, sur une extrémité de l'aimant, on peut percevoir les sons, et ces sons cessent, comme dans les autres expériences, quand le circuit est interrompu, ce qui montre bien qu'on ne peut les attribuer à une transmission mécanique. Mais ce qui est le plus curieux, c'est que si l'aimant est interposé dans le circuit de manière à en faire partie intégrante, et que les deux extrémités du fil conducteur soient enroulées autour des bouts de l'aimant, les coups frappés sur celui-ci avec le fer doux, sont perçus dans le téléphone aussitôt que l'un des pôles de l'aimant est muni de la plaque vibrante.
J'ai répété moi-même les expériences de M. des Portes en frappant simplement sur la vis qui, dans les téléphones ordinaires fixe l'aimant à l'appareil, et j'ai constaté que, toutes les fois que le circuit était complet, les coups frappés avec un couteau d'ivoire étaient répétés par le téléphone; ils étaient très-faibles, il est vrai, quand la lame vibrante était enlevée, mais très-marqués avec l'addition de cette lame. Au contraire, toutes les fois que le circuit était interrompu, aucun bruit n'était perçu. Ces bruits étaient du reste plus forts quand les coups étaient frappés sur la vis que quand ils étaient frappés sur le pôle même de l'aimant au-dessus de la bobine, ce qui tenait à ce que, dans le premier cas, le barreau pouvait vibrer librement, tandis que dans le second, les vibrations se trouvaient étouffées par suite de la fixation du barreau.
On pourrait, jusqu'à un certain point, expliquer ces effets en disant que les vibrations déterminées sur l'aimant par le choc, ont pour résultat de déterminer des déplacements ondulatoires des particules magnétiques dans toute l'étendue du barreau, et que de ces déplacements doivent résulter, dans l'hélice, d'après la loi de Lenz, des courants induits dont la force augmente quand la puissance de l'aimant est surexcitée par la réaction de son diaphragme, lequel joue le rôle d'armature, et par celle du corps percuteur quand il est magnétique. Toutefois, les dernières expériences de M. des Portes sont plus difficiles à expliquer, et il pourrait bien y avoir autre chose que des courants induits ordinaires.
Ces expériences ne sont pas les seules qui montrent les effets déterminés sous l'influence d'ébranlements moléculaires de diverses natures.—Ainsi, M. Thomson de Bristol a reconnu que si on introduit dans le circuit d'un téléphone ordinaire, une pièce de fer et une tige de laiton placée perpendiculairement sur le fer, il suffira de donner un coup sur la tige de laiton pour déterminer un son énergique dans le téléphone. D'un autre côté, il a montré aussi que si on entoure les deux extrémités polaires d'un aimant droit de deux bobines d'induction, mises en rapport avec le circuit d'un téléphone, et qu'on promène au-dessous de l'aimant, dans l'intervalle séparant les deux bobines, la flamme d'une lampe à alcool, on entend un bruit très-marqué aussitôt que la flamme exerce son action sur le barreau aimanté. Cet effet provient sans doute de l'affaiblissement du magnétisme du barreau déterminé par l'effet calorifique alors produit. Enfin j'ai reconnu moi-même que des grattements effectués sur l'un des fils qui réunissent deux téléphones entre eux, sont perçus dans ces téléphones, quel que soit d'ailleurs le point du circuit où ces grattements sont produits. Les sons ainsi provoqués sont, à la vérité, très-faibles, mais ils se distinguent nettement, et acquièrent une plus grande intensité quand le grattement est effectué sur les bornes d'attache des fils des téléphones. Tous ces sons, d'ailleurs, ne peuvent pas être la conséquence d'une transmission mécanique de vibrations, car quand le circuit est interrompu, on ne peut en percevoir aucun. D'après ces expériences, on pourrait croire que certains bruits que l'on constate dans les téléphones expérimentés sur les lignes télégraphiques, pourraient bien provenir des frictions des fils sur les supports, frictions qui donnent lieu à ces sons souvent très-intenses que l'on entend quelquefois sur certaines lignes télégraphiques.
Théorie du téléphone.—Il semblerait résulter des diverses expériences que nous avons rapportées précédemment, que l'explication qu'on donne généralement des effets produits dans le téléphone, serait très-incomplète, et que la transmission de la parole, au lieu de résulter de la répétition par la membrane du téléphone récepteur (sous l'influence des effets électro-magnétiques produits) des vibrations déterminées par la voix sur la membrane du téléphone transmetteur, devrait provenir des vibrations moléculaires déterminées dans le système électro-magnétique tout entier et particulièrement sur le noyau magnétique enveloppé par l'hélice. Ces vibrations seraient dès lors de la même nature que celles qui ont été étudiées dans les tiges électro-magnétiques résonnantes par MM. Page, de la Rive, Wertheim, Matteucci, etc., et ce sont elles qui ont été mises à contribution dans les téléphones de Reiss, de Cécil et Léonard Wray, et de Vander-Weyde. Dans cette hypothèse, la lame vibrante aurait pour principal rôle à remplir, de réagir pour la production des courants induits quand elle serait mise en vibration par la voix, et de renforcer par sa réaction sur l'extrémité polaire du barreau aimanté, les effets magnétiques déterminés au sein de celui-ci, quand elle vibrerait sous l'influence électro-magnétique, ou du moins, quand elle serait actionnée par l'aimant. Or comme ces vibrations sont d'autant plus amplifiées pour une même note, que la lame est plus flexible, et comme, d'un autre côté, les variations dans l'état magnétique d'une lame s'effectuent d'autant plus rapidement qu'elle présente moins de masse, on comprend immédiatement pourquoi il convient d'employer des lames vibrantes très-minces et relativement petites, comme l'a fait M. Edison. Dans le cas de la transmission, la plus grande amplitude des vibrations augmente l'intensité des courants induits transmis. Dans le cas de la réception, les variations d'aimantation déterminant les sons, sont rendues plus accentuées et plus nettes, aussi bien dans la membrane armature que dans le barreau aimanté; il y a donc avantage dans les deux cas. Cette hypothèse n'exclut d'ailleurs en rien l'effet phonétique des vibrations mécaniques et physiques qui pourraient se produire dans la lame armature sous l'influence des magnétisations et démagnétisations qu'elle subit, et qui viendraient ajouter leur action à celle des noyaux magnétiques.
Quelle est la nature des vibrations transmises dans le téléphone récepteur? C'est une question encore obscure, et ceux qui s'en sont occupés sont loin d'être d'accord; elle a même été l'objet d'une discussion intéressante en 1846 entre MM. Wertheim et De la Rive, et les découvertes nouvelles la rendent encore plus compliquée. Suivant M. Wertheim, ces vibrations seraient à la fois longitudinales et transversales et proviendraient d'attractions échangées entre les spires de l'hélice magnétisante et les particules magnétiques du noyau; suivant M. De la Rive elles seraient, dans le cas qui nous occupe, uniquement longitudinales et résulteraient de contractions et dilatations moléculaires déterminées par des arrangements différents pris par les molécules magnétiques, sous l'influence des aimantations et des désaimantations. C'est cette explication qui nous paraît la plus rationnelle, et une expérience faite en 1846 par M. Guillemin semblerait la confirmer. M. Guillemin avait en effet reconnu que si une tige flexible de fer entourée d'une hélice magnétisante est pincée dans un étau à l'une de ses extrémités et recourbée sous l'influence d'un poids adapté à l'autre extrémité, on peut la faire redresser instantanément par le passage d'un courant à travers l'hélice magnétisante. Or ce redressement ne peut, dans ce cas, provenir que de la contraction déterminée par les molécules magnétiques qui, sous l'influence de leur aimantation, tendent à provoquer des attractions intermoléculaires et à modifier les conditions d'élasticité du métal. On sait en effet que du fer ainsi aimanté acquiert la dureté de l'acier et qu'il ne peut plus être attaqué par la lime.
Quoi qu'il en soit, il est impossible de ne pas admettre que des sons soient produits dans le noyau magnétique aussi bien que dans l'armature, sous l'influence d'effets électriques intermittents. Ces sons pourront d'ailleurs être musicaux ou articulés; car du moment où le transmetteur aura provoqué l'action électrique convenable, nous ne voyons pas de raison pour que des vibrations effectuées transversalement ou longitudinalement transmettent les uns plutôt que les autres. Ces vibrations, du reste, sont, comme on l'a vu, pour ainsi dire microscopiques[19].
M. J. Luvini, qui partage nos idées sur la théorie qui précède, croit cependant qu'elle ne peut satisfaire complétement l'esprit, que si l'on fait entrer en ligne de compte la réaction déterminée par le barreau magnétique sur l'hélice qui l'entoure. «Il ne peut y avoir, dit-il, action sans réaction, et en conséquence les changements moléculaires déterminés dans le barreau doivent provoquer des variations correspondantes dans l'hélice, et les deux effets doivent contribuer à la production des sons.» Il cite à l'appui de son dire l'expérience suivante du professeur Rossetti, qui est réellement curieuse.
Dans une suite de recherches qu'il avait entreprises sur les téléphones sans lame vibrante, ce savant avait employé sans le savoir un téléphone dont la bobine n'était pas bien fixée sur le noyau magnétique, et il remarqua à son grand étonnement que cette bobine oscillait le long du noyau magnétique, au passage des courants discontinus, et qu'elle produisait des sons. Or ce mouvement était une réaction déterminée par les effets magnétiques produits.
La difficulté d'expliquer la production des sons dans un organe électro-magnétique dépourvu d'armature, avait fait nier dans l'origine l'authenticité des expériences que nous avons rapportées précédemment, et M. Navez avait entamé avec nous une discussion qui ne sera pas sans doute terminée de sitôt; mais il est résulté de cette discussion, que ce savant a été obligé de convenir que le son de la voix humaine pouvait être reproduit par un récepteur téléphonique privé de sa plaque. Toutefois, il croit encore que cette reproduction est trop faible pour qu'on puisse reconnaître s'il y a ou s'il n'y a pas articulation, et soutient toujours que les vibrations transversales de la plaque résultant d'effets attractifs, sont les seules qui reproduisent la parole articulée avec une intensité suffisante pour être utile.
Il est certain que l'articulation de la parole exige une certaine puissance de vibration qu'un téléphone sans diaphragme ne peut pas facilement fournir, car il faut considérer que, dans un appareil ainsi disposé, les effets magnétiques sont réduits dans un rapport considérable qui est celui de la force magnétique développée dans le barreau à cette force multipliée par elle-même, et qu'une action, aussi faible que l'est celle accusée dans un téléphone, devient pour ainsi dire nulle, quand par suite de la suppression de l'armature, elle n'est plus représentée que par la racine carrée de la force qui l'a déterminée. Il peut donc se faire que des sons à peine perceptibles dans un téléphone sans diaphragme, le deviennent quand, par suite de la présence de ce diaphragme, la cause qui les provoque est multipliée par elle-même et qu'il s'y ajoute encore les vibrations déterminées au sein de l'armature elle-même sous l'influence des magnétisations et démagnétisations qu'elle subit.
Pour montrer que l'action du diaphragme n'est pas aussi indispensable que M. Navez semble le supposer, et que les vibrations de ce diaphragme ne sont pas le résultat d'attractions électro-magnétiques, il suffit de se reporter aux expériences de M. Hughes que nous avons exposées p. [129]. Il est certain que si cet effet était en jeu, on entendrait mieux quand les deux barreaux aimantés présenteraient des pôles de même nom devant le diaphragme, que quand ils présenteraient des pôles de noms contraires, puisque toutes les actions seraient alors conspirantes dans le même sens. D'un autre côté les plus grands effets que l'on obtient avec des diaphragmes multiples juxtaposés éloignent complétement cette hypothèse. Néanmoins, il pourrait se faire que dans les téléphones électro-magnétiques, le diaphragme de fer, en raison des variations faciles de son état magnétique, pût contribuer beaucoup à rendre les sons articulés plus nets et plus distincts; il pourrait alors réagir à la manière de la langue; mais nous croyons que c'est surtout à l'amplitude des vibrations déterminées sur le transmetteur, qu'on doit rapporter la plus ou moins grande netteté des sons articulés. Ainsi M. Hughes a démontré que les charbons de bois métallisés employés dans ses parleurs microphoniques étaient préférables aux charbons de cornue pour transmettre la parole, précisément parce que, étant moins conducteurs, les différences de résistance qui résultent des différences de pression, sont plus accentuées et permettent par conséquent de mieux faire saisir les différentes nuances des sons vocaux qui constituent l'articulation de la parole.
Mais il ne s'agit plus aujourd'hui d'une discussion d'effets magnétiques; la science a marché depuis que M. Navez a ouvert la discussion, et nous lui demanderons maintenant comment, avec sa théorie des mouvements attractifs du diaphragme des téléphones, il peut expliquer la reproduction de la parole par un microphone récepteur dépourvu de tout organe électro-magnétique, et je puis lui certifier que dans les expériences que j'ai faites, la transmission des vibrations ne pouvait se faire mécaniquement, car quand le circuit était coupé ou la pile retirée du circuit, aucun son n'était entendu. Il faut décidément que M. Navez compte avec les vibrations moléculaires. Certainement, c'est un terrain nouveau à étudier; mais c'est parce que nous nous acharnons en Europe à vouloir rester dans les limites de théories incomplètes que nous avons laissé aux américains, qui ne s'en inquiètent guère, la gloire de faire les grandes découvertes qui nous étonnent depuis quelques mois. Que M. Navez lise avec soin les notes de MM. Luvini, des Portes, Trève, Hughes, Rossetti, et nous sommes certain que ses idées se modifieront.
En résumé, la théorie du téléphone et du microphone considérés comme organes reproducteurs de la parole est encore loin d'être élucidée complétement, et dans des questions aussi neuves, il serait imprudent d'être trop affirmatif.
La transmission électrique des sons, dans les téléphones magnéto-électriques, ne laisse pas que de présenter quelques complications théoriques. On a vu en effet qu'on pouvait les obtenir avec des diaphragmes en matière non magnétique et même par l'effet de simples vibrations mécaniques déterminées par des chocs. Est-ce à des réactions d'induction de l'aimant sur la lame vibrante mise en action qu'il faut les attribuer dans le premier cas, et aux mouvements des particules magnétiques devant les spires de l'hélice qu'il faut les rapporter dans le second?.... la question est encore bien obscure; néanmoins on peut concevoir que les modifications de l'action inductrice de l'aimant sur le diaphragme mis en vibration puissent entraîner des variations de l'intensité magnétique, de même qu'on peut admettre une action de la même nature par suite de l'éloignement, et du rapprochement des particules magnétiques des spires de l'hélice; toutefois M. Trève croit, dans ce dernier cas, à une action particulière qu'il a déjà eu occasion d'étudier dans d'autres circonstances, et voit dans le courant ainsi produit l'effet d'une transformation du travail mécanique déterminé au sein des molécules magnétiques. Ce qui complique encore la question, c'est que souvent ces effets sont produits par des transmissions simplement mécaniques.
Il était encore un point intéressant à étudier et sur lequel M. Navez a donné quelques indications intéressantes; c'était de savoir si les effets étaient plus énergiques, pour la réception, avec des aimants permanents, qu'avec des aimants temporaires. Dans le premier modèle de téléphone exposé à Philadelphie par M. Bell, le récepteur était, comme on l'a vu, constitué par un électro-aimant tubulaire dont le pôle cylindrique était muni de la lame vibrante; mais M. Bell n'a pas maintenu cette disposition, et s'il faut en croire ce qu'il dit à cet égard dans son mémoire, ce serait afin de rendre son appareil à la fois récepteur et transmetteur[20]. Toutefois M. Navez prétend que le rôle de l'aimant est plus important, et même qu'il est indispensable dans les conditions actuelles de sa construction. «On peut, dit-il, dans certaines circonstances, et en construisant l'instrument d'une manière spéciale, faire parler un Bell récepteur sans aimant permanent; cependant, l'instrument tel qu'il est construit généralement, reste muet si on retire l'aimant pour le remplacer par un cylindre de fer doux fixé dans la bobine. Néanmoins il suffit d'approcher le pôle d'un aimant permanent d'un cylindre en fer doux, pour rendre la voix au téléphone: il résulte de nos expériences que pour qu'un téléphone Bell fonctionne bien, il est indispensable que la plaque soit soumise à une tension magnétique initiale, obtenue au moyen d'un aimant permanent. Cette assertion est d'ailleurs facile à déduire de considérations théoriques.»
Quant à l'action des courants envoyés à travers l'hélice d'un téléphone, elle s'explique aisément. Quelles que soient les conditions magnétiques du barreau, les courants induits de différente intensité qui agissent sur lui, provoquent des modifications dans son état magnétique, d'où résultent des vibrations moléculaires par contraction et dilatation. Ces vibrations se produisant également dans l'armature sous l'influence des aimantations et désaimantations qui y sont déterminées par l'action magnétique du noyau, renforcent celles de ce noyau, en même temps que les modifications dans l'état magnétique du système se trouvent amplifiées par suite de la réaction des deux pièces magnétiques l'une sur l'autre. Quand le barreau est en fer doux, les courants induits agissent en créant des aimantations plus ou moins énergiques auxquelles succèdent des désaimantations qui sont d'autant plus promptes que des courants inverses succèdent toujours à ceux qui ont été actifs, ce qui rend les alternatives d'aimantation et de désaimantation plus nettes et plus rapides. Quand le barreau est aimanté, l'action est différentielle, et peut s'exercer dans un sens ou dans un autre, suivant que les courants induits correspondant aux vibrations effectives, passent à travers la bobine réceptrice dans le même sens ou en sens contraire du courant magnétique du barreau. Si ces courants sont de même sens, l'action est renforçante, et les modifications sont effectuées comme si c'était une aimantation qui était déterminée. Si ces courants sont de sens contraire, l'effet inverse se produit; mais quels que soient ces effets, les vibrations moléculaires conservent les mêmes rapports réciproques et la même hauteur dans l'échelle des sons musicaux. Si on étudie la question au point de vue mathématique, on trouve la présence d'une constante en rapport avec l'intensité du courant qui n'existe pas dans les vibrations mécaniques et d'où résulterait peut-être le timbre particulier que présente la parole reproduite dans le téléphone, timbre qui l'a fait comparer à la voix de polichinelle. M. Dubois Raymond a du reste publié sur cette théorie un mémoire intéressant qui est rapporté dans les Mondes du 21 février 1878 (p. 314), mais que nous ne reproduisons pas ici, parce que les considérations qu'il émet sont trop scientifiques pour les lecteurs auxquels s'adresse notre ouvrage. Nous ajouterons seulement que d'après M. C. W. Cuningham, les vibrations produites dans un téléphone ne peuvent se manifester exactement dans les mêmes conditions que celles qui affectent le tympan de l'oreille, parce que celui-ci a une forme particulière en entonnoir qui exclut toute note fondamentale qui lui soit spécialement propre, tandis qu'il n'en est pas de même pour les barreaux et lames magnétiques qui possèdent des notes fondamentales capables de masquer beaucoup des demi-tons de la voix. C'est suivant lui à ces notes fondamentales qu'il faut attribuer l'altération de la voix observée dans le téléphone.[Table des Matières]