Bereits am 30. November erreichten wir bei ruhiger Fahrt mittags kurz nach 2 Uhr unter 56 Grad 45 Minuten die Treibeisgrenze. Wie immer bei der Annäherung an das Eis, so zeigten sich auch hier zunächst kleinste Schollen oder Brocken, die häufig mit dem Winde zu langen Streifen sich anordneten. Auf sie folgten größere und breitere quer zur Windrichtung gestellte Felder von Treibeis, die allmählich immer dichter wurden und offenbar, wie gelegentlich ein heller Eisblink verriet, in schweres Packeis übergingen. Die Treibeisfelder setzten sich aus zum Teil stark zertrümmerten Schollen zusammen, zwischen denen gelegentlich größere, himmelblau gefärbte Eisstücke trieben. Ihre aus dem Wasser hervorragende Partie war oft wunderlich gestaltet und gewährte der Phantasie den freiesten Spielraum zu Vergleichen mit Statuen, Tieren und Gerät. Es handelte sich meist um schneeweiße Kuppen, die auf dem tiefblauen im Wasser treibenden Sockel ruhten; ihr unterer noch von den Wellen bespülter Teil war stärker aufgelöst als die obere, manchmal auf einer schlanken Eissäule ruhende Partie. Die größeren Schollen maßen hier 2, selten 3 Meter im Durchmesser, und wir mußten sie sorgfältig zu vermeiden trachten, da das außerordentlich spröde Eis leicht einen Schaden an der Schiffsschraube hervorgerufen hätte. Zwischen den bald langgestreckten, bald ringförmig gestalteten Treibeisfeldern war das Meer öfter so ruhig wie ein See. Wir nutzten diesen Umstand mehrfach aus, um mitten in dem Eise unseren Arbeiten nachzugehen. Allerdings hatten sich während der oft einen ganzen Tag dauernden Untersuchungen, bei denen das Schiff still lag, die Eisfelder hinter uns vielfach verschoben, und so waren wir genötigt, sie sowohl gleich am ersten Tage, wo wir auf das Eis trafen, wie auch späterhin zu durchbrechen, um wieder offenes Wasser zu gewinnen. Hierzu zwang uns auch manchmal der Umstand, daß das Eis in Gestalt langer Zungen sich vorschob, die senkrecht zu unserem Kurse gestellt waren. Es war stets ein großartiger, aber auch mit mannigfachen Beklemmungen verbundener Moment, wenn die keineswegs für die antarktischen Eisverhältnisse berechnete und zu diesem Zweck nicht verstärkte „Valdivia“ mit Volldampf gegen die Eisfelder anfuhr, erst direkt vor ihnen stoppte und sich nun durch die krachenden Schollen ihren Weg bahnte. Wir waren allerdings so vorsichtig, uns die schmalsten Stellen der Treibeisfelder zu derartigen Experimenten herauszusuchen, die recht verhängnisvoll hätten ausfallen können, wenn die Kraft des Schiffes durch den Andrang der Schollen gebrochen worden wäre, und wir mitten im Eise die Maschine hätten in Bewegung setzen müssen.

Schon in der ersten Nacht vom 30. November auf den 1. Dezember waren wir genötigt, unter mannigfachen Kursänderungen mehrmals die Felder zu durchfahren, und schwerlich dürften bei dem unheimlichen Krachen und Knirschen an den Wandungen des Schiffes die Insassen den Schlaf gefunden haben.

Die Temperaturverhältnisse des antarktischen Meeres

In allen wärmeren Ozeanen nimmt die Temperatur des Seewassers von der Oberfläche bis zum Grunde ständig ab. Als einer der überraschendsten ozeanographischen Befunde der Challenger-Expedition darf füglich der Nachweis betrachtet werden, daß im antarktischen Gebiet in der Nähe der Eisgrenze das Oberflächenwasser kälter ist als darunterliegende Wasserschichten. Die Beobachtungen lehren im allgemeinen, daß bis zu einer Tiefe von 150 Metern das Oberflächenwasser Temperaturen unter 0 Grad aufweist, und daß dann erst Schichten folgen, in denen die Temperatur über 0 Grad steigt. Zwischen 800 und 400 Metern trafen wir die wärmsten Wasserschichten von einer Temperatur von plus 1,7 Grad Celsius an. Von hier an nimmt die Temperatur im allgemeinen langsam ab, um erst in relativ beträchtlichen Tiefen von 3000–4000 Metern wiederum unter 0 Grad zu sinken. Im allgemeinen betrug die Bodentemperatur in 5000 Metern im antarktischen Ozean etwa minus 0,5 Grad.

Das Auftreten einer über 2000 Meter mächtigen Schicht verhältnismäßig warmen Wassers im antarktischen Meere ist eine Erscheinung, deren Bedeutung wir sowohl in ozeanographischer, wie auch in biologischer Hinsicht nicht hoch genug würdigen können. Das antarktische Tiefenwasser findet seinen Weg in langsamem Kreislauf bis zum Äquator und im Indischen Ozean sogar weit über denselben hinaus. Wenn nun auch die starke Erwärmung der Oberfläche in gemäßigten und tropischen Meeresgebieten die tieferen Schichten etwas in Mitleidenschaft zieht, so reicht sie doch nicht aus, um erhebliche Unterschiede in der Temperatur zu bedingen. In 2000 Metern Tiefe ist das Wasser des zentralen Indischen Ozeans direkt unter dem Äquator nur um 2 Grad wärmer als in der Nähe des antarktischen Kontinentes. Das sind so geringfügige Unterschiede, daß sie ein bemerkenswertes Ergebnis unserer Züge mit den Vertikal- und Schließnetzen erklärlich erscheinen lassen: dieselben schwimmenden Organismen, welche dem tropischen Tiefenwasser eigen sind, haben wir teilweise auch in demjenigen des antarktischen Meeres wiedergefunden. An der Oberfläche gibt sich eine weitgehende Verschiedenheit in der Zusammensetzung der schwimmenden Lebewelt kund, in der Tiefe eine auffällige Übereinstimmung!


[4. Die Eisberge]

Allgemein bekannt ist die gewaltige Eismauer, welche Roß im südlichsten Teile des Viktorialandes nachwies. Er schätzte ihre Höhe auf 60–70 Meter und vermochte sie auf eine weite Strecke hin östlich vom Mount Terror zu verfolgen. Sie bildet die Stirn jener ungeheuren antarktischen Gletscher, welche sich längs der geneigten Küste weit in das Meer vorschieben. Die Lotungen von Roß lehren, daß die oft mehrere Seemeilen über den Kontinentalrand vorgeschobenen Massen von Inlandeis nicht mehr festem Untergrund aufliegen, sondern infolge ihres geringeren spezifischen Gewichtes auf dem Wasser flottieren. Eine Berechnung ergibt, daß sie etwa zu sechs Siebentel ihrer Höhe in das Wasser eintauchen und nur mit einem Siebentel über dasselbe herausragen. Würden wir also die Gletscherzunge des Viktorialandes uns direkt in der Höhe des Strandes abgebrochen denken, so müßte sie die gewaltige Höhe von 400–500 Metern aufweisen.

Der Unterschied zwischen dem spezifischen Gewichte des Seewassers und des Inlandeises führt dazu, daß die annähernd horizontal dem Meere aufliegende äußerste Zunge des Gletschers — mag sie mehr oder minder breit sein — einen flachen Winkel mit den rückwärtigen, dem ansteigenden Festlande aufliegenden Massen bildet. Es ergeben sich Spannungen, die schließlich dazu führen, daß ein Bruch erfolgt. Die Stirn des Gletschers löst sich ab und schwimmt als tafelförmiger Eisberg davon.

Diese Eisberge verbreiten sich allmählich von ihrem Ursprungsherd aus über ein weites Gebiet des antarktischen und subantarktischen Meeres und vermögen unter Umständen selbst die Schiffahrt nach Australien zu gefährden. So machte sich in den Jahren 1894–1897 eine gewaltige Eistrift geltend, welche am Kap Horn einsetzend bis in die Nähe des Kaps der guten Hoffnung reichte und späterhin in mehr östlicher Richtung die Australienfahrer in Bedrängnis brachte. Wir trafen freilich erst jenseits des 53. Breitegrades die ersten Eisberge und beobachteten sie um so zahlreicher, je mehr wir uns der Eiskante näherten. Unsere wachthabenden Offiziere führten Protokoll über die einzelnen von uns gesehenen Eisberge und verzeichneten deren im ganzen 180; ausgenommen sind freilich die fast unzählbaren Eisberge, welche wir an unserem südlichsten Punkte, am 16. und 17. Dezember beobachteten.