TÉLÉPHONES MUSICAUX.

Téléphone de M. Reiss.—Le téléphone de M. Reiss est fondé, quant à la reproduction des sons, sur les effets découverts par M. Page en 1837 et, pour leur transmission électrique, sur le système à membrane vibrante utilisé dès 1855 par M. L. Scott dans son phonautographe. Cet appareil se compose donc, comme les systèmes télégraphiques, de deux parties distinctes, d'un transmetteur et d'un récepteur, et nous les représentons fig. 1.

Fig. 1.

Le transmetteur était essentiellement constitué par une boîte sonore K, qui portait à sa partie supérieure une large ouverture circulaire à travers laquelle était tendue une membrane, et au centre de celle-ci était adapté un léger disque de platine o, au-dessus duquel était fixée une pointe métallique b, qui constituait avec le disque l'interrupteur. Sur une des faces de cette boîte sonore K, se trouvait une sorte de porte-voix T qui était destiné à recueillir les sons et à les diriger à l'intérieur de la boîte pour les faire réagir ensuite sur la membrane. Une partie de la boîte K est brisée sur la figure pour qu'on puisse distinguer les différentes parties qui la composent.

Les tiges a, c, qui portent la pointe de platine b, sont réunies métalliquement avec une clef Morse t, placée sur le côté de la boîte K, et avec un électro-aimant A, qui appartient à un système télégraphique destiné à échanger les signaux nécessaires à la mise en action des deux appareils aux deux stations.

Le récepteur est constitué par une caisse sonore B, portant deux chevalets d, d, sur lesquels est soutenu un fil de fer d d de la grosseur d'une aiguille à tricoter. Une bobine électro-magnétique g enveloppe ce fil et se trouve enfermée par un couvercle D, qui concentre les sons déjà amplifiés par la caisse sonore; cette caisse est même munie, à cet effet, de deux ouvertures pratiquées au-dessous de la bobine.

Le circuit de ligne est mis en rapport avec le fil de cette bobine par les deux bornes d'attache 3 et 4, et une clef Morse t se trouve placée sur le côté de la caisse B pour l'échange des correspondances.

Pour faire fonctionner ce système, il suffit de faire parler l'instrument dont on veut transmettre les sons devant l'ouverture T, et cet instrument peut être une flûte, un violon ou même la voix humaine. Les vibrations de l'air déterminées par ces instruments font vibrer à l'unisson la membrane téléphonique, et celle-ci, en approchant et éloignant rapidement le disque de platine o de la pointe b, fournit une série d'interruptions de courant qui se trouvent répercutées par le fil de fer d d et transformées en vibrations métalliques, dont le nombre est égal à celui des sons successivement produits.

D'après ce mode d'action, on comprend donc qu'il soit possible de transmettre les sons avec leur valeur relative; mais l'on conçoit également que ces sons ainsi transmis n'auront pas le timbre de ceux qui leur donnent naissance, car le timbre est indépendant du nombre des vibrations, et, il faut même le dire ici, les sons produits par l'appareil de M. Reiss avaient un timbre de flûte à l'oignon qui n'avait rien de séduisant; toutefois le problème de la transmission électrique des sons musicaux était bien réellement résolu, et l'on pouvait dire en toute vérité qu'un air ou une mélodie pouvait être entendu à une distance aussi grande qu'on pouvait le désirer.

L'invention de ce téléphone date, comme on l'a déjà vu, de l'année 1860, et le professeur Heisler en parle dans son traité de physique technique, publié à Vienne en 1866; il prétend même dans l'article qu'il lui a consacré, que, quoique dans son enfance, cet appareil était susceptible de transmettre non-seulement des sons musicaux, mais encore des mélodies chantées. Ce système fut ensuite perfectionné par M. Vander-Weyde, qui, après avoir lu la description publiée par M. Heisler, chercha à rendre la boîte de transmission de l'appareil plus sonore et les sons produits par le récepteur plus forts. Voici ce qu'il dit à ce sujet dans le Scientific american Journal:

«Ayant fait construire en 1868 deux téléphones du genre de celui décrit précédemment, je les montrai à la réunion du club polytechnique de l'Institut américain. Les sons transmis étaient produits à l'extrémité la plus éloignée du Cooper Institut, et tout à fait en dehors de la salle où se trouvaient les auditeurs de l'association; l'appareil récepteur était placé sur une table, dans la salle même des séances. Il reproduisait fidèlement les airs chantés, mais les sons étaient un peu faibles et un peu nasillards. Je songeai alors à perfectionner cet appareil, et je cherchai d'abord à obtenir dans la boîte K des vibrations plus puissantes en les faisant répercuter par les côtés de cette boîte au moyen de parois creuses. Je renforçai ensuite les sons produits par le récepteur, en introduisant dans la bobine plusieurs fils de fer, au lieu d'un seul. Ces perfectionnements ayant été soumis à la réunion de l'Association américaine pour l'avancement des sciences qui eut lieu en 1869, on exprima l'opinion que cette invention renfermait en elle le germe d'une nouvelle méthode de transmission télégraphique qui pourrait conduire à des résultats importants. Cette appréciation devait être bientôt justifiée par la découverte de Bell et d'Elisha Gray.

Téléphone de MM. Cécil et Léonard Wray.—Ce système, que nous représentons fig. 2 et 3, n'est qu'un simple perfectionnement de celui de M. Reiss, imaginé en vue de rendre les effets produits plus énergiques. Ainsi le transmetteur est muni de deux membranes au lieu d'une, et son récepteur, au lieu d'être constitué par un simple fil de fer recouvert d'une bobine magnétisante, se compose de deux bobines distinctes, H, H', fig. 2, placées dans le prolongement l'une de l'autre, et à l'intérieur desquelles se trouvent deux tiges de fer. Ces tiges sont fixées par une de leurs extrémités à deux lames de cuivre A, B, maintenues elles-mêmes dans une position fixe au moyen de deux piliers à écrous I, I', et les deux autres extrémités de ces tiges, entre les bobines, sont disposées à une très-petite distance l'une devant l'autre, mais sans cependant se toucher. Le système est d'ailleurs monté sur une caisse sonore, munie d'un trou T dans l'espace correspondant à l'intervalle séparant les bobines, et celles-ci communiquent avec quatre boutons d'attache qui sont mis en rapport avec le circuit de ligne de telle manière que les polarités opposées des deux tiges soient de signes contraires, et ne forment qu'un seul et même aimant coupé par le milieu. Il paraît qu'avec cette disposition les sons produits sont beaucoup plus accentués.

Fig. 2.

La forme du transmetteur est aussi un peu différente de celle que nous avons décrite précédemment; la partie supérieure, au lieu d'être horizontale, est un peu inclinée, comme on le voit fig. 3, et l'ouverture E par laquelle les sons doivent se communiquer à la membrane vibrante, occupe une grande partie du côté le plus élevé de la caisse, qui, à cet effet, se présente sous une certaine obliquité. La seconde membrane G, qui est en caoutchouc, forme une sorte de cloison qui divise en deux la caisse, à partir du bord supérieur de l'ouverture, et, d'après l'inventeur, elle aurait pour effet, tout en augmentant l'amplitude des vibrations produites par la membrane extérieure D, comme dans un tambour, de protéger celle-ci contre les effets de la respiration et plusieurs autres causes nuisibles. L'interrupteur lui-même diffère aussi de celui de l'appareil de M. Reiss. Ainsi le disque de platine b, appelé à fournir les contacts, n'est mis en rapport métallique avec le circuit que par l'intermédiaire de deux petits fils de platine ou d'acier qui plongent dans deux petits godets a, c remplis de mercure et reliés à ce circuit. Par ce moyen, la membrane D se trouve libre dans ses mouvements et peut vibrer plus facilement.

Fig. 3.

L'interruption est d'ailleurs effectuée par une petite pointe de platine portée par un levier à ressort articulé KH qui se trouve au-dessus du disque, et dont l'extrémité, étant fixée au-dessous d'une sorte de clef Morse MI, permet d'effectuer à la main les fermetures de courant nécessaires à l'échange des correspondances pour la mise en train des appareils.

Harmonica électrique.—Longtemps avant M. Reiss et à plus forte raison longtemps avant M. Elisha Gray qui a imaginé un téléphone du même genre, j'avais fait mention d'une sorte d'harmonica électrique qui a été décrit de la manière suivante dans le tome I, p. 167, de la première édition de mon Exposé des applications de l'électricité publié en 1853[4].

«La faculté que possède l'électricité de mettre en mouvement des lames métalliques et de les faire vibrer, a pu être utilisée à la production de sons distincts, susceptibles d'être combinés et harmonisés; mais, en outre de cette application toute physique, l'électro-magnétisme a pu venir en auxiliaire à certains instruments, tels que pianos, orgues, etc., pour leur donner la facilité d'être joués à distance. Ainsi jusque dans les arts en apparence les moins susceptibles de recevoir de l'électricité quelque application, cet élément si extraordinaire a pu être d'un secours utile.

«Nous avons déjà parlé de l'interrupteur de M. de la Rive. C'est, comme on le sait, une lame de fer soudée à un ressort d'acier et maintenue dans une position fixe vis-à-vis un électro-aimant, par un autre ressort ou un butoir métallique en connexion avec l'une des branches du courant. Comme l'autre branche, après avoir passé dans le fil de l'électro-aimant aboutit à la lame de fer elle-même, l'électro-aimant n'est actif qu'au moment où cette lame touche le butoir ou le ressort d'arrêt; mais aussitôt qu'elle l'abandonne, l'aimantation cesse, et la lame de fer revient en son point d'arrêt, puis l'abandonne ensuite. Il se détermine donc une vibration d'autant plus rapide que la longueur de la lame vibrante est plus courte, et que la force est plus grande par suite du rapprochement de la lame de l'électro-aimant.

«Pour rendre les sons de plus en plus aigus, il ne s'agit donc que d'employer l'un ou l'autre des deux moyens. Le plus simple est d'avoir une vis que l'on serre ou que l'on desserre à volonté, et qui par cela même éloigne plus ou moins la lame vibrante de l'électro-aimant. Tel est l'appareil de M. Froment au moyen duquel il a obtenu des sons d'une acuité extraordinaire, bien qu'étant fort doux à l'oreille.

«M. Froment n'a pas fait de cet appareil un instrument de musique; mais on conçoit que rien ne serait plus facile que d'en constituer un; il ne s'agirait pour cela que de faire agir les touches d'un clavier sur des leviers métalliques, dont la longueur des bras serait en rapport avec le rapprochement de la lame nécessité pour la vibration des différentes notes. Ces différents leviers, en appuyant sur la lame, joueraient le rôle du butoir d'arrêt, mais ce butoir varierait de position suivant la touche.

«Si le courant était constant, un pareil instrument aurait certainement beaucoup d'avantages sur les instruments à anches dont on se sert, en ce sens qu'on aurait une vibration aussi prolongée qu'on le voudrait pour chaque note, et que les sons seraient plus veloutés; malheureusement l'inégalité d'action de la pile en rend l'usage bien difficile. Aussi ne s'est-on guère servi de ce genre d'appareils que comme régulateurs auditifs pour l'intensité des piles, régulateurs infiniment plus commodes que les rhéomètres, puisqu'ils peuvent faire apprécier les différentes variations d'une pile pendant une expérience, sans qu'on soit obligé d'en détourner son attention.»

En 1856, M. Pétrina, de Prague, imagina un dispositif analogue auquel il donna le nom d'harmonica électrique, bien qu'à proprement parler il ne constituât pas dans sa pensée un instrument de musique.

Voici ce que j'en disais dans le tome IV de la seconde édition de mon exposé des applications de l'électricité publié en 1859.

«Le principe de cet appareil est le même que celui du rhéotome de Neef, au marteau duquel on a substitué une baguette dont les vibrations transversales produisent un son. Quatre de ces baguettes, différentes en longueur, sont placées l'une à côté de l'autre, et étant mises en mouvement au moyen de touches, puis arrêtées par des leviers, produisent des sons de combinaison dont il devient facile de démontrer l'origine.»

Dans ce qui précède je ne dis pas, il est vrai, que ces appareils pouvaient être joués à distance; mais cette idée était toute naturelle, et les journaux allemands prétendent que M. Pétrina l'avait réalisée même avant 1856. Elle était la conséquence de ce que je disais en débutant: «que l'électro-magnétisme pouvait venir en auxiliaire à certains instruments tels que pianos, orgues, etc., pour leur donner la facilité d'être joués à distance», et j'indiquais plus loin les moyens employés pour cela et même pour les faire fonctionner sous l'influence d'une petite boîte à musique. Je n'y avais du reste pas attaché d'importance, et ce n'est que comme document historique que je parle de ces systèmes.

Téléphone de M. Elisha Gray, de Chicago.—Ce système, imaginé en 1874, n'est en réalité qu'un appareil du genre de ceux qui précèdent, mais avec des combinaisons importantes qui ont permis de l'appliquer utilement à la télégraphie. Dans un premier modèle il mettait à contribution une bobine d'induction à deux hélices superposées, dont l'interrupteur, qui était à trembleur, était multiple et disposé de manière à produire des vibrations assez nombreuses pour émettre des sons. Ces sons, comme on l'a vu, peuvent avec cette disposition être modifiés suivant la manière dont l'appareil est réglé, et s'il existe à côté les uns des autres un certain nombre d'interrupteurs de ce genre, dont les lames vibrantes soient réglées de manière à fournir les différentes notes de la gamme sur plusieurs octaves, on pourra, en mettant en action tels ou tels d'entre eux, exécuter sur cet instrument d'un nouveau genre un morceau de musique dont les sons se rapprocheront de ceux produits par les instruments à anches, tels que harmoniums, accordéons, etc. La mise en action de ces interrupteurs pourra d'ailleurs être effectuée au moyen du courant primaire de la bobine d'induction qui circulera à travers l'un ou l'autre des électro-aimants de ces interrupteurs, sous l'influence de l'abaissement de l'une ou l'autre des touches d'un clavier commutateur, et les courants secondaires qui naîtront dans la bobine sous l'influence de ces courants primaires interrompus, pourront transmettre des vibrations correspondantes à distance sur un récepteur. Celui-ci pourrait être analogue à ceux dont nous avons parlé précédemment pour les téléphones de Reiss, de Wray, etc., mais M. Gray a dû le modifier pour obtenir des effets plus amplifiés.

Nous représentons (fig. 4) la disposition de ce premier système. Les vibrateurs sont en A et A', les touches du clavier en M et M', la bobine d'induction en B, et le récepteur en C. Ce récepteur se compose, comme on le voit, d'un simple électro-aimant NN' au-dessus des pôles duquel est adaptée une caisse cylindrique en métal C dont le fond est en fer et sert d'armature. Cette boîte étant percée comme les violons de deux trous en S, joue le rôle de caisse sonore, et M. Elisha Gray a reconnu que les mouvements moléculaires déterminés au sein du noyau magnétique et de son armature, sous l'influence des alternatives d'aimantation et de désaimantation, étaient suffisants pour engendrer des vibrations en rapport avec la rapidité de ces alternatives, et fournir des sons qui devenaient perceptibles par suite de leur amplification par la boîte sonore.

Fig. 4.

S'il faut en croire M. Elisha Gray, les vibrations transmises par des courants secondaires seraient capables de faire résonner à distance, par l'intermédiaire du corps humain, des lames conductrices susceptibles d'entrer facilement en vibration et disposées sur des caisses sonores. Ainsi l'on pourrait faire produire des sons musicaux à des cylindres de cuivre placés sur une table, à une plaque métallique appliquée sur une sorte de violon, à une feuille de clinquant tendue sur un tambour ou à toute autre substance résonnante, en touchant d'une main ces différents corps et en prenant de l'autre le bout du fil du circuit. Ces sons qui pourraient avoir un timbre différent, suivant la nature de la substance touchée, reproduiraient la note transmise avec le nombre exact de vibrations qui lui correspond[5].

On comprend aisément que les effets obtenus dans le système représenté (fig. 4) pourraient être reproduits, si au lieu d'interrupteurs ou de rhéotomes électriques, on employait à la station de transmission des interrupteurs mécaniques disposés de manière à fournir le nombre d'interruptions de courants en rapport avec les vibrations des différentes notes de la gamme. On pourrait encore, par ce moyen, se dispenser de la bobine d'induction et faire réagir directement sur le récepteur le courant ainsi interrompu par l'interrupteur mécanique. M. Elisha Gray a du reste combiné une autre disposition de ce système téléphonique qu'il a appliquée à la télégraphie pour les transmissions électriques simultanées, et dont nous parlerons plus tard.

Téléphone de M. Varley.—Ce téléphone n'est à proprement parler qu'un téléphone musical dans le genre de celui de M. Gray, mais dont le récepteur présente une disposition originale vraiment intéressante.

Cette partie de l'appareil est essentiellement constituée par un véritable tambour de grandes dimensions (3 ou 4 pieds de diamètre), dans l'intérieur duquel est placé un condensateur formé de quatre feuilles de papier d'étain séparées par des feuilles en matière parfaitement isolante, et dont la surface représente à peu près la moitié de celle du tambour. Les lames de ce condensateur sont disposées parallèlement aux membranes du tambour et à une très-petite distance de leur surface.

Si une charge électrique est communiquée à l'une des séries de plaques conductrices de ce condensateur, celles qui leur correspondront se trouveront attirées, et si elles peuvent se mouvoir, elles pourront communiquer aux couches d'air interposées un mouvement qui, en se communiquant aux membranes du tambour, pourront, pour une série de charges très-rapprochées les unes des autres, faire vibrer ces membranes et engendrer des sons; or ces sons seront en rapport avec le nombre des charges et décharges qui seront produites. Comme ces charges et décharges peuvent être déterminées par la réunion des deux armatures du condensateur aux extrémités du circuit secondaire d'une bobine d'induction dont le circuit primaire sera interrompu convenablement, on voit immédiatement que, pour faire émettre par le tambour un son donné, il suffira de faire fonctionner l'interrupteur de la bobine d'induction de manière à produire le nombre de vibrations que comporte ce son.

Le moyen employé par M. Varley pour produire ces interruptions est celui qui a été déjà mis en usage dans plusieurs applications électriques et notamment pour les chronographes; c'est un diapason électro-magnétique réglé de manière à émettre le son qu'il s'agit de transmettre. Ce diapason peut, en formant lui-même interrupteur, réagir sur le courant primaire de la bobine d'induction, et s'il y a autant de ces diapasons que de notes musicales à transmettre, et que les électro-aimants qui les animent soient reliés à un clavier de piano, il sera possible de transmettre de cette manière une mélodie à distance comme dans le système de M. Elisha Gray.

La seule chose particulière dans ce système est le fait de la reproduction des sons par l'action d'un condensateur, et nous verrons plus loin que cette idée, reprise par MM. Pollard et Garnier, a conduit à des résultats vraiment intéressants.[Table des Matières]

TÉLÉPHONES PARLANTS.

Les téléphones que nous venons d'étudier ne peuvent transmettre, comme on l'a vu, que des sons musicaux, puisqu'ils ne peuvent répéter que des vibrations simples, en nombre plus ou moins grand, il est vrai, mais non en combinaisons simultanées, telles que celles qui doivent reproduire les sons articulés. Jusqu'à l'époque de l'invention de M. Bell, la transmission de la parole ne pouvait donc se faire que par des tubes acoustiques ou par les téléphones à ficelle dont nous avons déjà parlé. Bien que ces sortes d'appareils n'aient aucun rapport avec ceux que nous nous proposons d'étudier dans cet ouvrage, nous avons cru devoir en dire ici quelques mots, car ils peuvent quelquefois être combinés avec les téléphones électriques, et, d'ailleurs, ils représentent la première étape de l'invention.

Téléphones à ficelle.—Les téléphones à ficelle qui depuis plusieurs années inondent les boulevards et les rues des différentes villes d'Europe, et dont l'invention remonte, comme on l'a vu, à l'année 1667, sont des appareils très-intéressants par eux-mêmes, et nous sommes étonné qu'ils n'aient pas figuré plutôt dans les cabinets de physique. Ils sont constitués par des tubes cylindro-coniques en métal ou en carton, dont un bout est fermé par une membrane tendue de parchemin, au centre de laquelle est fixée par un nœud la ficelle ou le cordon destiné à les réunir. Quand deux tubes de ce genre sont ainsi réunis et que le fil est bien tendu, comme on le voit fig. 5, il suffit qu'une personne applique un de ces tubes contre l'oreille et qu'une autre personne parle très-près de l'ouverture de l'autre tube, pour que toutes les paroles prononcées par cette dernière soient immédiatement transmises à l'autre, et l'on peut même converser de cette manière à voix presque basse. Dans ces conditions, les vibrations de la membrane impressionnée par la voix se trouvent transmises mécaniquement à l'autre membrane par le fil qui, comme l'avait annoncé le physicien de 1667, transmet les sons beaucoup mieux que l'air. On a pu par ce moyen converser à une distance de cent cinquante mètres, et il paraîtrait que la grosseur et la nature des fils exercent une certaine influence. Suivant les vendeurs de ces appareils, les fils de soie seraient ceux qui donneraient les meilleurs résultats et les ficelles de chanvre les moins bons. Ce sont ordinairement des fils de coton tressés qui sont employés afin de permettre de livrer à bon marché ces appareils.

Fig. 5.

Dans certains modèles on a disposé les tubes de manière à présenter, entre la membrane et l'embouchure, un diaphragme percé d'un trou, et l'appareil ressemble alors à une espèce de cloche dont le fond aurait été percé et recouvert à quelques millimètres au-dessus de la membrane de parchemin; mais je n'ai pas reconnu de supériorité bien marquée à ce modèle.

On a également prétendu que les cornets en métal nickelé étaient préférables; je n'en suis pas davantage convaincu. Quoi qu'il en soit, ces appareils ont donné des résultats qu'on était loin d'attendre, et bien que leurs usages pratiques soient très-restreints, ils constituent des instruments scientifiques très-intéressants et des jouets instructifs pour les enfants.

D'après M. Millar, de Glascow, l'intensité des effets produits dans ces téléphones dépend beaucoup de la nature de la ficelle, de la manière dont elle est attachée et de la manière dont la membrane est placée sur l'embouchure.

Perfectionnements apportés aux téléphones à ficelle.—Les effets prodigieux des téléphones Bell ont dans ces derniers temps remis à la mode les téléphones à ficelle qui étaient restés jusque-là dans le domaine des jouets d'enfant. La possibilité qu'ils ont donnée de transmettre à plusieurs personnes la parole reproduite sur un téléphone électrique a fait rechercher les moyens de les utiliser concurremment avec ces derniers, et pour cela on a dû d'abord examiner le moyen le plus efficace de les faire parler sur un fil présentant plusieurs coudes; nous avons vu que, dans les conditions ordinaires, ces appareils ne parlaient distinctement que quand le fil était tendu en ligne droite. Pour résoudre ce problème, M. A. Bréguet a eu l'idée d'employer comme supports des espèces de petits tambours de basque par le centre desquels on fait passer le fil; le son porté par la partie du fil en rapport avec le cornet dans lequel on parle, fait alors vibrer la membrane de ce tambour, et celle-ci communique ensuite la vibration à la partie du fil qui suit. On peut de cette manière obtenir autant de coudes que l'on veut et soutenir le fil sur toute la longueur qui peut convenir à ces sortes de téléphones, laquelle ne dépasse guère cent mètres.

M. A. Bréguet a fait encore de ce système des espèces de relais pour arriver au même but, et pour cela il fait aboutir les fils à deux membranes qui ferment les deux ouvertures d'un cylindre de laiton; les sons reproduits par l'une des membranes réagissent sur l'autre, et celle-ci vibre sous cette influence comme si elle était impressionnée par la voix; le cylindre joue alors le rôle d'un tube acoustique ordinaire, et sa forme peut être aussi variée qu'on peut le désirer.

Il paraît que M. A. Badet, dès le 1er février 1878, était parvenu à faire fonctionner d'une manière analogue les téléphones à ficelle, et il se servait pour cela de parchemins tendus sur des cadres qui faisaient l'office de tables résonnantes. Le fil était fixé au centre de la membrane et faisait avec elle tel angle que l'on voulait.

Plusieurs savants, entre autres MM. Wheatstone, Cornu et Mercadier, se sont occupés il y a déjà longtemps de ces sortes de transmissions par les fils, et tout dernièrement MM. Millar, Heaviside et Nixon ont fait des expériences intéressantes dont nous devons dire quelques mots. Ainsi, M. Millar a reconnu qu'avec un fil télégraphique tendu et relié par deux fils de cuivre à deux disques susceptibles de vibrer, on pouvait transporter les sons musicaux à cent cinquante mètres, et qu'en tendant des fils à travers une maison, ces fils étant reliés à des embouchures et à des cornets auriculaires placés dans différentes chambres, on pouvait correspondre avec toutes ces chambres de la manière la plus facile.

Il a employé pour les disques vibrants, soit du bois, soit du métal, soit de la gutta-percha ayant la forme d'un tambour, et les fils étaient fixés au centre. L'intensité du son semblait augmenter avec la grosseur du fil.

MM. Heaviside et Nixon, dans leurs expériences à New-Castle sur la Tyne, ont reconnu que la grosseur du fil qui donnait les meilleurs résultats était le fil no 4 de la jauge anglaise. Les disques qu'ils avaient employés étaient en bois de 1/8 de pouce d'épaisseur, et ils pouvaient être placés en un point quelconque de la longueur du fil. Avec un fil bien tendu et tranquille, la parole a pu être entendue de cette manière à une distance de deux cents mètres.

Téléphone électrique de M. Graham Bell.—Tel était l'état des appareils téléphoniques, lorsqu'en 1876 apparut à l'exposition de Philadelphie le téléphone de Bell que sir W. Thomson n'a pas craint d'appeler la merveille des merveilles, et sur lequel l'attention du monde entier s'est trouvée immédiatement portée, bien qu'à vrai dire son authenticité ait soulevé dans l'origine bien des incrédulités. Ce téléphone, en effet, reproduisait les mots articulés, et ce résultat dépassait tout ce que les physiciens avaient pu concevoir. Cette fois ce n'était plus une conception que l'on pouvait, jusqu'à preuve contraire, traiter de fantastique: l'appareil parlait, et même parlait assez haut pour n'avoir pas besoin d'être placé contre l'oreille. Voici ce qu'en disait sir W. Thomson à l'Association britannique pour l'avancement des sciences lors de sa réunion à Glascow en septembre 1876.

«Au département des télégraphes des États-Unis, j'ai vu et entendu le téléphone électrique de M. Elisha Gray, merveilleusement construit, faire résonner en même temps quatre dépêches en langage Morse, et avec quelques améliorations de détail, cet appareil serait évidemment susceptible d'un rendement quadruple.... Au département du Canada, j'ai entendu: To be or not to be.—There's the rub, articulés à travers un fil télégraphique, et la prononciation électrique ne faisait qu'accentuer encore l'expression railleuse des monosyllabes; le fil m'a récité aussi des extraits au hasard des journaux de New-York... Tout cela, mes oreilles l'ont entendu articuler très-distinctement par le mince disque circulaire formé par l'armature d'un électro-aimant. C'était mon collègue du jury, le professeur Watson, qui, à l'autre extrémité de la ligne, proférait ces paroles à haute et intelligible voix, en appliquant sa bouche contre une membrane tendue, munie d'une petite pièce de fer doux, laquelle exécutait près d'un électro-aimant introduit dans le circuit de la ligne, des mouvements proportionnels aux vibrations sonores de l'air. Cette découverte, la merveille des merveilles du télégraphe électrique, est due à un de nos jeunes compatriotes, M. Graham Bell, originaire d'Édimbourg et aujourd'hui naturalisé citoyen des États-Unis.

«On ne peut qu'admirer la hardiesse d'invention qui a permis de réaliser avec des moyens si simples, le problème si complexe de faire reproduire par l'électricité les intonations et les articulations si délicates de la voix et du langage, et pour obtenir ce résultat, il fallait trouver moyen de faire varier l'intensité du courant dans le même rapport que les inflexions des sons émis par la voix.»

S'il faut en croire M. G. Bell, l'invention du téléphone n'aurait pas été le résultat d'une conception spontanée et heureuse; elle aurait été la conséquence de longues et patientes études entreprises par lui sur l'acoustique et les travaux des physiciens qui s'en étaient occupés avant lui[6]. Déjà son père, M. Alexandre Melville Bell, d'Édimbourg, avait fait de cette science une étude approfondie, et était même parvenu à représenter d'une manière excessivement ingénieuse la disposition des organes vocaux pour émettre des sons. Il devait naturellement inculquer à son fils le goût de ses études favorites, et ils firent ensemble de nombreuses recherches pour découvrir les relations qui pouvaient exister entre les divers éléments de la parole dans les différentes langues et les relations musicales existant entre les voyelles. Plusieurs de ces recherches avaient, il est vrai, déjà été entreprises par M. Helmholtz, et même dans de meilleures conditions; mais ces études lui furent d'une grande utilité quand il s'occupa plus tard du téléphone, et les expériences d'Helmholtz qu'il répéta avec un de ses amis, M. Hellis, de Londres, sur la reproduction artificielle des voyelles au moyen de diapasons électriques, le lancèrent dans l'étude de l'application des moyens électriques aux instruments d'acoustique. Il combina d'abord un système d'harmonica électrique à clavier, dans lequel les différents sons de la gamme étaient reproduits par des diapasons électriques de différentes tailles, accordés suivant les différentes notes, et qui étant mis en action par suite de l'abaissement successif des touches du clavier, pouvaient reproduire les sons correspondants aux touches abaissées, comme cela a lieu dans les pianos ordinaires.

Il s'occupa ensuite, dit-il, de télégraphie et pensa à rendre les télégraphes Morse auditifs en faisant réagir l'organe électro-magnétique sur des contacts sonores. Ce résultat, il est vrai, était déjà obtenu dans les parleurs usités en télégraphie, mais il pensa qu'en appliquant ce système à son harmonica électrique et en employant des appareils renforceurs tels que le résonnateur d'Helmholtz à la station de réception, on pourrait obtenir à travers un seul fil des transmissions simultanées, fondées sur l'emploi des moyens phonétiques. Nous verrons plus tard que cette idée s'est trouvée réalisée presque simultanément par plusieurs inventeurs, entre autres par MM. Paul Lacour, de Copenhague, Elisha Gray, de Chicago, Edison et Varley.

C'est à partir de ce moment que commencèrent sérieusement les recherches de M. G. Bell sur les téléphones électriques, et des appareils compliqués il passa aux appareils simples, en faisant une étude complète des différents modes de vibrations résultant d'actions électriques différentes; voici ce qu'il dit à cet égard dans son Mémoire lu à la Société des ingénieurs télégraphistes de Londres, le 31 octobre 1877:

«Si l'on représente par les ordonnées d'une courbe les intensités d'un courant électrique, et les durées des fermetures de ce courant par les abscisses, la courbe fournie pourra représenter des ondes en dessus ou en dessous de la ligne des x, suivant que le courant sera positif ou négatif, et ces ondes pourront être plus ou moins accentuées suivant que les courants transmis seront plus ou moins instantanés.

«Si les courants interrompus pour produire un son sont tout à fait instantanés dans leur manifestation, la courbe représente une série de dentelures isolées comme on le voit, fig. 6, et si les interruptions sont faites de manière à ne provoquer que des différences d'intensité, la courbe se présente sous la forme de la figure 7. Enfin si les émissions de courant sont effectuées de manière que les intensités soient successivement croissantes ou décroissantes, la courbe prend l'aspect représenté fig. 8. Or je donne aux premiers courants le nom de courants intermittents, aux seconds le nom de courants d'impulsion et aux troisièmes le nom de courants ondulatoires.

Fig. 6.

«Naturellement ces courants sont positifs ou négatifs, suivant leur position au-dessus ou au-dessous de la ligne des x, et s'ils sont alternativement renversés, les courbes se présentent sous l'aspect de la figure 9, courbes essentiellement différentes des premières, non-seulement par le sens différent des dentelures, mais surtout par la suppression du courant résiduel qui existe toujours avec les courants d'impulsion et les courants ondulatoires.

Fig. 7.

«Les deux premiers systèmes de courants ont été employés depuis longtemps pour la transmission électrique des sons musicaux, et le téléphone de Reiss dont nous avons déjà parlé en a été une application intéressante. Mais les courants ondulatoires n'avaient pas été employés avant moi[7], et ce sont eux qui ont permis de résoudre le problème de la transmission de la parole. Pour qu'on puisse se rendre compte de l'importance de cette découverte, il suffit d'analyser les effets produits avec ces différents systèmes de courants, quand plusieurs sons de hauteur différente doivent entrer en combinaison.

«La fig. 6 montre une combinaison dans laquelle les styles a et a' de deux instruments transmetteurs provoquent l'interruption du courant d'une même batterie B, de manière que les vibrations déterminées soient entre elles dans le rapport d'une tierce majeure, c'est-à-dire dans le rapport de quatre à cinq. Dans ces conditions, les courants sont intermittents, et quatre fermetures de a se produiront dans le même espace de temps que les cinq fermetures de a', et les intensités électriques correspondantes seront représentées par les dentelures que l'on voit en A2 et en B2; la combinaison de ces intensités A2 + B2 donnera lieu aux dentelures inégalement espacées que l'on distingue sur la troisième ligne. Or l'on voit que, bien que le courant conserve une intensité uniforme, il est moins de temps interrompu quand les styles interrupteurs réagissent ensemble que quand ils réagissent isolément; de sorte que pour un grand nombre de fermetures simultanées effectuées par des styles animés de différentes vitesses, les effets produits équivalent à celui d'un courant continu. Toutefois le nombre maximum des effets distincts qui pourront être obtenus de cette manière dépendra beaucoup du rapport existant entre les durées des fermetures et des interruptions du courant. Plus les fermetures seront courtes et les interruptions longues, plus les effets transmis sans confusion seront nombreux et vice versâ.

«Avec les courants d'impulsion, la transmission des sons musicaux s'effectue comme l'indique la figure 7, et l'on voit que quand ils sont produits simultanément, l'effet résultant A2 + B2 est analogue à celui qui serait produit par un courant continu d'intensité minima.

Fig. 8.

«Avec les courants ondulatoires, les choses se passent autrement, mais pour les produire il est nécessaire d'avoir recours aux effets d'induction, et la fig. 8 indique la manière dont l'expérience doit être faite. Dans ce cas, les courants réagissant sur le récepteur musical R résultent de renforcements et d'affaiblissements produits par l'action d'armatures, M, M' vibrant devant des électro-aimants e, e', placés dans le circuit de la batterie B, et comme ces renforcements et affaiblissements successifs sont en rapport avec les positions respectives des armatures par rapport aux pôles magnétiques, les courants qui en résultent peuvent avoir leur intensité représentée par des lignes ondulées comme on le voit en A2 et en B2; or ces ondulations, pour la tierce dont il a été question précédemment, seront telles qu'il s'en produira quatre en A2, dans le même temps qu'il s'en produira cinq en B2, et il résultera de la combinaison de ces deux effets une résultante qui pourra être représentée par la courbe A2 + B2, laquelle représente la somme algébrique des courbes A2 et B2. Un effet analogue est produit quand on emploie des courants ondulatoires alternativement renversés comme on le voit fig. 9, et pour les obtenir, il suffit d'opposer aux armatures de fer M, M' employées dans la précédente expérience, des aimants permanents et de supprimer la batterie voltaïque B.

«Pour peu qu'on étudie les fig. 8 et 9, continue M. G. Bell, on reconnaît aisément que la transmission simultanée, par un même fil, de sons de différente force et de différente nature ne peut, dans le cas qui nous occupe en ce moment, altérer le caractère des vibrations qui les ont provoquées, comme cela a lieu avec les courants intermittents ou avec les courants d'impulsion; elle ne fait que changer la forme des ondulations, et ce changement se produit de la même manière que dans le milieu aériforme qui transmet à l'oreille la combinaison des sons émis. On peut donc de cette manière transmettre à travers un fil télégraphique le même nombre de sons qu'à travers l'air.»

Fig. 9.

Après avoir appliqué les principes précédents à la construction d'un système télégraphique à transmissions multiples[8], M. G. Bell ne tarda pas à en tirer parti dans de nouvelles recherches qu'il fit alors pour perfectionner l'éducation vocale des sourds et muets. «Il est bien connu, dit M. Bell, que les sourds et muets ne sont muets que parce qu'ils sont sourds et qu'il n'y a dans leur système vocal aucun défaut qui puisse les empêcher de parler. Par conséquent, si l'on parvenait à rendre visible la parole et à déterminer les fonctions du mécanisme vocal nécessaires pour produire tel ou tel son articulé représenté, il deviendrait possible d'enseigner aux sourds et muets la manière de se servir de leur voix pour parler. Le succès que j'obtins de ce système dans les expériences que je fis à l'école de Boston m'engagea à étudier d'une manière toute particulière les relations qui pouvaient exister entre les sons produits et leur représentation graphique, et j'employai, à cet effet, la capsule manométrique de M. Kœnig et le phonautographe de M. Léon Scott auquel M. Maurey de Boston avait appliqué un enregistreur assez sensible pour être mis en action par la voix. Cet enregistreur consistait d'ailleurs dans un style de bois de un pied de longueur environ, qui était fixé directement sur la membrane vibrante du phonautographe et qui pouvait fournir sur une surface plane de verre noirci, des traces assez amplifiées pour être d'une distinction facile. Quelques-unes de ces traces sont représentées fig. 10. Je fus très-frappé des résultats produits par cet instrument, et il me sembla qu'il y avait une grande analogie entre lui et l'oreille humaine. Je cherchai alors à construire un phonautographe modelé davantage sur le mécanisme de l'oreille, et j'eus pour cela recours à un célèbre médecin spécialiste de Boston, M. le docteur Clarence J. Blake. Il me proposa de me servir de l'oreille humaine elle-même comme de phonautographe plutôt que de chercher à l'imiter, et d'après cette idée, il construisit l'appareil représenté fig. 11, auquel fut adapté un style traçant. En enduisant la membrane du tympan et le pavillon circulaire avec un mélange de glycérine et d'eau, on communiqua à ces organes une souplesse suffisante pour que, en chantant dans la partie extérieure de cette sorte de membrane artificielle, le style fût mis en vibration, et l'on obtint ainsi des traces sur une plaque de verre noircie, disposée au-dessous de ce style et soumise à un mouvement d'entraînement rapide. La disproportion considérable de masse et de grandeur qui, dans cet appareil, existait entre la membrane et les osselets mis en vibration par elle, attira particulièrement mon attention et me fit penser à substituer à la disposition compliquée que j'avais employée pour mon téléphone à transmission de sons multiples, une simple membrane à laquelle était fixée une armature de fer. Cet appareil fut alors disposé comme l'indique la fig. 12, et je croyais obtenir par lui les courants ondulatoires qui m'étaient nécessaires[9]. En effet, en articulant à la branche sans bobine d'un électro-aimant boiteux une armature de fer doux A, reliée par une tige à une membrane en or battu n, je devais obtenir, par suite des vibrations de celles-ci, une série de courants induits ondulatoires qui, réagissant sur l'électro-aimant d'un appareil semblable placé à distance, devaient faire reproduire à l'armature de celui-ci les mouvements de la première armature, et par conséquent faire vibrer la membrane correspondante, exactement comme celle ayant provoqué les courants. Toutefois les résultats que j'obtins de cet arrangement ne furent pas satisfaisants, et il me fallut encore entreprendre bien des essais qui m'amenèrent à réduire autant que possible les dimensions et le poids des armatures et même à les constituer avec des ressorts de pendule de la grandeur de l'ongle de mon pouce. Dans ces conditions, au lieu d'articuler ces armatures, je les attachai au centre des membranes, et mon appareil fut alors disposé comme l'indique la fig. 13[10]. Nous pûmes alors, mon ami M. Thomas Watson et moi, obtenir des transmissions téléphoniques qui nous montrèrent que nous étions dans la bonne voie. Je me souviens d'une expérience faite alors avec ce téléphone qui me remplit de joie. Un des deux appareils était placé à Boston dans une des salles de conférences de l'université, l'autre dans le soubassement d'un bâtiment adjacent. Un de mes élèves observait ce dernier appareil, et je tenais l'autre. Après que j'eus prononcé ces mots: «Comprenez-vous ce que je dis?», quelle a été ma joie quand je pus entendre moi-même cette réponse à travers l'instrument: «Oui, je vous comprends parfaitement.» Certainement l'articulation de la parole n'était pas alors parfaite, et il fallait l'extrême attention que je prêtais, pour distinguer les mots de cette réponse; cependant l'articulation de ces mots existait, et je pouvais croire que leur manque de clarté devait être rapporté uniquement à l'imperfection de l'instrument. Sans entrer dans le détail de tous les essais que je dus entreprendre pour améliorer la construction de cet appareil, je dirai qu'au bout de quelque temps je fus conduit à employer comme téléphone de réception l'appareil représenté fig. 14, et c'est ce modèle joint à celui de la fig. 13, combiné comme transmetteur, qui fut admis à l'exposition de Philadelphie.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

«Dans ce nouveau modèle de récepteur, la membrane était remplacée par une lame vibrante de fer L fixée sur l'enveloppe cylindrique d'un électro-aimant tubulaire C, et le système était monté sur un pont P qui servait de caisse sonore. Les articulations produites par cet appareil étaient bien distinctes; mais son grand défaut était qu'il ne pouvait servir d'appareil transmetteur; il était donc nécessaire d'avoir deux appareils à chaque station, l'un pour la transmission, l'autre pour la réception.

«Je cherchai alors à changer la disposition du téléphone transmetteur en variant les conditions de ses éléments constituants, tels que les dimensions et la tension de la membrane, le diamètre et l'épaisseur de l'armature, la grandeur et la puissance de l'aimant et même les hélices de fil enroulé sur ce dernier; j'ai pu en reconnaître empiriquement les meilleures conditions d'organisation et combiner la meilleure forme à donner à l'appareil. Ainsi j'avais reconnu, par exemple, qu'en diminuant la longueur de la bobine du fil de l'hélice magnétisante et la surface de la lame de fer attachée à la membrane, j'augmentais non-seulement l'intensité des sons, mais encore leur netteté d'articulation; ce qui me fit naturellement abandonner la membrane en or battu pour n'employer qu'une simple plaque de fer, et comme il m'était démontré depuis longtemps que l'intervention du courant traversant la bobine de l'électro-aimant n'était utile que pour magnétiser celui-ci, je me décidai à supprimer la pile et à employer pour noyau magnétique un aimant permanent. Toutefois, comme à l'époque où ces instruments devaient être exposés pour la première fois en public, les résultats obtenus avec ce dernier système étaient moins satisfaisants qu'avec celui qui mettait à contribution la batterie voltaïque, je ne voulus exposer que cette dernière disposition d'instrument, ce qui donna l'occasion à certaines personnes et, entre autres au professeur Dolbear du collége de Tufts, de réclamer la priorité pour l'introduction des aimants permanents dans le téléphone; mais j'en avais eu l'idée dès le commencement de mes recherches et alors que je m'occupais des transmissions simultanées des sons musicaux.

Fig. 15.

Fig. 16.

«La fig. 15 représente le premier perfectionnement que j'ai apporté à l'appareil exposé à Philadelphie, et la fig. 16 en représente un autre qui a fourni des effets très-puissants. Dans ce dernier, l'aimant était en fer à cheval et disposé à la manière de celui que M. Hughes a employé pour son télégraphe imprimeur. Avec cet appareil, les sons pouvaient être entendus (faiblement il est vrai) par une nombreuse assemblée; il fut exposé le 12 février 1877 à l'institut d'Essex, à Salem (Massachusetts), et y reproduisit devant un auditoire de 600 personnes un discours prononcé à Boston dans un appareil semblable. Les intonations de la voix de celui qui parlait ont pu être distinguées par l'auditoire. Toutefois l'articulation n'était distincte qu'à une distance de 6 pieds de l'instrument. Il fut fait à cette occasion un rapport qu'on transmit par l'appareil à Boston, et qui fut reproduit le lendemain dans les journaux de cette ville.

«Entre la forme de la fig. 13 et celle de l'appareil actuel, représenté fig. 17, il n'y a qu'une différence bien légère, et cette dernière forme n'a été combinée que pour rendre l'appareil plus portatif et d'un usage plus commode. Sous ce rapport, je dois exprimer ma reconnaissance à plusieurs de mes amis, entre autres à MM. les professeurs Peirce et Blake, le docteur Channing, M. Clarke et M. Jones, pour l'aide qu'ils m'ont prêté. Ainsi M. Peirce a été le premier à démontrer la possibilité de l'emploi dans les téléphones d'aimants de très-petites dimensions. C'est lui également qui a donné à l'embouchure recouvrant la plaque vibrante la forme que j'ai adoptée pour le modèle définitif qui est représenté fig. 17.

Fig. 17.

Outre le modèle représenté fig. 13, il se trouvait encore à l'exposition de Philadelphie un autre système de transmetteur téléphonique qui est reproduit fig. 18 et qui était fondé sur l'action directe des courants voltaïques. Un fil de platine p fixé à une membrane tendue LL complétait par son immersion dans de l'eau V le circuit réunissant les deux appareils en correspondance. En parlant en E devant la membrane tendue, les vibrations communiquées à la pointe de platine modifiaient la résistance du circuit dans des conditions telles, que le courant réagissait sur le récepteur par impulsions ondulatoires tout à fait semblables à celles résultant des courants induits. Les sons produits devenaient plus forts quand le liquide était légèrement acidulé ou salé, et l'on obtenait encore de bons résultats au moyen d'une pointe de plombagine immergée dans du mercure, de l'eau acidulée ou salée, ou dans une solution de bichromate de potasse.

Fig. 18.

«Bien que mes recherches eussent pour but final le perfectionnement de la télégraphie, je pus constater dans le cours de mes expériences quelques effets intéressants que je crois devoir rapporter ici. Ainsi j'observai qu'un son musical était produit par le seul fait du passage d'un courant à travers un morceau de plombagine ou de charbon de cornue. Des effets extrêmement curieux résultaient aussi du passage de courants intermittents alternativement renversés à travers le corps humain. Ainsi un rhéotome étant placé dans le circuit primaire d'un appareil d'induction et les deux bouts du fil du circuit secondaire étant réunis à deux électrodes de cuivre dont une était placée près de l'oreille, on percevait des sons très-distincts aussitôt que l'on touchait de la main l'autre électrode. En touchant des deux mains les deux électrodes et plaçant les doigts contre l'oreille, des craquements se faisaient entendre et semblaient venir des doigts, comme s'ils étaient la répercussion du tremblement musculaire résultant du passage des courants induits. Ces bruits pourtant n'existaient que pour la personne sur laquelle l'expérience était faite. Quand deux personnes se tenant par la main étaient interposées dans le circuit au lieu d'une seule, un son se produisait au contact des mains réunies, mais il fallait pour cela que les mains ne fussent pas humides. Ce phénomène se reproduisait, du reste, quand le contact de ces deux personnes était effectué sur une partie quelconque de leur corps. Au contact des bras, le bruit était assez intense pour être entendu à plusieurs pieds de distance, et il était alors presque toujours accompagné d'une légère secousse. L'introduction d'une feuille de papier entre les deux parties en contact n'interrompait pas la production du son, mais elle supprimait l'effet désagréable de la secousse. Quand on faisait passer le courant intermittent de la bobine de Ruhmkorff à travers le bras d'une personne, on pouvait, en y appliquant l'oreille, entendre un son qui semblait provenir des muscles de l'avant-bras et du biceps.

«Du reste, des sons musicaux très-nets se font entendre quand on fait fonctionner l'interrupteur du circuit primaire de l'appareil de Ruhmkorff, et s'il y a deux interrupteurs, on obtient deux sons différents, ce qui montre que ces sons proviennent de l'étincelle.

«Voici encore une expérience très-intéressante, faite par le professeur Blake avec un téléphone dont le barreau aimanté était remplacé par une tige de fer doux de six pieds de longueur. Ce téléphone étant réuni électriquement à un téléphone ordinaire du modèle de la fig. 17, reproduisait très-bien les sons émis dans ce dernier; mais leur intensité variait suivant la direction que l'on donnait à la tige de fer, et le maximum correspondait à la position de la tige dans le méridien magnétique.

«Quand on interpose un téléphone dans un circuit télégraphique, on entend des bruits d'un caractère très-particulier dont l'origine me paraît encore assez complexe et souvent obscure. Il en est pourtant qui doivent provenir de l'induction exercée par les fils voisins et des dérivations de courant qui se produisent toujours à travers les supports des fils, car les signaux télégraphiques échangés à travers ces fils voisins sont parfaitement perçus dans le téléphone. Certains bruits résultent aussi des courants terrestres, des vibrations du fil sous l'influence des courants d'air et même des frictions produites par des joints défectueux. La sensibilité du téléphone est, du reste, telle que les bruits résultant des transmissions télégraphiques voisines peuvent être perçus quand on substitue au fil télégraphique du téléphone un rail de chemin de fer, et alors même que les fils télégraphiques les plus voisins de ce rail sont éloignés de quarante pieds. D'un autre côté, M. Peirce a reconnu que des sons peuvent être produits dans un téléphone, quand le fil télégraphique auquel cet appareil est réuni est impressionné par une aurore boréale. Quelquefois aussi, des airs chantés ou joués sur un instrument de musique se sont trouvés transmis par le téléphone sans qu'on ait pu savoir leur provenance; mais ce qui montre le plus la merveilleuse sensibilité de cet appareil, c'est la possibilité qu'il donne de reproduire la parole à travers des corps que l'on pourrait croire à peu près non conducteurs. Ainsi la communication à la terre d'un circuit téléphonique peut être faite par l'intermédiaire du corps humain malgré l'interposition des bas et des chaussures; et elle peut même être effectuée si, au lieu d'être sur le sol, on est placé sur un mur en briques. Il n'y a que la pierre de taille et le bois qui constituent un obstacle assez grand pour couper la communication; mais il suffit que le pied touche le terrain avoisinant, soit même une touffe de gazon, pour qu'aussitôt les effets électriques manifestent leur présence.

«D'après ces résultats, une question toute naturelle pouvait se poser à l'esprit: quelle est la longueur maxima de circuit à laquelle les transmissions téléphoniques peuvent atteindre?... Mais il est difficile d'y répondre en raison des conditions différentes dans lesquelles peut être placée l'expérience. Dans les essais de laboratoire on est parvenu à échanger sans difficulté des correspondances sur des circuits de 60,000 ohms de résistance, soit 6000 kilomètres de fil télégraphique, et je suis parvenu à transmettre sur un circuit dans lequel étaient interposées 16 personnes se tenant par la main, lequel circuit avait une résistance d'environ 6400 kilomètres. Toutefois la plus grande longueur de circuit télégraphique sur laquelle j'ai pu obtenir une transmission nette de la parole, n'a pas dépassé 250 milles. Dans cette expérience, aucune difficulté ne survint, tant que les lignes télégraphiques voisines n'étaient pas en activité; mais aussitôt que les correspondances s'échangèrent à travers ces lignes, les sons vocaux, quoique encore perceptibles, étaient bien diminués d'intensité, et l'on aurait cru entendre une conversation échangée au milieu d'un orage. On a pu également transmettre la parole à travers les câbles sous-marins, et M. Preece m'informe que des résultats satisfaisants ont été obtenus à travers un câble de 60 milles de longueur, immergé entre Dartmouth et l'île de Guernesey, et cela avec des téléphones à main du modèle ordinaire.»

Part de M. Elisha Gray dans l'invention du téléphone.—Nous avons vu (p. [8]) que si M. Bell a été le premier à construire et à rendre pratique le téléphone parlant, M. Elisha Gray avait le premier conçu le principe de cet instrument et l'avait combiné en électricien consommé. Un travail très-curieux qu'il vient de publier sur ses diverses inventions en téléphonie montre que dès l'année 1874 (en juin), il avait combiné un récepteur à lame vibrante dont on peut se faire une idée en supposant un électro-aimant soutenu verticalement devant le fond d'un plat métallique évasé, dont la partie plate, c'est-à-dire le fond, serait très-mince et éloignée de quelques dixièmes de millimètre seulement des pôles de l'électro-aimant.

Le transmetteur correspondant à ce récepteur n'était, il est vrai, qu'une sorte de tuyau d'orgue dont l'anche agissait comme interrupteur de courant, et par conséquent il ne pouvait transmettre que des sons musicaux. Mais en 1875, M. Gray pensa à disposer un transmetteur pour les sons articulés, et le 15 février 1876, il déposa, comme nous l'avons vu, à l'office des patentes américaines un caveat dans lequel était exposé un système complet de téléphone parlant. Ce système ne fut pas, il est vrai, exécuté immédiatement, car M. Gray croyait qu'un téléphone de ce genre n'avait qu'un intérêt secondaire au point de vue commercial et télégraphique, et il attachait plus d'importance à son système de téléphone musical appliqué aux transmissions multiples; mais sa description était complète comme on peut en juger par la fig. 19 qui représente l'ensemble du système.

Fig. 19.

Dans ce système, le transmetteur était tout à fait semblable à celui à liquide dont M. Bell parle dans son mémoire et que nous avons décrit p. [51][11], et le récepteur ressemblait beaucoup à celui que nous avons représenté fig. 13. Pourtant, en principe, le système de M. Gray différait entièrement de celui adopté définitivement par M. G. Bell. Dans le premier, en effet, les variations d'intensité du courant nécessaires pour la production des mots articulés, étaient la conséquence de variations dans la résistance du circuit, et ces variations étaient obtenues par l'intermédiaire d'un liquide au sein duquel se mouvait, sous l'influence des vibrations d'une membrane tendue adaptée à un porte-voix, une pointe de platine mise en rapport avec une pile. Du rapprochement plus ou moins grand de cette pointe d'une électrode mise en rapport avec l'appareil récepteur, résultaient des différences de conductibilité du liquide proportionnelles aux amplitudes et aux inflexions des vibrations de la membrane, et ces différences d'intensité étaient traduites sur le récepteur par des magnétisations plus ou moins grandes d'un électro-aimant actionnant un disque de fer doux, fixé au centre d'une membrane tendue sur une sorte de résonnateur ou de cornet acoustique. Ce système appartenait donc à la catégorie des téléphones à pile que M. Edison, comme nous allons le voir à l'instant, a rendus si importants par la substitution au liquide d'un conducteur secondaire en charbon, et qui devaient plus tard donner naissance au microphone.

Le système Bell, comme on l'a vu, bien que mettant dans l'origine à contribution une pile, ne déterminait les affaiblissements et les renforcements électriques nécessaires à l'articulation des mots, qu'au moyen de courants d'induction provoqués par les mouvements d'une armature de fer doux, courants dont l'intensité était, par conséquent, fonction de l'amplitude et des inflexions de ces mouvements. La pile n'intervenait que pour communiquer à l'inducteur une forte aimantation. Or cet emploi des courants induits dans les transmissions téléphoniques était déjà d'une grande importance, car les diverses expériences faites depuis ont montré leur supériorité sur les courants voltaïques dans cette application. Mais l'expérience lui montra bientôt que non-seulement il n'était pas besoin pour faire agir cet instrument d'un appareil d'induction puissant animé par une pile, mais qu'un aimant permanent très-faible et très-petit pouvait à lui seul fournir des courants suffisants. Cette découverte à laquelle avait contribué M. Peirce, ainsi qu'on l'a vu, était d'une extrême importance, car elle permettait de réduire considérablement les dimensions de l'appareil, elle le rendait portatif et susceptible de se prêter à la transmission et à la réception, et elle montrait que le téléphone était le plus sensible de tous les appareils révélateurs de l'action des courants. Si donc M. Bell n'a pas employé le premier les moyens efficaces pour transmettre les mots articulés, on peut dire qu'il a cherché comme M. Gray à résoudre le problème par des courants ondulatoires, et qu'il a obtenu ces courants au moyen des effets d'induction, système qui, étant perfectionné, devait conduire aux résultats importants que tout le monde connaît. N'y eût-il que la connaissance qu'il a donnée au monde étonné d'un instrument capable de reproduire télégraphiquement la parole, qu'une grande gloire lui serait acquise, car ce problème avait été regardé jusque-là comme insoluble.

En résumé, les prétentions de M. Gray à l'invention du téléphone ont été résumées par lui de la manière suivante, dans un travail très-intéressant intitulé: Experimental researches on electro-harmonic telegraphy and telephony.

1o J'ai trouvé le premier les moyens pratiques de transmettre à travers un circuit fermé les sons composés et d'inflexions variables par la superposition de deux ou de plusieurs ondes électriques.

2o Je prétends avoir découvert et utilisé le premier le moyen de reproduire les vibrations par l'emploi d'un aimant récepteur constamment animé par une action électrique.

3o Je prétends encore être le premier à avoir construit un instrument ayant un aimant avec un diaphragme circulaire en matière magnétique, soutenu par ses bords à une petite distance en face des pôles de l'aimant, et susceptible d'être appliqué à la transmission et à la réception des sons articulés.

4o Je soutiens avoir décrit le premier le téléphone à sons articulés, et cela d'une manière assez exacte et assez complète pour qu'un téléphone exécuté d'après cette description ait pu transmettre et reproduire fidèlement la parole.[Table des Matières]