Część historyczna

Odkrycie zjawisk radioaktywności jest związane z poszukiwaniami prowadzonymi od czasu odkrycia promieni Röntgena, a dotyczącemi działań fotograficznych ciał fosforyzujących i fluoryzujących.

Pierwsze rurki wytwarzające promienie röntgenowskie nie posiadały antykatody metalicznej. Źródło promieni Röntgena znajdowało się w ścianie szklanej, uderzanej przez promienie katodalne. Ścianka ta jednocześnie fluoryzowała bardzo silnie. Można więc było przypuszczać, że emisja promieni röntgenowskich nieodłącznie towarzyszy fluorescencji, powstającej pod jakimbądź wpływem. Myśl tę powziął pierwszy p. Henryk Poincaré1.

Wkrótce potem p. Henry doniósł, że otrzymał obrazy fotograficzne pod działaniem siarczku cynku fosforyzującego przez papier czarny2. P. Niewęgłowski wywołał to samo zjawisko siarczkiem wapnia, który poprzednio był wystawiony na działanie światła3. Na koniec p. Troost otrzymał silne obrazy fotograficzne, działając sztucznie otrzymaną blendą heksagonalną fosforyzującą poprzez papier czarny i grubą tekturę4.

Przytoczone powyżej doświadczenia nie mogły być powtórzone, pomimo wielu w tym kierunku usiłowań. Niepodobna więc żadną miarą uznać za rzecz dowiedzioną, że siarczek cynku i siarczek wapnia pod wpływem światła wysyłają promienie niewidzialne, które mogą przechodzić przez papier czarny i działać na płytę fotograficzną.

P. Becquerel wykonywał doświadczenia podobne z solami uranu, z których pewna część okazywała fluorescencję5. Otrzymał on obrazy fotograficzne przez papier czarny, używając siarczanu uranylowo-potasowego. P. Becquerel sądził zrazu, że ta sól, która posiada fluorescencję, zachowuje się tak jak siarczek cynku i siarczek wapnia w doświadczeniach panów Henry’ego, Niewęgłowskiego i Troosta. Ale dalszy bieg doświadczeń przekonał go, że zjawisko uważane nie ma żadnego związku z fluorescencją. Nie ma konieczności, żeby sól była naświetlona, a, co więcej, uran i wszystkie jego połączenia działają w jednakowy sposób, a uran metaliczny jest najbardziej czynny. P. Becquerel spostrzegł następnie, że związki uranowe, pomimo przechowywania ich w całkowitej ciemności, zachowują własność działania na płyty fotograficzne przez papier czarny w ciągu lat całych. P. Becquerel przyjął, że uran i jego związki wysyłają szczególniejsze promienie: promienie uranowe. Dowiódł, że promienie te mogą przechodzić przez cienkie zasłony metalowe i że wyładowują ciała naelektryzowane. Poczynił też doświadczenia, z których wywnioskował, że promienie uranowe ulegają załamaniu, odbiciu i polaryzacji.

Badania innych fizyków (Elstera i Geitla, lorda Kelwina, Schmidta, Rutherforda, Beattiego i Smoluchowskiego) potwierdziły i rozszerzyły wyniki poszukiwań p. Becquerela za wyjątkiem odbicia, załamania i polaryzacji promieni uranowych, które zachowują się w tym względzie jako promienie röntgenowskie, co przede wszystkim zostało wykazane przez p. Rutherforda, a następnie i przez samego p. Becquerela.

Rozdział I. Promieniotwórczość uranu i toru. Minerały promieniotwórcze

Promienie Becquerela. Promienie uranowe, odkryte przez p. Becquerela, działają na płytę fotograficzną bez dostępu światła; mogą przenikać przez wszelkie ciała stałe, ciekłe i gazowe, o ile ich warstwa jest odpowiednio cienka; przechodząc przez gazy, nadają im własność przewodzenia elektryczności w stopniu słabym6.

Własności powyższe związków uranowych nie są zależne od żadnego bodźca znanego. Promieniowanie zdaje się być samoistnym; natężenie jego nie zmniejsza się bynajmniej, jeżeli związki uranu są przez całe lata przechowywane w zupełnej ciemności; zjawisko nie jest więc wcale jakąś fosforesceneją szczególną, wzbudzoną przez światło.

Samoistność i trwałość promieniowania uranowego stanowią zjawisko fizyczne nader osobliwe. P. Becquerel przechowywał w ciemności kawałek uranu przez lat kilka i przekonał się, że po upływie tego czasu działanie na płytkę fotograficzną nie zmieniło się w sposób dający się dostrzec. Pp. Elster i Geitel wykonali doświadczenie podobne i przekonali się również, że działanie jest stałe7.

Natężenie promieniowania uranu mierzyłam, korzystając z działania tego promieniowania na przewodnictwo elektryczne powietrza. Otrzymałam w taki sposób liczby, które stwierdzają stałość promieniowania w granicach dokładności doświadczeń, to jest aż do 2 lub 3 mniej więcej odsetek8.

Do pomiarów tych była używana płytka metaliczna, pokryta warstwą uranu sproszkowanego; płytki tej nie przechowywano w ciemności, gdyż warunek ten, według spostrzegaczy wyżej przytoczonych, nie ma znaczenia. Liczba pomiarów wykonanych z tą płytką jest bardzo wielka i obecnie odnoszą się one do okresu czasu wynoszącego już pięć lat.

Były czynione poszukiwania, mające na celu dowiedzieć się, czy i inne ciała mogą działać tak, jak związki uranowe. P. Schmidt pierwszy ogłosił, że tę właściwość posiada również tor i jego związki9. Przeprowadzone jednocześnie odpowiednie badania i mnie także dały wynik takiż sam. Ogłosiłam to spostrzeżenie, nie znając jeszcze komunikatu p. Schmidta10.

Mówimy, że uran, tor i ich związki wysyłają promienie Becquerela. Ciała, które są źródłem emisji tego rodzaju, nazwałam radioaktywnymi11 (promieniotwórczymi) i nazwa ta odtąd została przyjęta ogólnie.

Promienie Becquerela przez swoje działanie fotograficzne i elektryczne zbliżają się do promieni Röntgena. Mają też, na równi z tymi ostatnimi, zdolność przenikania wszelkich substancji . Różnią się jednak bardzo pod względem siły przenikania: promienie uranowe i torowe zostają powstrzymane po przebyciu drogi wynoszącej kilka milimetrów w materii stałej, a w powietrzu przebyć nie mogą odległości większej nad kilka centymetrów; tak jest przynajmniej dla znaczniejszej części promieniowania.

Badania różnych fizyków, a przed innymi p. Rutherforda, dowiodły, że promienie Becquerela nie ulegają ani prawidłowemu odbiciu, ani załamaniu, ani polaryzacji12.

Słaba zdolność przenikania promieni uranu i toru zbliżałaby je raczej do promieni wtórnych, które są wytwarzane przez promienie Röntgena, a których badaniem zajął się p. Sagnac13, aniżeli do samych promieni Röntgena.

Z drugiej strony można by poszukiwać zbliżenia pomiędzy promieniami becquerelowskimi a promieniami katodalnymi rozchodzącemi się w powietrzu (promienie Lenarda). Wiadomo nam dzisiaj, że różne te zbliżenia są wszystkie uprawnione.

Mierzenie natężenia promieniowania. Metoda używana w tym celu polega na mierzeniu przewodnictwa nabytego przez powietrze pod wpływem ciał promieniotwórczych; metoda, o której mowa, posiada tę zaletę, że jest pośpieszna i dostarcza liczb odpowiednich do porównywania między sobą. Przyrząd używany przeze mnie w tym celu, składa się głównie z kondensatora o dwu talerzach AB (fig. 1). Substancja czynna, drobno sproszkowana, jest umieszczona na talerzu B; nadaje ona własność przewodzenia warstwie powietrza pomiędzy talerzami. Chcąc zmierzyć przewodnictwo, doprowadzamy talerz B do wysokiego potencjału, łącząc go z jednym z biegunów baterii małych akumulatorów P, której biegun drugi jest połączony z ziemią, zatem pomiędzy tymi talerzami wytwarza się prąd elektryczny. Potencjał talerza A jest wskazywany przez elektrometr E. Jeżeli zerwiemy połączenie z ziemią w punkcie C, talerz A ładuje się, a ładunek jego odchyla elektrometr. Szybkość tego odchylenia jest proporcjonalna do siły prądu i może służyć do jej mierzenia.

Lepiej jednak dokonywać tego pomiaru, kompensując ładunek talerza A tak, żeby elektrometr pozostawał na punkcie zero. Ładunki, o które tu idzie, są nadzwyczaj słabe; mogą one być kompensowane za pomocą kwarcu piezoelektrycznego Q, którego jedno uzbrojenie jest złączone z talerzem A, drugie zaś — z ziemią. Blaszkę kwarcową poddajemy wyciąganiu, którego wielkość jest znana i oznaczona przez ciężarki, umieszczane na talerzyku Π; obciążenia dokonywa się stopniowo, a następstwem tego jest stopniowe wytworzenie pewnej znanej ilości elektryczności w ciągu czasu, który mierzymy. Czynność tę możemy regulować w taki sposób14, żeby ilość elektryczności przechodząca przez kondensator i ilość elektryczności ze znakiem przeciwnym, dostarczana przez kwarc, równoważyły się między sobą w każdej chwili. Można także mierzyć w wartościach bezwzględnych ilość elektryczności, przechodzącą w pewnym czasie przez kondensator, to jest mierzyć siłę prądu. Pomiary są tu niezależne od czułości elektrometru.

Wykonywając szereg pomiarów tego rodzaju, przekonywamy się, że radioaktywność jest zjawiskiem, które można mierzyć z pewną dokładnością. Mało zmienia się ona z temperaturą, a wahania w stanie ciepła środowiska otaczającego prawie nie wywierają na nią wpływu; stopień oświetlenia substancji czynnej nie ma żadnego znaczenia. Natężenie prądu przepływającego przez kondensator wzrasta razem z powierzchnią talerzy. Dla danego przyrządu i danej substancji prąd wzrasta odpowiednio do różnicy potencjału na dwu talerzach, do ciśnienia gazu napełniającego kondensator i do odległości talerzy (pod warunkiem, żeby ta odległość nie była zbyt wielka w stosunku do średnicy). W każdym razie, wobec dużych różnic potencjału prąd dąży do pewnej wartości granicznej, która, praktycznie biorąc, jest wartością stałą. Nazywamy ją prądem nasyconym, albo prądem granicznym. Tak samo wobec pewnej, dostatecznie wielkiej odległości między talerzami kondensatora prąd nie zmienia się wcale z dalszymi zmianami tej odległości. Prąd otrzymany w powyższych warunkach, z dodatkiem, że kondensator pozostaje w powietrzu pod ciśnieniem atmosferycznym, był w doświadczeniach moich używany do mierzenia promieniotwórczości.

Dla przykładu podaję krzywe wyobrażające natężenie prądu w funkcji pola średniego, wytworzonego pomiędzy talerzami kondensatora, wobec dwu różnych odległości tych talerzy między sobą. Talerz B był pokryty cienką warstewką sproszkowanego uranu metalicznego; talerz A, połączony z elektrometrem, był zaopatrzony w pierścień ochronny.

Figura 2 wskazuje, że natężenie prądu osiąga wielkość stałą wobec znacznych różnic potencjału na dwu talerzach. Figura 3 przedstawia też same krzywe w innej skali i zawiera wyłącznie rezultaty, odnoszące się do małych różnic potencjału. Początek krzywej jest linią prostą; iloraz z natężenia prądu przez różnicę potencjału jest wielkością stałą dla napięć słabych i przedstawia przewodnictwo początkowe między talerzami. Możemy tedy odróżniać dwie ważne staje charakterystyczne zjawiska uważanego: 1. przewodnictwo początkowe w przypadku małych różnic potencjału; 2. prąd graniczny w przypadku wielkich różnic potencjału. Prąd graniczny został przyjęty za miarę promieniotwórczości.

Obok różnicy potencjału, którą wywołujemy pomiędzy talerzami kondensatora, istnieje nadto pomiędzy nimi siła elektrobodźcza zetknięcia, a wyniki tych dwu źródeł prądu dodają się do siebie. Z tego powodu wartość bezwzględna natężenia prądu zmienia się razem ze znakiem różnicy potencjału zewnętrznego. W każdym jednak razie wobec wielkich różnic potencjału skutki siły elektrobodźczej zetknięcia mogą być pominięte, a natężenie prądu jest wtedy jednakowe bez względu na znak pola pomiędzy talerzami.

Badania nad przewodnictwem powietrza i innych gazów, poddanych wpływowi promieni Becquerela, były dokonane przez wielu fizyków15. Studium bardzo szczegółowe nad tym przedmiotem zostało ogłoszone przez p. Rutherforda16.

Prawa przewodnictwa, wywołanego w gazach przez promienie Becquerela, są takież same, jak prawa znalezione dla odpowiedniego działania promieni Röntgena. Mechanizm zjawiska, o ile się zdaje, w obu razach jest jednakowy. Teoria jonizacji gazów przez promienie czy to röntgenowskie, czy becquerelowskie doskonale objaśnia zjawiska dostrzegane. Teorii tej wykładać tutaj nie będę, przypomnę tylko wnioski, do których ona prowadzi:

1. Liczba jonów wytworzonych w gazie w ciągu sekundy jest uważana za proporcjonalną do pochłoniętej przez gaz energii promieniowania.

2. Dla otrzymania prądu granicznego, odpowiadającego danemu promieniowaniu, należy, z jednej strony, doprowadzić do całkowitego pochłonięcia przez gaz energii promieniowania, a to przez użycie masy pochłaniającej odpowiednio wielkiej; z drugiej strony, do wytworzenia prądu należy zużytkować wszystkie wydzielone jony, wywołując pole elektryczne o tyle silne, ażeby liczba jonów, łączących się na powrót, była nieznaczną częścią liczby całkowitej jonów wydzielonych w tym samym czasie, które prawie wszystkie zostają przez prąd porwane i doprowadzone do elektrod. Pole elektryczne, niezbędne do otrzymania takiego wyniku, musi być tym silniejsze, im jonizacja jest znaczniejsza.

Według świeżych poszukiwań p. Townsenda zjawisko staje się bardziej złożonym, gdy ciśnienie gazu jest niskie. Zdaje się, że wtedy prąd zrazu dąży do wartości granicznej stałej w miarę wzrastania różnicy potencjału, ale, począwszy od pewnej wielkości tej różnicy, prąd zaczyna znowu wzrastać razem z polem i to z szybkością bardzo znaczną. P. Townsend przyjmuje, że ten przyrost zależy od nowej jonizacji, spowodowanej przez same jony, gdy one, pod wpływem pola elektrycznego nabędą szybkości wystarczającej do tego, ażeby cząsteczka gazu, znajdująca się na drodze takiego pocisku, została przez jego uderzenie zdruzgotana i rozbita na swoje jony. Pole elektryczne silne obok ciśnienia słabego dopomagają jonizacji przez jony już istniejące i w chwili, kiedy jonizacja taka się rozpoczyna, natężenie prądu zwiększa się statecznie wraz z siłą pola pomiędzy talerzami kondensatora17. Prąd graniczny może zatem być otrzymany tylko w tym razie, kiedy wpływy jonizujące nie przekraczają pewnej wielkości; inaczej mówiąc, prąd taki odpowiada polom, które jeszcze nie mogą dawać początku jonizacji gazu wywołanej przez uderzenia jonów. Ten warunek był właśnie zachowywany w moich doświadczeniach.

Porządek wielkości prądów nasyconych, otrzymywanych ze związkami uranu, wyraża się przez 10–11 amperów, kiedy talerze kondensatora mają średnicę 8 cm, a odległość między nimi wynosi 3 cm. Związki torowe wytwarzają prądy tegoż samego porządku wielkości i aktywność tlenków uranowych i torowych jest bardzo zbliżona.

Radioaktywność związków uranowych i torowych. — Z rozmaitymi związkami uranu otrzymałam liczby, które podaję niżej; przez i oznaczam natężenie prądu w amperach.

Uran metaliczny (zawierający w sobie cokolwiek węgla)...........2,3
Tlenek uranu czarny, U2O4, ...............................2,6
Tlenek uranu zielony, U2O4............................1,80
Kwas uranowy (wodzian)...................................0,6
Uranian sodu.................1,2
Uranian potasu....................................1,2
Uranian amonu...............................1,3
Siarczan uranowy. ................................0,7
Siarczan uranylowo-potasowy..........................0,7
Azotan uranylu.................................0,7
Fosforan uranylowo-miedziowy............................0,9
Tlenosiarczek uranu. ....................................1,2

Grubość użytej warstwy związku uranowego wywiera wpływ niewielki, z warunkiem, żeby ta warstwa była ciągła. Oto kilka doświadczeń w tym względzie:

Grubość warstwy
Tlenek uranu.............................0,5 mm2,7
Tlenek uranu ....................................3,0 mm3,0
Uranian amonu............................0,5 mm1,3
Uranian amonu ..................3,0 mm1,4

Stąd możemy wyprowadzić wniosek, że pochłanianie promieni uranowych przez ciała, które je wysyłają, jest bardzo silne, ponieważ promienie pochodzące z warstw głębszych nie wywierają na pomiar ważniejszego wpływu.

Liczby otrzymane z doświadczeń ze związkami torowymi18 pozwoliły mi stwierdzić:

1. że grubość użytej warstwy ma wpływ znaczny, szczególniej w przypadku tlenku torowego;

2. że zjawisko przebiega prawidłowo tylko w tym razie, kiedy użyto cienkiej warstwy działającej (np. 0,25 mm). Przeciwnie, kiedy warstwa jest gruba (6 mm), liczby otrzymane wahają się w granicach szerokich, szczególniej dla tlenku:

Grubość warstwy
Tlenek toru.................................0,25 mm2,2
Tlenek toru.............................2,5 mm2,5
Tlenek toru.............................0,5 mm4,7
Tlenek toru.............................3,0 mm3,5 (średnio)
Tlenek toru.............................0,25 mm0,8
Siarczan torowy...................0,25 mm0,8

Istnieje więc w naturze zjawiska przyczyna nieprawidłowości, jakiej nie ma w przypadku związków uranowych. Liczby otrzymane z warstwą tlenku toru grubą na 6 mm wahają się pomiędzy 3,7 a 7,3.

Doświadczenia, które przeprowadziłam nad pochłanianiem promieni uranowych i torowych, dowiodły, że promienie torowe są bardziej przenikliwe od uranowych, i że promienie wysyłane przez tlenek toru użyty w warstewce grubszej przenikają silniej niż promienie pochodzące od warstewki cieńszej. Oto, na przykład, liczby przedstawiające ułamek promieniowania, jaki przepuszcza blaszka glinowa, gruba na 0,01 mm.

Ciało promieniująceUłamek promieniowania przepuszczany przez blaszkę
Uran............................................................... 0,18
Tlenek uranu U2O3............................................. 0,20
Uranian amonowy....................................................0,20
Fosforan miedziowo-uranowy.....................0,21
Tlenek toru — warstwa gruba na 0,25 mm0,38
Tlenek toru — warstwa gruba na 0,5 mm.....0,47
Tlenek toru — warstwa gruba na 3,0 mm.....0,70
Tlenek toru — warstwa gruba na 6,0 mm.....0,70
Siarczan toru — Tlenek toru — warstwa gruba na 0,25 mm.............0,38

W doświadczeniach ze związkami uranu okazuje się, że pochłanianie jest zawsze jednakowe, niezależnie od tego, jaki mianowicie związek zostanie użyty; stąd wnioskować należy, że promienie wysyłane przez związki różne są jednakiej natury.

Odrębności promieniowania torowego były przedmiotem komunikatów bardzo szczegółowych. P. Owens19 wykazał, że tutaj stałość prądu otrzymuje się dopiero po upływie dość znacznego czasu i tylko w przyrządzie zamkniętym, a natężenie prądu zmniejsza się bardzo pod wpływem strumienia powietrza, czego nie mamy dla związków uranowych. P. Rutherford powtarzał doświadczenia podobne i objaśnia je przez przypuszczenie, że tor i jego związki wydzielają nie tylko promienie Becquerela, lecz nadto jeszcze i emanację, składającą się z cząstek niesłychanie małych, która zatrzymuje w sobie radioaktywność w ciągu pewnego czasu, a może być unoszona przez strumień powietrza20

Właściwości promieniowania torowego, które zależą od wpływu grubości użytej warstwy i działania strumienia powietrza, okazują wielostronny związek ze zjawiskiem radioaktywności wzbudzonej i jej rozprzestrzeniania się z miejsca na miejsce. Zjawisko to po raz pierwszy było zauważone na radzie i będzie opisane poniżej.

Promieniotwórczość związków uranu i toru przedstawia się jako własność atomowa. Już p. Becquerel stwierdził, że wszystkie związki uranowe są aktywne i zawnioskował, że ich aktywność jest spowodowana przez obecność w ich składzie pierwiastku uranu; dowiódł także, że sam uran jest bardziej aktywny niż jego sole21. Badałam w tym względzie związki uranowe i torowe i wykonałam znaczną liczbę pomiarów ich aktywności w rozmaitych warunkach. Z całości tych pomiarów okazuje się, że radioaktywność tych ciał jest rzeczywiście własnością atomową. Wydaje się, że tutaj jest ona związana z obecnością atomów dwu pierwiastków rozważanych i nie bywa niweczona ani przez zmiany stanu fizycznego, ani przez przemiany chemiczne. Związki chemiczne i mieszaniny zawierające w sobie uran lub tor są o tyle bardziej aktywne, o ile stosunek znajdujących się w ich składzie owych metali jest większy. Każda przymieszka nieczynna działa jako materia obojętna i zarazem — jako ciało pochłaniające promieniowanie.

Czy radioaktywność atomowa jest zjawiskiem powszechnym? — Jak już było mówione poprzednio, badałam, czy inne ciała oprócz związków uranu są radioaktywne. Przedsięwzięłam to poszukiwanie z przekonaniem, że mało podobnym do prawdy wydaje się przypuszczenie, ażeby promieniotwórczość, uważana jako własność atomu, miała być własnością pewnego rodzaju materii z wyłączeniem wszystkich innych jej rodzajów. Pomiary dokonane przeze mnie uprawniają mnie do twierdzenia, że związki pierwiastków chemicznych obecnie za takie uznawanych, rozumiejąc w ich liczbie najrzadsze i najbardziej nawet hipotetyczne, zbadane przeze mnie, wykazywały wszystkie w mym przyrządzie aktywność co najmniej sto razy słabszą niż uran metaliczny. Mając do czynienia z ciałami bardziej rozpowszechnionymi, badałam liczne ich związki; w przypadku ciał rzadkich musiałam poprzestawać na tych, w jakie udawało mi się zaopatrzyć.

Do doświadczeń swoich wciągnęłam pod postacią pierwiastków lub związków ciała następujące:

1. Wszystkie metale i niemetale pospolitsze i niektóre rzadsze, w stanie czystym, wchodzące w skład zbioru p. Etarda w Szkole Fizyki i Chemii Przemysłowej miasta Paryża;

2. Następujące ciała rzadkie: gal, german, neodym, prazeodym, niob, skand, gadolin, erb, samar, rubid (okazy użyczone przez p. Demarçay’a), yttr, yterb, erb „nowy” (okazy użyczone przez p. Urbaina22;

3. Znaczną liczbę skał i minerałów.

W granicach czułości mojego przyrządu nie znalazło się ani jedno ciało proste, które by posiadało promieniotwórczość atomową, z wyjątkiem uranu i toru. Należy jednak wspomnieć pokrótce o pewnej okoliczności, odnoszącej się do fosforu. Fosfor biały zwilżony, umieszczony pomiędzy talerzami kondensatora, nadaje powietrzu zawartemu między tymi talerzami własność przewodzenia23. Ciała tego jednak nie uważam za radioaktywne na wzór uranu lub toru. Fosfor, w rzeczy samej, w warunkach przytoczonych utlenia się i wytwarza światło, gdy tymczasem związki uranowe i torowe są aktywne, jakkolwiek nie doświadczają żadnej zmiany chemicznej, dającej się dostrzec za pomocą środków znanych. Co więcej, fosfor nie jest aktywny ani w odmianie czerwonej, ani w swych związkach.

W rozprawie niedawno ogłoszonej p. Bloch wykazuje, że fosfor, utleniając się w powietrzu, daje początek jonom bardzo słabo ruchliwym i wywołującym zgęszczanie się pary wodnej24.

Uran i tor są to dwa pierwiastki, które posiadają najwyższe ciężary atomowe (240 i 232); często spotykamy je w jednych i tych samych minerałach.

Minerały radioaktywne. — Zbadałam w swoim przyrządzie znaczną liczbę minerałów25; niektóre spomiędzy nich wykazały aktywność, szczególniej blenda smolista, chalkolit, autunit, monacyt, toryt, oranżyt, fergusonit, kleweit itd. W tabliczce poniższej i przedstawia wyrażone w amperach natężenie prądu, otrzymane z uranem i z różnymi minerałami:

Uran.......................2,3
Blenda smolista z Johanngeorgenstadu.......................8,3
Blenda smolista z Joachmistahlu.......................7,0
Blenda smolista z Pribramu.......................6,5
Blenda smolista z Kornawalii.......................1,6
Kleweit.......................1,4
Chalkolit.......................5,2
Autmit.......................2,7
Toryty różne.......................0,1; 0,3; 0,7; 1,3; 1,4
Oranżyt...............2,0
Monacyt.........................0,5
Ksenotym......................0,03
Eschinit.............0,7
Fergusonit, 2 okazy.................0,1; 0,1
Samarskit......................1,1
Niobit, 2 okazy...............0,1; 0,3
Tantalit.....................0,02
Karnotyt26....................5,2

Prąd wytwarzający się za użyciem oranżytu (minerał zawierający tlenek toru) zmieniał się bardzo w zależności od grubości warstwy minerału. Zmieniając tę grubość od 0,25 mm do 6 mm, otrzymano prąd od 1,8 do 2,3.

Wszystkie minerały, które się okazały promieniotwórczymi, zawierają tor lub uran; aktywność ich była oczekiwana, lecz natężenie zjawiska dla niektórych minerałów wydało się nam zdumiewającem. Tak, znaleziono blendy smoliste (minerały zawierające tlenek uranu) cztery razy bardziej aktywne od uranu metalicznego. Chalkolit (fosforan miedziowo-uranowy krystaliczny) jest dwa razy bardziej aktywny od uranu metalicznego. Autunit (fosforan uranowo-wapniowy) jest równie aktywny jak uran. Fakty te nie zgadzają się z uwagami poprzednimi, według których żaden minerał nie powinien był się okazać bardziej aktywnym od uranu i toru.

Ażeby ten punkt wyjaśnić, przygotowałam chalkolit sztuczny według sposobu Debray’a, wychodząc z materiałów pierwotnych czystych. Metoda polega na zmieszaniu roztworu azotanu uranylowego z roztworem fosforanu miedzi w kwasie fosforowym i ogrzaniu mieszaniny do 50 lub 60°. Po upływie pewnego czasu w cieczy tworzą się kryształy chalkolitu27. W taki sposób wytworzony chalkolit posiada aktywność zupełnie normalną, jeżeli uwzględnimy skład jego: jest on półtrzecia28 raza mniej aktywny od uranu.

Od tej chwili stało się rzeczą bardzo prawdopodobną, że tak wysoka aktywność blendy smolistej, chalkolitu, autunitu zależy od zawartości w tych ciałach małej ilości substancji bardzo silnie promieniotwórczej, odmiennej od uranu, toru i w ogóle od pierwiastków poprzednio znanych. Wydało mi się, że o ile tak jest w istocie, mogę mieć nadzieję wydobycia z minerału tego ciała za pomocą postępowania zwyczajnego analizy chemicznej.

Rozdział II. Nowe substancje radioaktywne

Metoda poszukiwań. Rezultaty studyów nad minerałami radioaktywnymi, przytoczone w rozdziale poprzednim, zniewoliły p. Curie i mnie do podjęcia poszukiwań w celu wydzielenia z blendy smolistej nowej substancji promieniotwórczej. Metodę naszych badań mogliśmy oprzeć tylko na radioaktywności, gdyż nie znaliśmy żadnej innej własności szukanego ciała hipotetycznego. Promieniotwórczość może być pomocna w badaniach tego rodzaju w sposób następujący: Mierzy się radioaktywność danego produktu, oddziela od siebie jego części składowe według metod analizy chemicznej, mierzy następnie radioaktywność każdego z otrzymanych składników i wreszcie z wyniku pomiarów wnioskuje, czy szukana substancja promieniotwórcza stanowi część integralną jednego tylko ze składników, czy też rozdziela się pomiędzy nie wszystkie i w jakim stosunku. Osiąga się w ten sposób wskazówkę, którą można by do pewnego stopnia porównać z wynikami analizy widmowej. Chcąc na tej drodze otrzymać liczby porównawcze, należy do pomiarów radioaktywności używać substancji w stanie stałym i dobrze wysuszonych.

Polon, rad, aktyn. Analiza blendy smolistej, dokonana na podstawie metody wskazanej powyżej, pozwoliła nam wykazać w tym minerale obecność dwu substancji silnie radioaktywnych: polonu („polonium”), wykrytego przez nas, i radu („radium”), który odkryliśmy ze współudziałem p. Bémonta29.

Pod względem zachowania się wobec metod analizy, polon przedstawia ciało zbliżone do bizmutu, towarzysząc mu w rezultatach oddzielania. Bizmut, coraz to bogatszy w polon, można otrzymać za pomocą jednego z następujących sposobów:

1. Przez sublimację siarczków w próżni; siarczek zawierający ciało radioaktywne jest lotniejszy niż siarczek bizmutu czystego.

2. Przez strącanie wodą z roztworów w kwasie azotowym; strącony zasadowy azotan bizmutu jest znacznie aktywniejszy niż sól pozostała w roztworze.

3. Przez strącanie siarkowodorem z roztworów w kwasie solnym, bardzo silnie kwaśnych; strącane siarczki są daleko bardziej aktywne niż sól pozostała w roztworze.

Rad jest ciałem, które towarzyszy barowi podczas oddzielania tego pierwiastku od reszty składników blendy smolistej; dzieli on z barem jego reakcje chemiczne i daje się od baru oddzielić na podstawie różnej rozpuszczalności chlorków w wodzie czystej, w wodzie z dodatkiem alkoholu lub zakwaszonej kwasem solnym. Oddzielanie chlorków baru i radu uskuteczniamy przez poddanie ich mieszaniny krystalizacji cząstkowej; chlorek radu jest mianowicie mniej rozpuszczalny od chlorku barowego.

Trzecie ciało o silnej radioaktywności wykazał w blendzie smolistej p. Debierne, który nadał mu nazwę aktyn („actinium30”). Aktyn towarzyszy w blendzie smolistej niektórym pierwiastkom z grupy żelaza; jak się zdaje, zbliża się on przede wszystkim do toru, od którego nie można go było jeszcze dotychczas oddzielić. Ekstrakcja aktynu z blendy smolistej jest operacją bardzo żmudną ze względu na trudność zupełnego oddzielenia tego ciała.

Wszystkie trzy nowe substancje promieniotwórcze znajdują się w blendzie smolistej w ilości minimalnej. Aby otrzymać je w stanie stężonym, byliśmy zmuszeni przedsięwziąć przerób wielu ton odpadków minerału uranowego. Przerabianie na wielką skalę trzeba było uskutecznić na sposób fabryczny; jest ono związane z wielkim nakładem pracy, polegającej na oczyszczaniu i stężaniu. Z całych tysięcy kilogramów materiału podstawowego zdołaliśmy wyciągnąć kilka decygramów produktów, które są nadzwyczaj czynne w porównaniu z samym minerałem macierzystym. Oczywiście, że cała ta praca jest długa, mozolna i kosztowna31

W następstwie naszych badań ukazały się wzmianki o innych jeszcze, nowych substancjach radioaktywnych. Giesel z jednej, a Hoffmann i Strauss z drugiej strony zaznaczyli prawdopodobieństwo istnienia pewnej substancji promieniotwórczej, zbliżonej do ołowiu przez swe własności chemiczne. O substancji tej istnieją dotychczas szczupłe tylko wiadomości32.

Wśród wszystkich nowych substancji promieniotwórczych dotychczas jeden tylko rad został wydzielony w stanie soli czystej.

Widmo radu. Było rzeczą pierwszorzędnej wagi sprawdzić, za pomocą wszelkich środków dostępnych, podane przez nas w pracy niniejszej przypuszczenie co do istnienia nowych pierwiastków promieniotwórczych. Co dotyczy radu, przypuszczenie to zostało jak najzupełniej stwierdzone za pomocą analizy widmowej.

Badaniem nowych substancji radioaktywnych raczył się zająć p. Demarçay, stosując tutaj ścisłą metodę, którą posługiwał się w swych studiach nad fotografowanymi widmami iskry.

Współpracownictwo tak kompetentnego uczonego było dla nas wielkim dobrodziejstwem, toteż żywimy głęboką wdzięczność względem tego badacza za przyjęcie na swe barki tej pracy. Wyniki analizy widmowej upewniły nas właśnie wtedy, gdy mieliśmy jeszcze pewne wątpliwości do sposobu interpretacji rezultatów naszych poszukiwań33.

Pierwsze próbki chlorku baru promieniotwórczego o średniej aktywności, zbadane przez Demarçay’a, okazały w widmie ultrafioletowym, obok linij baru, linię nową o znacznym natężeniu i długości fali λ = 381,47 mμ. Po zastosowaniu produktów bardziej aktywnych, Demarçay spostrzegł, że linia fali λ = 381,47 mμ stała się silniejszą; równocześnie wystąpiły inne linie nowe, a linie te i linie baru posiadały w widmie natężenia dające się porównywać. Przez dalszą koncentrację otrzymano wreszcie produkt, w którego widmie przeważają linie nowe, podczas gdy z linij baru tylko trzy najsilniejsze są widzialne, świadcząc jedynie o obecności tego metalu jako zanieczyszczenia. Produkt ten można już uważać za prawie czysty chlorek radu. Na koniec, przez dalsze oczyszczanie, zdołałam przygotować chlorek nadzwyczaj czysty, w którego widmie dwie główne linie baru są zaledwo widoczne.

Oto, według Demarçay’a34, tablica głównych linij radu, odnosząca się do części widma w granicach między λ — 500,0 a λ — 350,0 tysiącznych mikrona (mμ). Natężenie każdej linii jest tu wyrażone liczbą; dla linii najsilniejszej oznaczono ją liczbą 16.

λNatężenieλNatężenie
482,63...10460,03... 3
472,69... 5 453,35... 9
469,98... 3443,61... 8
469,21... 7434,06... 12
468,30...14381,47...16
464,19...4364,96...12

Wszystkie linie są czyste i wąskie; trzy linie 381,47; 468,30; 434,06 są silne. Dorównywają one najsilniejszym liniom znanym dotychczas. W widmie dają się również zauważyć dwa wydatne pasma mgliste. Pierwsze, symetryczne, rozciąga się w granicach od 463,10 do 432,19 z maximum w 462,75. Drugie, silniejsze blednieje ze strony ultrafioletu; poczyna się ono raptownie od 446,37 i osiąga maksimum przy 445,52; maximum to dochodzi do 445,34, po czym pasmo mgliste, stopniowo blednąc, sięga aż do 439.

W części najmniej łamliwej widma iskrowego niefotografowanej, jedynym prążkiem znaczniejszym jest 566,5 (około), który jednak jest znacznie słabszy od linii 482,63.

Wygląd ogólny widma jest taki sam, jak metali ziem alkalicznych; wiadomo, że metale te wykazują widma o liniach silnych z kilku pasmami mglistymi.

Według Demarçay’a, rad można umieścić pomiędzy ciałami posiadającymi najbardziej czułą reakcję widmową. Skądinąd, prowadząc operację stężania chlorku baru radonośnego, mogłam sama wywnioskować, że w pierwszej badanej próbie, która wyraźnie wykazywała linię 381,47, zawartość radu musiała być bardzo nieznaczna (zapewne 0,02 na 100). Potrzeba jednak promieniotwórczości 50 razy większej niż uranu metalicznego, aby wyraźnie dostrzec główny prążek radu w widmach fotografowanych. Za pomocą elektrometru czułego można wykazać radioaktywność jakiegoś produktu, gdy wynosi ona nie więcej jak 1/100 aktywności uranu metalicznego. Widoczne jest tedy, że dla stwierdzenia obecności radu radioaktywność jest czynnikiem wiele tysięcy razy czulszym niż reakcja widmowa.

Bizmut z bardzo silnie promieniotwórczym polonem i tor z bardzo silnie działającym aktynem, badane przez Demarçay’a, dawały dotychczas tylko linie bizmutu i toru.

W rozprawie niedawno ogłoszonej Giesel, który zajmował się przygotowaniem radu, oznajmia, że bromek radu zabarwia płomień bunsenowski na kolor karminowy35. Widmo płomienia radu zawiera dwa piękne pasma czerwone, jedną linię w barwie błękitno-zielonej i dwie słabe linie we fiolecie.

Ekstrakcja nowych substancji radioaktywnych. Pierwsza czynność ekstrakcji polega na wyciąganiu z minerału uranowego baru radonośnego, bizmutu polononośnego i ziem rzadkich, zawierających aktyn. Skoro te trzy pierwsze produkty zostaną otrzymane, należy przystąpić do wydzielenia z każdego z nich nowej substancji promieniotwórczej. Ta druga część poszukiwań dokonywa się za pomocą odpowiedniej metody frakcjonowania. Wiadomo, że wynalezienie stosownego sposobu zupełnego oddzielania pierwiastków bardzo zbliżonych jest rzeczą trudną; w takich razach pozostaje tylko użycie metod opartych na frakcjonowaniu. Zresztą gdy jaki pierwiastek znajduje się w mieszaninie z drugim w ilościach nie większych nad ślady, nie sposób poddać mieszaniny jakiejś metodzie oddzielania zupełnie doskonałego, nawet gdybyśmy taką metodę znali; bowiem można by się było narazić na stratę i owego śladu danego składnika, który mógłby zostać stracony w ciągu operacji. Praca mająca na celu izolowanie radu i polonu była specjalnie moim udziałem. Po kilkuletnich poszukiwaniach w tym kierunku zdołałam dojść do wyników pozytywnych względem radu. Ponieważ blenda smolista jest minerałem kosztownym, przeto zaniechaliśmy przerabiania tego minerału w zbyt wielkich ilościach. W Europie ekstrakcja jego dokonywa się w kopalniach w Jachimowie (Joachimsthal) w Czechach. Minerał, po rozdrobnieniu, zostaje prażony z węglanem sodu, a produkt tej reakcji ługowany ciepłą wodą, a następnie kwasem siarczanym rozcieńczonym. Roztwór zawiera uran, stanowiący właśnie o wartości blendy smolistej. Pozostałość nierozpuszczalna bywa odrzucana.

Ta to pozostałość zawiera substancje radioaktywne; jej czynność promieniotwórcza jest cztery i pół raza większa od aktywności uranu metalicznego. Rząd austriacki, do którego należą kopalnie blendy, uprzejmie zaofiarował nam na cele naszych poszukiwań jedną tonę tych odpadków i upoważnił kopalnie do dostarczania nam większej ilości ton tego materiału.

Było to zadanie wcale niełatwe przerabiać odpadki po raz pierwszy w sposób fabryczny według metod stosowanych w laboratorium. P. Debierne raczył przestudiować tę kwestię i zorganizować przerób fabryczny. Punkt najważniejszy metody wskazanej przez niego polegał na uskutecznianiu przemiany siarczanów w węglany przez gotowanie materiału ze stężonym roztworem węglanu sodu. Sposób ten pozwala uniknąć czynności topienia z węglanem sodowym.

Pozostałość zawiera głównie siarczany ołowiu i wapnia, krzemionkę, glinkę i tlenek żelaza. Poza tym, można w nich znaleźć, w ilościach mniejszych lub większych, prawie wszystkie metale (miedź, bizmut, cynk, kobalt, mangan, nikiel, wanad, antymon, tal, ziemie rzadkie, niob, tantal, arsen, bar itp.). W tej mieszaninie rad znajduje się w postaci siarczanu i stanowi wśród innych siarczan najmniej rozpuszczalny. Chcąc go przeprowadzić w roztwór, należy wyrugować, jak można najzupełniej, kwas siarczany. W tym celu odpadki zostają traktowane stężonym i gorącym roztworem sody zwyczajnej. Kwas siarczany, związany z ołowiem, glinem, wapniem, przechodzi w znacznej części do roztworu w postaci siarczanu sodu, który zostaje usunięty zupełnie przez płukanie wodą. Do roztworu alkalicznego przechodzą równocześnie ołów, krzemionka i glinka. Resztę nierozpuszczalną poddaje się, po wymyciu wodą, działaniu zwykłego kwasu solnego, który rozkłada materiał traktowany i rozpuszcza znaczną jego ilość. Z roztworu stąd powstałego można wydzielić polon i aktyn: pierwszy z nich strąca się siarkowodorem, drugi natomiast znajduje się w przesączu po siarczkach i może być stąd razem z wodzianami strącony amoniakiem. Co dotyczy radu, to pozostaje on w osadzie nierozpuszczalnym w kwasie solnym. Osad ten myje się wodą, po czym traktuje stężonym i wrącym roztworem węglanu sodu. Jeżeli w osadzie pozostała niewielka tylko ilość nierozłożonych siarczanów metali obcych, wtedy wynikiem powyższej czynności jest zupełna przemiana siarczanów baru i radu w węglany. Teraz myje się materiał bardzo dokładnie wodą, po czym poddaje działaniu kwasu solnego, niezawierającego kwasu siarczanego. Roztwór zawiera rad, a nadto polon i aktyn. Roztwór ten zostaje przefiltrowany i strącony kwasem siarczanym. W ten sposób otrzymuje się surowe siarczany baru radonośnego, zawierającego nadto wapń, ołów, żelazo i nieznaczną domieszkę aktynu. Przesącz zaś zawiera jeszcze nieco polonu i aktynu, które dają się zeń wydzielić tak samo, jak z pierwszego roztworu w kwasie solnym.

Z jednej tony odpadków otrzymuje się 10 do 20 kg siarczanów surowych, których radioaktywność jest 30 do 60 razy większa niż uranu metalicznego. Teraz należy przystąpić do ich oczyszczania. W tym celu gotuje się je z węglanem sodu, po czym zamienia na chlorki. Przez roztwór w kwasie solnym przepuszcza się strumień siarkowodoru, który strąca nieco siarczków radioaktywnych, zawierających polon. Ciecz zostaje teraz odfiltrowana od osadu, utleniona działaniem chloru i strącona czystym amoniakiem.

Strącone tlenki i wodziany są w silnym stopniu promieniotwórcze, co jest spowodowane przez obecność aktynu. Roztwór, pozostały po ich odfiltrowaniu, strąca się w dalszym ciągu węglanem sodu. Strącone węglany ziem alkalicznych przemywa się wodą i przemienia na chlorki, które odparowuje się do suchości i płucze czystym, stężonym kwasem solnym. Chlorek wapnia rozpuszcza się w kwasie solnym prawie całkowicie, gdy chlorek baru radonośnego pozostaje nierozpuszczony. W ten sposób z jednej tony materiału podstawowego otrzymuje się około 8 kg chlorku baru radonośnego, którego czynność jest około 60 razy większa od czynności uranu metalicznego. Chlorek ten przedstawia materiał gotowy do frakcjonowania.

Polon. Jak już wyżej zaznaczono, siarkowodór przepuszczany przez różne roztwory w kwasie solnym, otrzymane w trakcie przerabiania, strąca z nich siarczki aktywne, których promieniotwórczość zależy od obecności polonu. Siarczki te zawierają głównie bizmut, nieco miedzi i ołowiu. Zawartość ostatniego metalu jest stosunkowo niewielka, ponieważ znaczna jego część przeszła poprzednio do roztworu w sodzie i ponieważ jego chlorek jest mało rozpuszczalny. Co do antymonu i arsenu, to znajdują się one w siarczkach w ilości minimalnej, gdyż tlenki ich zostały rozpuszczone w sodzie. Aby otrzymać siarczki bardzo aktywne, stosowano następujący sposób postępowania. Bardzo silnie kwaśne roztwory w kwasie solnym strącano siarkowodorem; strącone w tych warunkach siarczki odznaczają się bardzo znaczną aktywnością; używano ich do przygotowania polonu. W roztworze pozostają substancje, których strącenie się było niezupełne wobec nadmiaru kwasu solnego (bizmut, ołów, antymon). Aby dokonać ich strącenia, rozcieńczano roztwór wodą i wprowadzano do cieczy znowu strumień siarkowodoru, otrzymując w ten sposób drugą porcję siarczków znacznie mniej czynnych niż pierwsze. Porcję tę zazwyczaj odrzucano. — W celu ostatecznego oczyszczenia siarczków, przemywa się je siarczkiem amonu, który zabiera pozostałe ślady antymonu i arsenu, następnie płucze wodą zawierającą azotan amonu, a wreszcie rozpuszcza w kwasie azotowym. Rozpuszczanie się nie jest nigdy zupełne; stale otrzymuje się większą lub mniejszą ilość pozostałości nierozpuszczalnej, którą przerabia się powtórnie, jeżeli widzi się w tym jaką korzyść. Roztwór zaś zostaje odparowany do małej objętości i strącony bądź amoniakiem, bądź wielką ilością wody. W obydwu przypadkach ołów i miedź pozostają w roztworze; w drugim nieznaczna część bizmutu, bardzo słabo aktywnego, pozostaje również rozpuszczona.

Osad tlenków lub azotanów zasadowych poddaje się frakcjonowaniu w sposób następujący. Po rozpuszczeniu uprzednim osadu w kwasie azotowym, do roztworu dodaje się wody aż do utworzenia się dostatecznej ilości osadu. Przystępując do tej czynności, należy pamiętać, że czasami osad tworzy się dopiero po upływie pewnego czasu. Ciecz ponad osadem zostaje teraz oddzielona, a osad rozpuszczony w kwasie azotowym. Obie porcje cieczy, otrzymane w powyższy sposób, strąca się ponownie wodą i tak dalej, kolejno. Następnie łączy się razem poszczególne porcje, według stopnia ich radioaktywności, i dokłada starań, by posunąć koncentrację jak można najdalej. W ten sposób otrzymuje się bardzo drobną ilość substancji, której aktywność jest wprawdzie ogromna, która niemniej jednak nie dała w spektroskopie żadnych innych prążków, prócz prążków bizmutu.

Niestety, mało jest danych, żeby na tej drodze polon mógł być wydzielony. Opisana powyżej metoda frakcjonowania przedstawia wiele trudności, a to samo można powiedzieć i o innych sposobach frakcjonowania drogą mokrą. Niezależnie od tego, jakiego używamy sposobu, zawsze tworzą się z największą łatwością związki zupełnie nierozpuszczalne w kwasach rozcieńczonych lub stężonych.

Związki te nie dają się rozpuścić inaczej, jak tylko po uprzednim przeprowadzeniu ich w stan metaliczny, co można osiągnąć np. przez topienie z cyjankiem potasu.

W nastręczającej się tutaj znacznej liczbie czynności, jakie trzeba wykonać, tkwi olbrzymia trudność, odbijająca się na rezultatach frakcjonowania. Szkopuł ten jest poważny, zwłaszcza wobec faktu, że polon przedstawia substancję, która, skoro tylko zostanie wydzielona z blendy smolistej, zmniejsza swą radioczynność.

To obniżanie się czynności następuje zresztą powoli; np. próbka azotanu bizmutu z polonem straciła połowę swej czynności w jedenaście miesięcy.

Natomiast żadna trudność analogiczna nie jest związana z wydzielaniem radu. Radioaktywność pozostaje tutaj przewodnikiem niezawodnym w czynnościach koncentracji; koncentracja nie przedstawia sama przez się żadnych trudności, a wyniki poszukiwań mogły być od początku stale sprawdzane przez analizę widmową.

Gdy zjawisko radioaktywności wzbudzonej, o czym będzie mowa nieco dalej, zostało spostrzeżone, wydawało się naturalnym przypuszczenie, że polon, który okazuje tylko prążki bizmutu i którego radioaktywność zmniejsza się z czasem, nie jest pierwiastkiem nowym, lecz przedstawia bizmut aktywowany przez rad wskutek bliskiego z nim sąsiedztwa w blendzie smolistej. Nie jestem bynajmniej przekonana, by ten sposób zapatrywania się był ścisły. W biegu mych poszukiwań, prowadzonych dalej nad polonem, stwierdziłam w nim takie własności chemiczne, jakich nigdy nie widziałam ani w bizmucie zwykłym, ani też w bizmucie aktywowanym przez rad. Te własności chemiczne zaznaczają się przede wszystkim w nadzwyczajnej łatwości tworzenia się związków nierozpuszczalnych, o których była wzmianka powyżej (szczególnie azotanów zasadowych), a następnie w kolorze i wyglądzie osadów otrzymywanych przez dodawanie wody do roztworu bizmutu polononośnego w kwasie azotowym. Osady te są czasami białe, jednak znacznie częściej posiadają kolor żółty, mniej lub więcej żywy, dochodzący aż do ciemnej czerwieni.

Brak innych prążków w widmie, prócz prążków bizmutu, nie rozstrzyga ostatecznie, że substancja zawiera tylko bizmut, albowiem istnieją ciała, których reakcja widmowa jest mało czuła.

Byłoby rzeczą niezbędną przygotować pewną ilość bizmutu polononośnego w stanie stężenia posuniętym jak można najdalej i podjąć nad nim badania chemiczne, a przede wszystkim dokonać oznaczenia ciężaru atomowego metalu.

Gdyby dało się wykazać, że polon jest pierwiastkiem nowym, nie zmniejszyłoby się przez to prawdziwości tego faktu, że pierwiastek ten nie może trwać bezgranicznie długo w stanie silnej radioaktywności, przynajmniej wtedy, gdy zostanie wydzielony z minerału. Można tedy zapatrywać się na tę kwestię w sposób dwojaki: 1) albo cała radioaktywność polonu jest własnością wzbudzoną przez sąsiedztwo substancji promieniotwórczych innych; polon posiadałby wtedy zdolność aktywowania się atomowego w sposób trwały, zdolność, która nie zdaje się być udziałem żadnego ciała innego; 2) albo radioaktywność polonu jest własnością swoistą, która znika samodzielnie w jednych warunkach, a która może trwać w pewnych innych warunkach, jakie są urzeczywistnione w minerale pierwotnym. Zjawisko aktywowania atomowego przez zetknięcie jest jeszcze tak mało znane, że brakuje podstaw, aby można było utworzyć sobie jakiś pogląd ustalony na tę sprawę.

Niedawno ukazał się komunikat p. Marckwalda dotyczący polonu36. Marckwald zanurza sztabkę bizmutu czystego w roztworze otrzymanym przez rozpuszczenie w kwasie solnym bizmutu wyciągniętego z odpadków po przerobie blendy smolistej. Po upływie pewnego przeciągu czasu sztabka pokrywa się osadem bardzo czynnym, a roztwór zawiera wtedy tylko bizmut nieczynny. Marckwald otrzymuje również osad bardzo czynny, dodając chlorku cynawego do roztworu bizmutu radioaktywnego w kwasie solnym. Marckwald wnioskuje stąd, że pierwiastek promieniotwórczy jest analogiczny z tellurem i nadaje mu nazwę radiotelluru. Materia czynna Marckwalda wydaje się identyczną z polonem zarówno ze względu na swe pochodzenie, jak i na promienie ulegające silnemu pochłanianiu które są przez nią wysyłane. Wybór nowej nazwy dla tej materii w obecnym stanie kwestii jest bez wątpienia rzeczą zupełnie bezużyteczną.

Przygotowanie czystego chlorku radu. Sposób, jaki obrałam w celu wyciągnięcia czystego chlorku radu z chlorku baru radioaktywnego, polega na tym, że mieszaninę chlorków poddaje się krystalizacji cząstkowej, najpierw z wody czystej, następnie z wody zakwaszonej czystym kwasem solnym. Tak więc zużytkowuje się różnicę rozpuszczalności dwu chlorków, z których chlorek baru jest bardziej rozpuszczalny od chlorku radu.

W początkach krystalizacji cząstkowej stosuje się czystą wodę destylowaną. Rozpuszcza się chlorek, doprowadza roztwór do stanu nasycenia w temperaturze wrzenia, po czym przez oziębianie uskutecznia się krystalizowanie soli w parownicy przykrytej. Wtedy tworzą się na dnie piękne kryształy przylegające, sponad których łatwo zlać można ług pokrystaliczny. Jeżeli wyparujemy do suchości próbkę tego ługu, znajdziemy, że otrzymany chlorek jest około pięć razy mniej radioaktywny niż sól, która się wykrystalizowała. Zatem chlorek pierwotny został rozdzielony na dwie porcje: A i B. Względem każdego z obu chlorków, A i B, stosuje się ponownie ten sam sposób postępowania i z każdego z nich otrzymuje dwie nowe porcje. Gdy krystalizacja jest ukończona, łączy się razem mniej aktywną frakcję chlorku A z bardziej aktywną chlorku B, gdyż obie posiadają mniej więcej ten sam stopień radioaktywności. Teraz jesteśmy więc w posiadaniu trzech porcji , które w dalszym ciągu traktuje się w ten sam sposób.

Liczbie porcji nie pozwala się jednak rosnąć bez końca, bowiem w miarę jej powiększania zmniejsza się aktywność porcji najłatwiej rozpuszczalnej. Gdy porcja ta wykazuje wreszcie nieznaczną tylko aktywność, wyłącza się ją z krystalizacji cząstkowej. Po otrzymaniu pożądanej liczby porcji zaprzestaje się również frakcjonowania porcji najtrudniej rozpuszczalnej (najbogatszej w rad) i wyłącza się ją z roboty.

Pracuje się z pewną stałą liczbą porcji . Po każdej serii czynności roztwór nasycony (ług pokrystaliczny) pozostający z porcji jednej, wylewa się na kryształy z porcji następującej; skoro jednak po przerobieniu jednej serii wyłączyliśmy frakcję najłatwiej rozpuszczalną, wtedy, po przerobieniu znów serii następnej, tworzymy natomiast nową porcję z frakcji najłatwiej rozpuszczalnej, a wyłączamy za to kryształy, które przedstawiają część najbardziej aktywną. Zachowując w kolejnym następstwie te dwa sposoby postępowania, otrzymujemy bardzo regularny mechanizm frakcjonowania, w którym liczba frakcji i aktywność każdej z nich pozostają stałe, przy czym każda frakcja dana jest około pięć razy aktywniejsza niż następne. W szeregu tym z jednej strony (w końcu szeregu) wyłącza się produkt prawie nieczynny, gdy z drugiej strony (na przodzie) zdobywa się chlorek wzbogacony w rad. Ilość substancji w poszczególnych frakcjach zmniejsza się naturalnie coraz bardziej i tym mniej zawierają one substancji, im większą staje się ich aktywność.

Z początku operowano z sześciu frakcjami, a aktywność chlorku wyłączonego na końcu szeregu wynosiła nie więcej nad 0,1 aktywności uranu.

Gdy w ten sposób znaczna część substancji nieczynnej zostanie wyłączona, a frakcje staną się drobne, nie przedstawiałoby żadnej korzyści dalsze wydzielanie wobec aktywności tak słabej; wtedy usuwa się jedną frakcję z końca szeregu, a na początek włącza się porcję utworzoną z poprzednio osiągniętego chlorku aktywnego. Zdobywa się więc teraz chlorek bogatszy w rad niż poprzednio. System ten stosuje się aż do chwili, gdy kryształy z początku szeregu będą przedstawiały czysty chlorek radu. Jeżeli frakcjonowanie odbywało się w sposób ścisły, wtedy pozostają tylko bardzo drobne ilości wszelkich produktów pośrednich.

Skoro krystalizacja cząstkowa już znacznie jest posunięta i gdy ilość substancji w poszczególnych frakcjach stała się nieznaczną, wtedy dalszy podział przez krystalizację nie jest już tak skuteczny, gdyż oziębianie następuje zbyt raptownie, a objętość roztworu, który ma być odlany, staje się zbyt mała. Wtedy należy dolać do wody pewną określoną ilość kwasu solnego; ilość ta winna podwyższać się w miarę dalszego posuwania się krystalizacji cząstkowej.

Korzyść wynikła z dodatku kwasu solnego polega na możności powiększenia objętości roztworu, gdyż rozpuszczalność chlorków w wodzie zaprawionej kwasem solnym jest mniejsza niż w wodzie czystej. Nadto frakcjonowanie jest wtedy bardzo skuteczne: różnica dwu porcji otrzymanych z tego samego produktu staje się znaczna. Stosując wodę z wielką ilością kwasu, osiąga się możność doskonałego oddzielania i wtedy można ograniczyć się do trzech lub czterech frakcji . Korzystność tego sposobu ujawnia się, skoro tylko ilość substancji stanie się dostatecznie małą, by można było posługiwać się nim bez przeszkód. Kryształy wydzielające się z roztworu kwaśnego mają postać silnie wydłużonych igieł, których wygląd jest zupełnie ten sam, czy to będzie chlorek baru czy radu. Jedne i drugie łamią światło podwójnie. Kryształy chlorku baru radonośnego wydzielają się w stanie bezbarwnym, skoro jednak zawartość w nich radu stanie się dostatecznie wielka, przyjmują po upływie kilku godzin barwę żółtawą, przechodzącą w odcień pomarańczowy, a niekiedy przyjmują zabarwienie różowe. Zabarwienie to znika w roztworze. Kryształy chlorku radu czystego nie zabarwiają się wcale lub przynajmniej nie tak prędko; barwa zdaje się zatem być spowodowana przez równoczesną obecność baru i radu w krysztale. Maksimum zabarwienia otrzymuje się dla pewnego stopnia stężenia pod względem zawartości radu; własność ta może przeto być pomocna w orientowaniu się w postępie frakcjonowania. Dopóki frakcja najbardziej aktywna barwi się, zawiera ona jeszcze znaczną ilość baru, gdy jednak nie przyjmuje żadnego zabarwienia, a natomiast czynią to frakcje następujące, wtedy składa się głównie z czystego chlorku radu.

Spostrzegałam niekiedy tworzenie się pokładu kryształów, w którym część jedna pozostawała bezbarwna, gdy druga barwiła się. Zdawało się możliwą rzeczą oddzielić kryształy bezbarwne mechanicznie, jednak nie próbowałam tego. — W końcu krystalizacji cząstkowej stosunek aktywności w porcjach po sobie następujących nie jest taki sam, ani też tak prawidłowy, jak na początku; mimo to nie nastręcza się stąd żadna poważniejsza przeszkoda w biegu pracy.

Strącanie cząstkowe chlorku baru radonośnego w roztworze wodnym za pomocą alkoholu prowadzi również do wydzielenia chlorku radu, który strąca się najpierw. Sposób ten, którego używałam z początku, zastąpiłam później metodą opisaną powyżej, bardziej systematyczną. Niemniej jednak posługiwałam się strącaniem za pomocą alkoholu, aby oczyścić chlorek radu od małej domieszki chlorku baru. Ostatni związek jest rozpuszczalny w alkoholu zaprawionym nieco wodą i może być w ten sposób usunięty.

P. Giesel, który od czasu ogłoszenia naszych pierwszych poszukiwań zajął się przygotowaniem ciał radioaktywnych, zaleca uskuteczniać oddzielanie baru od radu przez cząstkowe krystalizowanie w wodzie mieszaniny bromków. Stwierdziłam, że sposób ten jest istotnie korzystny, zwłaszcza w początkach frakcjonowania.

Niezależnie od tego, jakiego sposobu frakcjonowania używać będziemy, jest zawsze rzeczą pożyteczną poddawać go kontroli przez mierzenie aktywności. Należy przy tym zauważyć, że każdy związek radu, który ze stanu roztworu został przeprowadzony w stan stały, posiada w początkach tym mniejszą aktywność, im dłużej pozostawał w roztworze. Aktywność rośnie potem w przeciągu kilku miesięcy aż do pewnej granicy, zawsze jednakowej. Aktywność końcowa jest pięć lub sześć razy większa niż początkowa. Zmiany te, do których powrócę jeszcze nieco później, winny być wzięte pod uwagę podczas pomiarów aktywności. Aczkolwiek aktywność końcowa jest dokładniej scharakteryzowana, praktyczniej jest jednak w trakcie postępowania chemicznego mierzyć aktywność początkową produktu stałego. Aktywność substancji silnie promieniotwórczych różni się stopniem wielkości znacznie od aktywności minerałów macierzystych (jest ona

razy większa). Gdy się mierzy tę radioaktywność za pomocą metody wyłuszczonej na początku rozprawy niniejszej (przyrząd na rys. 1), nie można zwiększyć, poza pewną granicę, ciężaru kładzionego na talerzyk przytwierdzony do kwarcu. Ciężar ten wynosił w naszych doświadczeniach najwyżej 4000 g, odpowiadając pewnej wytworzonej ilości elektryczności, równej 25 jednostkom elektrostatycznym. Możemy więc mierzyć aktywność w granicach od 1 do 4000, stosując zawsze jedną i tę samą powierzchnię substancji czynnej. Aby granicę pomiarów rozszerzyć, zmieniamy tę powierzchnię w pewnym znanym stosunku. Substancja zajmie wtedy pośrodku talerza B pewną powierzchnię kolistą o znanym promieniu. Ponieważ w tych warunkach aktywność nie pozostaje ściśle proporcjonalna do powierzchni, przeto oznacza się empirycznie współczynniki, które pozwalają na porównywanie aktywności wobec nierównych powierzchni działających. Gdy znowu i ten środek okaże się niewystarczający, pozostaje uciec się do ekranów absorpcyjnych i innych sposobów odpowiednich, nad któremi nie będę się jednak tutaj dłużej zatrzymywała. Wszystkie te, bardziej lub mniej niedoskonałe środki wystarczają jednakże do nadawania kierunku poszukiwaniom.

Mierzyliśmy również prąd w kondensatorze włączonym w obwód baterii złożonej z małych akumulatorów z czułym galwanometrem. Potrzeba częstego sprawdzania czułości galwanometru kazała nam jednak zaniechać tej metody dla zwykłych pomiarów.

Oznaczenie ciężaru atomowego radu37. W biegu mych poszukiwań, częstokroć oznaczałam ciężar atomowy metalu zawartego w próbkach chlorku baru radonośnego. Za każdym razem, gdy po ukończeniu nowego przerobu, posiadłam nowy zapas tego materiału, posuwałam stężenie do granic możliwie najdalszych, tak że otrzymywałam 0,1 do 0,5 g substancji, która zawierała prawie całą radioaktywność mieszaniny pierwotnej. Z tej małej ilości substancji strącałam alkoholem lub kwasem solnym kilka miligramów chlorku, które zostawały przeznaczone do analizy widmowej. Posługując się swoją znakomitą metodą, Demarçay nie potrzebował więcej nad tę minimalną ilość substancji, aby otrzymać fotografię widma iskry. Produktu zbywającego używałam do oznaczania ciężaru atomowego.

Zastosowałam tutaj metodę klasyczną, która polega na tym, że chlor, zawarty w znanej ilości chlorku bezwodnego, oznacza się jako chlorek srebra. Dla sprawdzenia tego doświadczenia, oznaczałam ciężar atomowy baru za pomocą tej samej metody, stosując ją w tych samych warunkach i do tej samej ilości substancji: najpierw 0,5 g, a następnie tylko 0,1 g. Wartości stąd otrzymane chwiały się zawsze w granicach od 137 do 138. Przekonałam się przeto, że metoda ta daje wyniki zadowalające, nawet dla tak małej ilości substancji.

Dwa pierwsze oznaczenia wykonano na chlorkach, z których jeden był 230 razy, drugi zaś 600 razy aktywniejszy od uranu. Te dwa oznaczenia dały wartości te same, co i oznaczenia chlorku baru czystego. Można się było przeto spodziewać, że pewna różnica da się dopiero wykazać po użyciu produktu daleko bardziej aktywnego. Do doświadczenia następnego użyto tedy chlorku, którego aktywność była około 3500 razy większa od aktywności uranu; doświadczenie to pozwoliło po raz pierwszy osiągnąć różnicę, drobną wprawdzie, lecz pewną. Jako wartość średnią dla ciężaru atomowego metalu, zawartego w tym chlorku, otrzymałam liczbę 140, co świadczyło, że ciężar atomowy radu musi być wyższy od ciężaru baru. Stosując dalej produkty coraz to bardziej aktywne i dające widmo radu o coraz to większym natężeniu, stwierdziłam, że wartości otrzymane stają się również coraz większe, jak to można zauważyć w poniższej tabliczce (A oznacza wielkość aktywności chlorku, jeżeli aktywność uranu przyjmiemy za jednostkę; M — znaleziony ciężar atomowy).

Liczby w kolumnie A wyrażają wartości tylko z grubsza przybliżone. Ścisłe oszacowanie aktywności ciał silnie promieniotwórczych w rzeczy samej jest trudne, dla różnych powodów, o których wspomnę nieco dalej.

AM
3500140 — widmoradu bardzo słabe
4700141
7500145,8 — widmo radu silne, lecz widmo baru posiada jeszcze znaczną przewagę
Wielkość aktywności odpowiada wartości 173,8 — obydwa widma mają natężenie mniej więcej równe
Wielkość aktywności odpowiada wartości 10225 — bar obecny w ilości nie większej nad ślady.

W biegu poszukiwań nad stężeniem, opisanych powyżej, otrzymałam w marcu 1902 r. próbkę chlorku radowego, którego analizą widmową zajął się Demarçay. Według opinii tego uczonego, ów chlorek radu był prawdopodobnie czysty; jednak widmo jego wykazywało jeszcze trzy główne linie baru o znacznym natężeniu. Chlorek ten zastosowałam do czterech oznaczeń ciężaru atomowego, których wyniki są następujące:

Chlorek radu bezwodnyChlorek srebra M
I... 0,1150 0,1130220,7
II... 0,1448 0,1119 223,0
III... 0,11135 0,1086 222,8
IV...0,10925 0,10645223,1

Podjęłam przeto dalsze oczyszczanie tego chlorku i otrzymałam produkt znacznie jeszcze czystszy, w którego widmie dwie najsilniejsze linie baru zaznaczają się bardzo słabo. Biorąc pod uwagę czułość reakcji widmowej baru, Demarçay mniema, że ten oczyszczony chlorek zawiera zaledwie „minimalne ślady baru, niezdolne do wywierania na ciężar atomowy jakiegokolwiek wpływu, który by dał się oszacować”. Tego chlorku radu, najzupełniej czystego, użyłam do trzech oznaczeń ciężaru atomowego. Oto ich wyniki:

Chlorek radu bezwodnyChlorek srebraM
I... 0,091920,08890225,3
II...0,089360,08627225,8
III...0,088390,08589224,0

Liczby te dają średnią wartość 225. Podobnie jak i poprzednie, zostały one obliczone na podstawie wniosku, że rad jest pierwiastkiem dwuwartościowym, chlorek posiada zatem wzór RaCl2, i na zasadzie następujących liczb dla srebra i chloru: Ag=107,8 i Cl=35,4.

Z doświadczeń tych wynika, że ciężar atomowy radu wynosi Ra=225. Liczbę tę uważam za ścisłą mniej więcej do jednej jedności.

Do ważeń użyto doskonale wyregulowanej wagi aperiodycznej pomysłu p. Curie’go z czułością do 1/20 mg. Waga ta, z odczytywaniem bezpośrednim, pozwala na ważenia nadzwyczaj szybkie, co stanowi warunek kardynalny dla odważania chlorków bezwodnych radu i baru, które przyciągają powoli wilgoć, mimo obecności środków suszących wewnątrz wagi. Substancja przeznaczona do odważenia, znajdowała się w tygielku platynowym, który od dawna już był w użyciu; przekonałam się, że ciężar jego nie zmieniał się w trakcie jednej operacji nawet o 1/10 mg.

Otrzymany przez krystalizację i zawierający wodę krystaliczną chlorek umieszczano w tygielku i przez ogrzewanie w suszarce zamieniano na chlorek bezwodny. Doświadczenie wykazuje, że gdy chlorek został ogrzewany przez kilka godzin w 100°, ciężar jego nie zmienia się dalej, nawet wtedy, jeżeli podniesiemy temperaturę do 200° i będziemy ją utrzymywali na tej wysokości w przeciągu kilku godzin. Tak otrzymany chlorek bezwodny przedstawia zatem ciało o charakterze dokładnie określonym.

Przytaczam szereg pomiarów odnoszących się do kwestii powyższej: chlorek (1 dg) był suszony w suszarce w temp. 55°, po czym umieszczony w eksykatorze nad bezwodnikiem fosforowym; począł on wtedy tracić nader powoli na ciężarze, co świadczy, że w chlorku znajdowała się jeszcze woda. Po upływie 12 godzin strata wyniosła 3 mg. Następnie przeniesiono chlorek z powrotem do suszarki i podwyższono temperaturę do 100°. W ciągu tego doświadczenia chlorek utracił 6,3 mg. Pozostawiony w dalszym ciągu w suszarce przez 3 godziny i 15 minut, chlorek stracił jeszcze 2,5 mg. Teraz utrzymywano temperaturę przez 45 minut między 100 a 120°, czego wynikiem była znowu strata ciężaru = 0,1 mg. Podczas dalszego, 80-minutowego ogrzewania w 125°, chlorek nie stracił nic na wadze. Ogrzewany dalej przez 30 minut w 150°, chlorek utracił jeszcze 0,1 mg. Wreszcie ogrzewany w ciągu 4-ch godzin w temp. 200°, chlorek zmniejszył swój ciężar o 0,15 mg. Po upływie wszystkich tych operacji , ciężar tygielka zmienił się o 0,05 mg.

Po każdorazowym oznaczeniu ciężaru atomowego, rad z roztworu był przeprowadzony powrotnie w chlorek w sposób następujący: ciecz, zawierającą po ukończonym oznaczeniu azotan radu i azotan srebra w nadmiarze, zakwaszano kwasem solnym, oddzielano chlorek srebra przez filtrowanie, po czym przesącz parowano z nadmiarem czystego kwasu solnego kilkakrotnie do suchości. W ten sposób można wypędzić kwas azotowy. — Chlorek srebra, tworzący się podczas oznaczania, był zawsze radioaktywny i świecił. Przez oznaczenie zawartego w nim srebra przekonałam się jednak, że nie zawierał on wcale takiej ilości radu, która by się dała zważyć. W celu wykonania tej próby stopiony chlorek srebra, znajdujący się w tyglu, został zredukowany wodorem, wydzielanym przez działanie cynku na kwas solny, po czym tygiel, po przepłukaniu, ważono razem z metalicznym srebrem. W jednym z doświadczeń stwierdziłam, że ciężar regenerowanego chlorku radu był równie wielki, jak i przed operacją. Podobne sprawdzania pozwoliły mi utwierdzić się w mniemaniu, że w doświadczeniach swoich nie popełniłam żadnego znaczniejszego błędu.

Rad jest pierwiastkiem, którego własności każą zaliczyć go do grupy metali ziem alkalicznych. W grupie tej stanowi on wyższy homologon baru.

Ze względu na swój ciężar atomowy rad zajmuje miejsce w układzie periodycznym tuż za barem, w kolumnie metali ziem alkalicznych i w szeregu poziomym, w którym mieszczą się już uran i tor.

Własności soli radowych. Sole radu: chlorek, azotan, węglan, siarczan są podobne, zaraz po ich przygotowaniu w stanie stałym, do soli baru, jednak wszystkie one barwią się z czasem. Wszystkie sole radu świecą w ciemności. We względzie własności chemicznych sole radu są najzupełniej analogiczne z odpowiednimi solami baru. Jednakże chlorek radu jest trudniej rozpuszczalny od chlorku baru. Rozpuszczalność azotanów w wodzie zdaje się być jednakowo wielka.

Sole radu stanowią źródło trwałego i samodzielnego wydzielania się ciepła. Czysty chlorek radu jest paramagnetyczny. Jego stała magnetyczna (coefficient d’aimentation spécifique) K została zmierzona przez pp. P. Curie i C. Chéneveau za pomocą przyrządu obmyślanego przez obu pomienionych fizyków38. Mierzenie tej stałej polegało na porównywaniu ze stałą magnetyczną wody, przy czym do wyników wnoszono poprawkę zależną od magnetyzmu powietrza. W ten sposób oznaczono:

, przyjmując, że dla wody

. Czysty chlorek baru jest diamagnetyczny i jego stała magnetyczna wynosi:

.

Zgodnie z powyższymi wynikami można wykazać, że chlorek baru radonośny, który zawiera około 11% chlorku radu i 83% chlorku baru, jest diamagnetyczny i posiada stałą magnetyczną

.

Frakcjonowanie zwykłego chlorku baru. Staraliśmy się dojść, czy chlorek baru handlowy nie zawiera małych ilości chlorku radu, niedających się wykryć za pomocą naszego przyrządu mierniczego. W tym celu przedsięwzięliśmy frakcjonowanie znaczniejszej ilości handlowego chlorku baru, spodziewając się, że na tej drodze ślady chlorku radu dadzą się stężyć, gdyby istotnie znajdowały się w preparacie.

50 kg chlorku baru handlowego rozpuszczono w wodzie i roztwór strącono kwasem solnym, pozbawionym kwasu siarczanego, przez co otrzymano 20 kg chlorku strąconego. Ostatni rozpuszczono znowu w wodzie i strącono częściowo kwasem solnym; ilość otrzymanego stąd chlorku strąconego wyniosła 8,5 kg. Ten chlorek został poddany metodzie krystalizacji cząstkowej, którą stosowaliśmy już do chlorku baru radonośnego; za pomocą niej uzyskaliśmy w końcu cząstkowania 10 g chlorku, odpowiadającego cząstce najtrudniej rozpuszczalnej. Chlorek ten nie okazywał wcale radioaktywności w naszym przyrządzie do pomiarów; nie zawierał przeto radu. Ciało to nie znajduje się zatem w minerałach, z których bar bywa wydobywany zazwyczaj.