CHAPITRE SEPT.
De la cause qui fait briser les rayons de la lumiere en passant d'une substance dans une autre; que cette cause est une loi générale de la Nature inconnue avant Neuton; que l'inflexion de la lumiere est encore un effet de cette cause, &c.
NOUS avons déja vu l'artifice presque incompréhensible de la réflexion de la lumiere, que l'impulsion connue ne peut causer. Celui de la réfraction dont nous allons reprendre l'examen n'est pas moins surprenant.
Ce que c'est que réfraction.
Commençons par nous bien affermir dans une idée nette de la chose qu'il faut expliquer. Souvenons-nous bien, que quand la lumiere tombe d'une substance plus rare, plus legére comme l'air, dans une substance plus pesante, plus dense comme l'eau, & qui semble lui devoir résister davantage, la lumiere alors quitte son chemin & se brise en s'approchant d'une perpendicule, qu'on éleveroit sur la surface de cette eau.
Mr. Le Clerc, dans sa Physique, a dit tout le contraire faute d'attention. En son Livre cinq, chapitre huit: «Plus la résistance des corps est grande, dit-il, plus la lumiere qui tombe dans eux s'éloigne de la perpendicule. Ainsi le rayon s'éloigne de la perpendicule en passant de l'air dans l'eau». Ce n'est pas la seule méprise qui soit dans le Clerc, & un homme qui auroit le malheur d'étudier la Physique dans les Ecrits de cet Auteur, n'auroit guère que des idées fausses ou confuses.
Pour avoir une idée bien nette de cette vérité, regardez ce rayon qui tombe de l'air dans ce cristal.
Vous savez comme il se brise. Ce rayon A E. fait un angle avec cette perpendiculaire B E. en tombant sur la surface de ce cristal. Ce même rayon réfracté dans ce cristal, fait un autre angle avec cette même perpendiculaire qui régle sa réfraction. Il fallut mesurer cette incidence & ce brisement de la lumiere. Snellius trouva le premier la proportion constante, suivant laquelle les rayons se rompent dans ces différens milieux. On en fit l'honneur à Descartes. On attribue toujours au Philosophe le plus accrédité les découvertes qu'il rend publiques: il profite des travaux obscurs d'autrui, & il augmente sa gloire de leurs recherches. La découverte de Snellius étoit alors un Chef-d'œuvre de sagacité. Cette proportion découverte par Snellius est très-aisée à entendre.
Ce que c'est que sinus de réfraction.
Plus la ligne A. B. que vous voyez, est grande, plus la ligne C. D. sera grande aussi. Cette ligne A. B. est ce qu'on appelle sinus d'incidence. Cette ligne C. D. est le sinus de la réfraction. Ce n'est pas ici le lieu d'expliquer en général ce que c'est qu'un sinus. Ceux qui ont étudié la Géométrie le savent assez. Les autres pourroient être un peu embarassez de la définition. Il suffit de bien savoir que ces deux sinus, de quelque grandeur qu'ils soient, sont toujours en proportion dans un milieu donné. Or cette proportion est différente, quand la réfraction se fait dans un milieu différent.
La lumiere qui tombe obliquement de l'air dans du cristal, s'y brise de façon, que le sinus de réfraction C. D. est au sinus d'incidence A. B. comme 2. à 3. ce qui ne veut dire autre chose, sinon que cette ligne A. B. est un tiers plus grande dans l'air, en ce cas, que la ligne C. D. dans ce cristal.
Dans l'eau cette proportion est de 3. à 4. Ainsi il est palpable que le cristal réfracte, brise la lumiere d'un neuvième plus fortement que l'eau. Il faut donc savoir que dans tous les cas, & dans toutes les obliquités d'incidence possibles, le cristal sera plus refringent que l'eau d'un neuvième. Il s'agit de savoir non-seulement la cause de la réfraction, mais la cause de ces réfractions différentes.
Idée de Descartes ingénieuse, mais fausse.
Le corps le plus solide n'est pas le plus réfractant.
Preuve.
Descartes a trouvé, à son ordinaire, des raisons ingénieuses & plausibles de cette proprieté de la lumiere; mais là, comme en tout le reste, mettant son esprit à la place des choses, il a donné des conjectures pour des vérités. Il a feint que la lumiere, en passant de l'air dans un milieu nouveau, plus épais, plus compact, y passe plus librement, y est moins retardée dans sa tendance prétendue au mouvement, & moins retardée, disoit-il, moins troublée dans un milieu dense, comme le verre, que dans un milieu moins épais, comme l'eau. Nous avons déja vu combien il s'abuse en assûrant que la lumiere n'a qu'une tendance au mouvement. Nous avons vu que les rayons se meuvent en effet, puisqu'ils changent de place à nos yeux dans leurs réfractions. Mais son erreur ici est encore assez importante: il se trompe en croyant que les corps les plus solides sont toujours ceux qui brisent le plus la lumiere, & qui lui ouvrent en la brisant un chemin plus facile. Il n'est pas vrai que tous les corps solides réfractent, brisent plus la lumiere absolument, que les corps fluides; car quoiqu'en effet l'eau opére une réfraction moins forte, absolument parlant, que le verre; cependant par rapport à sa densité, elle opére une réfraction plus forte. Il est bien vrai que la lumiere se brise environ un neuvième davantage dans le verre, que dans l'eau; mais si la réfraction suivoit le rapport de la densité, elle devroit, dans le verre, aller fort au delà d'un neuvième. Imaginez deux hommes, dont l'un aura quatre fois plus de force, que l'autre. Si le plus fort ne porte qu'un poids une fois plus pesant, il sera vrai de dire que par rapport à sa force, il n'a pas, à beaucoup près, tant porté que l'autre; car il devroit porter quatre fois davantage.
L'ambre opére une réfraction bien plus forte que le cristal, par rapport à sa densité. Peut-on dire cependant que l'ambre ouvrira un chemin plus facile à la lumiere, que le cristal? C'est donc une supposition fausse: que la lumiere se brise vers la perpendiculaire, quand elle trouve un corps transparent plus solide qui lui résiste moins, parce qu'il est plus solide.
Remarquez que toute expérience & tout calcul ruïne presque toutes les idées de Descartes, quand ce grand Philosophe ne les fonde que sur des hypothèses. Ce sont des perspectives brillantes & trompeuses qui diminuent à mesure qu'on en approche. Tous les autres Philosophes ont cherché des solutions de ce Problême de la Nature; mais l'expérience a renversé aussi leurs conjectures.
Méprise des autres grands Géométres à ce sujet.
Barrow enseignoit, après le Pere Deschalles, que la réfraction de la lumiere, en approchant de la perpendicule, se faisoit par la résistance du milieu; que plus un milieu résistoit au cours de la lumiere, plus cette réfraction devoit être forte.
Cette idée étoit le contraire de celle de Descartes; elle prouvoit seulement qu'on va à l'erreur par différens chemins. Ils n'avoient qu'à voir les expériences; ils n'avoient qu'à mesurer les réfractions qui se font dans l'esprit de vin, beaucoup plus grandes que dans l'eau; ils n'avoient qu'à considerer qu'assûrément l'esprit de vin ne résiste pas plus que l'eau, & que cependant il opére une réfraction une fois plus forte, ils auroient corrigé cette petite erreur. Aussi le Pere Deschalles avoue qu'il doute fort de son explication.
Grande découverte de Neuton.
Enfin Neuton seul à trouvé la véritable raison qu'on cherchoit. Sa découverte mérite assûrément l'attention de tous les Siècles. Car il ne s'agit pas ici seulement d'une proprieté particuliere à la lumiere, quoique ce fût déja beaucoup; nous verrons que cette proprieté appartient à tous les corps de la Nature.
Considerez que les rayons de la lumiere sont en mouvement, que s'ils se détournent en changeant leur course, ce doit être par quelque loi primitive, & qu'il ne doit arriver à la lumiere, que ce qui arriveroit à tous les corps de même petitesse que la lumiere, toutes choses d'ailleurs égales.
Qu'une balle de plomb A. soit poussée obliquement de l'air dans l'eau, il lui arrivera d'abord le contraire de ce qui est arrivé à ce rayon de lumiere; car ce rayon délié passe dans des pores, & cette balle, dont la superficie est large, rencontre la superficie de l'eau qui la soutient.
Attraction.
Cette balle s'éloigne donc d'abord de la perpendiculaire B.; mais lorsqu'elle a perdu tout ce mouvement oblique qu'on lui avoit imprimé, elle est abandonnée à elle-même, elle tombe alors, à peu près suivant une perpendiculaire, qu'on élèveroit du point où elle commence à descendre. Or Neuton a découvert & a prouvé qu'il y a dans la Nature une force, qui fait tendre tous les corps, en ligne perpendiculaire, les uns vers les autres en proportion directe de leur masse. Donc cette force (telle qu'elle soit) doit agir dans l'eau sur ce rayon; & la masse du rayon étant incomparablement moindre que celle de l'eau, ce rayon doit sensiblement être mu vers elle.
Regardez donc ce rayon de lumiere qui descend perpendiculairement de l'air sur la surface de ce cristal.
L'attraction agit en perpendicule, & accélere la chûte des rayons.
Comme cette ligne descend perpendiculairement, le pouvoir de l'attraction, tel qu'il soit, agissant en ligne droite, le rayon ne se détourne point de son chemin; mais il arrive plus promptement, qu'il n'auroit fait en B., & c'est encore une vérité apperçue par Neuton.
Avant lui on croioit que ce rayon de lumiere étoit retardé dans son cours en entrant dans l'eau. Au contraire, il y entre avec accélération. Pourquoi? Parce qu'il y est porté, & par son propre mouvement, & par celui de l'attraction que l'eau, ou le verre, lui imprime. Ce rayon arrive donc en B. par cette force accélératrice plus promptement qu'il n'eût franchi l'air.
Mais si nous considerons dans ce même bassin d'eau, ou dans cette même masse de verre, ce rayon oblique qui tombe dessus, qu'arrive-t-il? Il conserve son mouvement d'obliquité en ligne droite, & il en acquiert un nouveau en ligne perpendiculaire.
Que cette attraction, que cette tendance, que cette espèce de gravitation existe, nous n'en pouvons douter: car nous avons vu la lumiere attirée par le verre, y rentrer sans toucher à rien; or cette force agit nécessairement en ligne perpendiculaire, la ligne perpendiculaire étant le plus court chemin.
Puisque cette force existe, elle est dans toutes les parties de la matiere. Les parties de la superficie d'un corps quelconque, éprouvent donc ce pouvoir, avant qu'il pénétre l'intérieur de la substance, avant qu'il parvienne au centre où il est dirigé. Ainsi dès que ce rayon est arrivé près de la superficie du cristal, ou de l'eau, il prend déja un peu en cette maniere le chemin de la perpendicule.
Lumiere brisée avant d'entrer dans les corps.
Il se brise déja un peu en C. avant d'entrer: plus il entre, plus il se brise; c'est que plus les corps sont proches, plus ils s'attirent, & que celui qui a le plus de masse détermine vers lui, celui qui en a moins. Ainsi il arrive à ce rayon de lumiere la même chose qu'à tout corps, qui a un mouvement composé de deux directions différentes; il n'obéït à aucune, & tient un chemin qui participe des deux. Ainsi ce rayon ne tombe pas tout-à-fait perpendiculairement, & ne suit pas sa premiere ligne droite oblique, en traversant cette eau, ou ce verre; mais il suit une ligne qui participe des deux côtés, & qui descend d'autant plus vîte, que l'attraction de cette eau, ou de ce cristal, est plus forte. Donc loin que l'eau rompe les rayons de lumiere, en leur résistant, comme on le croioit, elle les rompt en effet, parce qu'elle ne résiste pas, &, au contraire, parce qu'elle les attire. Il faut donc dire que les rayons se brisent vers la perpendiculaire, non pas quand ils passent d'un milieu plus facile dans un milieu plus résistant, mais quand ils passent d'un milieu moins attirant dans un milieu plus attirant. Observez qu'il ne faut jamais entendre par ce mot attirant, que le point vers lequel se dirige une force reconnue, une proprieté incontestable de la matiere.
Vous savez que beaucoup de gens, autant attachés à la Philosophie, ou plutôt au nom de Descartes, qu'ils l'étoient auparavant au nom d'Aristote, se sont soulevés contre l'attraction. Les uns n'ont pas voulu l'étudier, les autres l'ont méprisee, & l'ont insultée après l'avoir à peine examinée; mais je prie le Lecteur de faire les trois réflexions suivantes.
Il faut examiner l'attraction avant de se révolter contre ce mot.
1o. Qu'entendons-nous par attraction? Rien autre chose qu'une force par laquelle un corps s'approche d'un autre, sans que l'on voye, sans que l'on connaisse, aucune autre force qui le pousse.
2o. Cette propriété de la matiere est établie par les meilleurs Philosophes en Angleterre, en Allemagne, en Hollande, & même dans plusieurs Universitez d'Italie, où des Loix un peu rigoureuses ferment quelquefois l'accez à la Vérité. Le consentement de tant de savans hommes n'est pas une preuve, sans doute; mais c'est une raison puissante pour examiner au moins si cette force existe ou non.
3o. L'on devroit songer que l'on ne connait pas plus la cause de l'impulsion, que de l'attraction. On n'a pas même plus d'idée de l'une de ces forces que de l'autre; car il n'y a personne qui puisse concevoir pourquoi un corps a le pouvoir d'en remuer un autre de sa place. Nous ne concevons pas non plus, il est vrai, comment un corps en attire un autre, comment les parties de la matiere gravitent mutuellement. Aussi ne dit-on pas que Neuton se soit vanté de connaitre la raison de cette attraction. Il a prouvé simplement qu'elle existe: il a vu dans la matiere un phénomêne constant, une propriété universelle. Si un homme trouvoit un nouveau métal dans la terre, ce métal existeroit-il moins, parce que l'on ne connaitrait pas les premiers Principes dont il seroit formé? Que le Lecteur qui jettera les yeux sur cet Ouvrage ait recours à la discussion métaphysique sur l'attraction, faite par Mr. de Maupertuis, dans le plus petit & dans le meilleur Livre qu'on ait écrit peut-être en Français, en fait de Philosophie. On y verra à travers la reserve avec laquelle l'Auteur s'est expliqué, ce qu'il pense, & ce qu'on doit penser de cette attraction, dont le nom a tout effarouché.
Nous avons vu dans le second chapitre, que les rayons réflechis d'un Miroir ne sauroient venir à nous de sa surface. Nous avons expérimenté que les rayons transmis dans du verre à un certain angle, reviennent au lieu de passer dans l'air; que, s'il y a du vuide derriere ce verre, les rayons qui étoient transmis auparavant reviennent de ce vuide à nous. Certainement il n'y a point-là d'impulsion connue. Il faut de toute nécessité admettre un autre pouvoir; il faut bien aussi avouer, qu'il y a dans la réfraction quelque chose qu'on n'entendoit pas jusqu'à présent.
Preuves de l'attraction.
Or quelle sera cette puissance qui rompra ce rayon de lumiere dans ce bassin d'eau? Il est démontré (comme nous le dirons au chapitre suivant) que, ce qu'on avoit cru jusqu'à présent un simple rayon de lumiere, est un faisceau de plusieurs rayons, qui se réfractent tous différemment. Si de ces traits de lumiere contenus dans ce rayon, l'un se réfracte, par exemple, à quatre mesures de la perpendiculaire, l'autre se rompra à trois mesures. Il est démontré que les plus réfrangibles, c'est-à-dire, par exemple, ceux qui en se brisant au sortir d'un verre, & en prenant dans l'air une nouvelle direction, s'approchent moins de la perpendiculaire de ce verre, sont aussi ceux qui se réflechissent le plus aisément, le plus vîte. Il y a donc déja bien de l'apparence, que ce sera la même loi qui fera réflechir la lumiere, & qui la fera réfracter.
Enfin, si nous trouvons encore quelque nouvelle propriété de la lumiere, qui paraisse devoir son origine à la force de l'attraction, ne devrons-nous pas conclure que tant d'effets appartiennent à la même cause?
Inflexion de la lumiere auprès des corps qui l'attirent.
Voici cette nouvelle propriété qui fut découverte par le Pere Grimaldi Jésuite vers l'an 1660. & sur laquelle Neuton a poussé l'examen jusqu'au point de mesurer l'ombre d'un cheveu à des distances différentes. Cette propriété est l'inflexion de la lumiere. Non-seulement les rayons se brisent en passant dans le milieu dont la masse les attire; mais d'autres rayons, qui passent dans l'air auprès des bords de ce corps attirant, s'approchent sensiblement de ce corps, & se détournent visiblement de leur chemin. Mettez dans un endroit obscur cette lame d'acier, ou de verre aminci, qui finit en pointe: exposez-la auprès d'un petit trou par lequel la lumiere passe; que cette lumiere vienne raser la pointe de ce métal.
Vous verrez les rayons se courber auprès en telle maniere, que le rayon qui s'approchera le plus de cette pointe, se courbera davantage, & que celui qui en sera plus éloigné, se courbera moins à proportion. N'est-il pas de la plus grande vraisemblance, que le même pouvoir qui brise ces rayons, quand ils sont dans ce milieu, les force à se détourner, quand ils sont près de ce milieu? Voilà donc la réfraction, la transparence, la réflexion, assujeties à de nouvelles loix. Voilà une inflexion de la lumiere, qui dépend évidemment de l'attraction. C'est un nouvel Univers qui se présente aux yeux de ceux qui veulent voir.
Nous montrerons bien-tôt qu'il y a une attraction évidente entre le Soleil & les Planetes, une tendance mutuelle de tous les corps les uns vers les autres. Mais nous avertissons ici d'avance, que cette attraction, qui fait graviter les Planetes sur notre Soleil, n'agit point du tout dans les mêmes rapports que l'attraction des petits corps qui se touchent. Il faudra que l'on songe bien, que ces rapports changent au point de contact. Qu'on ne croye point que la lumiere est infléchie vers le cristal & dans le cristal, suivant le même rapport, par exemple, que Mars est attiré par le Soleil. Tous les corps, comme nous le verrons, sont attirez en raison inverse du quarré de leurs distances; mais au point de contact, ils le sont en raison inverse des cubes de leurs distances, & beaucoup plus encore. Ainsi l'attraction est bien plus forte, & la force s'en dissipe bien plus vîte; & cette attraction des corps qui se touchent, augmente encore à mesure que les corps sont petits. Ainsi des particules de lumiere attirées par les petites masses du verre, sont bien loin de suivre les loix du Systême planétaire. Deux atomes, & deux Planetes telles que Jupiter & Saturne, obéïssent à l'attraction, mais à différentes loix de l'attraction. C'est ce que nous nous reservons d'expliquer dans l'avant dernier Chapitre, & ce que nous avons cru nécessaire d'indiquer ici pour lever toute équivoque.
J. v. Schley invenit et fecit 1737.