Das Auge stellt sich besonders leicht auf unendliche Sehweite ein, also so, als ob sich der Gegenstand in unendlicher Entfernung befindet. Physiologisch beruht dies darauf, daß diese Einstellung der Ruhelage des Auges entspricht. Andererseits nähern sich die von einem Gegenstand Σ ausgehenden Lichtstrahlen um so mehr dem Parallelismus, je weiter er vom Auge entfernt ist. Dies bewirkt, daß Bilder, die man auf Grund der Annahme paralleler Sehstrahlen herstellt, vom Auge ebenfalls leicht aufgefaßt werden. Diese Darstellung zeichnet sich überdies durch Einfachheit aus und ist daher von besonderer Wichtigkeit.

Fig 3

II. Das geometrische Grundgesetz. Wir nehmen jetzt an, daß auf einer Ebene β, die wir uns vertikal denken wollen, auf die vorstehend genannte Art ein Bild hergestellt werden soll. Wir haben dazu jeden Sehstrahl, der von einem Punkt P des Körpers Σ ins Auge eintritt, mit der Bildebene β zum Schnitt zu bringen, und wollen den so entstehenden Schnittpunkt wieder durch P' bezeichnen. Das geometrische Grundgesetz besagt nun, daßjeder Geraden g des Gegenstandes Σ eine Bildgerade g' des Bildes Σ' entspricht; genauer allen Punkten A,B,C... von Σ, die auf einer Geraden g enthalten sind, solche Bildpunkte A',B',C'..., die auf einer Geraden g' enthalten sind (Fig. [3[!--tex4ht:ref: fig:3 --]). Die Sehstrahlen, die von den Punkten A,B,C... der Geraden g ins Auge gelangen, liegen nämlich sämtlich in einer Ebene, und zwar in derjenigen, die g mit dem Punkt K verbindet; ihr Schnitt mit der Ebene β liefert die Bildgerade g'. Auf ihr liegen also auch die Punkte A',B',C'....

Wir treffen noch einige Festsetzungen. Zunächst kann die Tatsache außer Betracht bleiben, daß wir es mit Sehstrahlen zu tun haben; wir fassen also diese Strahlen in ihrer geometrischen Bedeutung als gerade Linien auf und stellen sie uns überdies als unbegrenzt vor. Ebenso ersetzen wir auch die Bildebene β für die Ableitung der weiteren geometrischen Gesetze durch eine unbegrenzte Ebene. Den im Auge liegenden Knotenpunkt K, also den Scheitel unseres Strahlenbündels, nennen wir von nun an S0, bezeichnen die auf der Ebene β entstehende Figur Σ' auch als Projektion des Gegenstandes Σ auf β, und nennen den Strahl PS0, der durch seinen Schnitt mit β die Projektion P' des Punktes P liefert, den projizierenden Strahl des Punktes P. Der Punkt S0, durch den alle projizierenden Strahlen gehen, heißt Zentrum der Projektion, und Σ' deshalb auch Zentralprojektion.[6]

Wird die Zeichnung insbesondere so angefertigt, als ob sich das Auge in unendlicher Entfernung befindet, so daß also alle Sehstrahlen einander parallel werden, so sprechen wir von einer Parallelprojektion. Sie heißt orthogonal, wenn die projizierenden Strahlen auf der Bildebene senkrecht stehen, sonst schief.

III. Das zeichnerische Grundgesetz. Dieses Gesetz stellt eine Art allgemeiner Vorschrift auf, nach der man das Bild eines Punktes oder einer Geraden von Σ in der Ebene β herzustellen pflegt. Sie zerfällt in zwei Teile.

1. Das Bild einer Geraden g, die zwei Punkte A und B enthält, bestimmen wir so, daß wir die Bildpunkte A' und B' zeichnen und die Gerade g' ziehen, die beide verbindet. 2. Analog bestimmen wir das Bild P' eines Punktes P in der Weise, daß wir uns durch P zwei Geraden a und b legen und ihre Bildgeraden a' und b' zeichnen. Deren Schnittpunkt ist der Bildpunkt P' von P.

Wir bestimmen also die Gerade als Verbindungslinie zweier Punkte und den Punkt als Schnittpunkt zweier Geraden.