[5. Das antarktische Plankton]
(Vergleiche hierzu die Abbildungen [5], [8] und [9].)
In dem eiskalten unter 0 Grad abgekühlten Oberflächenwasser der Antarktis pulsiert ein erstaunlich reiches tierisches und pflanzliches Leben. Es wiederholen sich hier ähnliche Verhältnisse, wie wir sie aus den arktischen Meeren kennen, deren Produktivität an oberflächlichen lebendigen Stoffen in bezug auf ihre Masse diejenige der gemäßigten und warmen Meere überbietet. Allerdings wissen wir, daß diese Massenerzeugung organischer Wesen nicht das ganze Jahr hindurch stattfindet. Sobald die Sonne im Frühjahr über den Horizont steigt, beginnt die Oberfläche sich mit mikroskopischen Organismen zu beleben, die sich im Frühsommer etwas verringern, um dann während der Hochsommermonate zum zweitenmal eine Periode üppiger Vermehrung einzuleiten. Dann nimmt ihre Zahl ab, und während der Wintermonate dürfte die Produktivität an der Oberfläche des kalten Wassers außerordentlich zurückstehen gegen jene wärmerer Meeresgebiete. Wir waren offenbar gerade zu jener Zeit nach Süden vorgedrungen, wo die Masse an organischer Substanz ihren Höhepunkt erreicht hatte. Ließ man die feinen Seidennetze in das Wasser hinab, so kamen sie mit einem bräunlichen Brei von Organismen gefüllt wieder auf; glühte man denselben, so erhielt man eine weißliche Masse, die aus nahezu reiner Kieselsäure gebildet wurde. Das Mikroskop lehrte denn auch, daß es sich wesentlich um eine Massenproduktion von Diatomeen (Kieselalgen) handelt, die, ähnlich wie im arktischen Gebiet, auf weite Strecken hin das Meer verfärben.
An dem Fuße der Eisberge, am Rande der Schollen bemerkte man einen gelbbraunen Strich, der bei mikroskopischer Untersuchung sich als eine Anhäufung von Diatomeen erwies. Wenn ein Sturm einsetzte, und die Brandungswogen hoch an den Eisbergen in Schaum zerstoben, fiel es stets auf, daß der Gischt nicht das blendende Weiß der Eisberge zeigte, sondern häufig gelblich oder grau verfärbt erschien. Dies rührt allein von der massenhaften Beimischung kleiner und kleinster Organismen her. Da wir wochenlang uns nahezu ausschließlich mit dem Fangen und dem Studium dieses Plankton beschäftigten, dürfte die Expedition über die Zusammensetzung desselben, namentlich aber auch über seine vertikale Schichtung, eine Reihe neuer Aufschlüsse gewonnen haben.
Die Diatomeen sind als einzellige, niedrigstehende pflanzliche Organismen befähigt, aus anorganischer Masse unter dem Einfluß von Sonnenlicht und bei dem Vorhandensein gelblich oder bräunlich gefärbter Chromatophoren oder Farbstoffpünktchen die Eiweißsubstanzen zu bilden, aus denen ihr kleiner Zellenleib sich aufbaut. Diese Chromatophoren bedingen den gelbbraunen Grundton, welcher dem antarktischen Oberflächenplankton eigen ist. Da die Diatomeen sich auf ungeschlechtlichem Wege durch Teilung vermehren, vermögen sie in kurzer Zeit so massenhaft sich anzustauen, daß die Oberfläche des Meeres verfärbt erscheint. Ihre Zellwandung wird aus Kieselsäure gebildet, die so reizvolle Skulpturen aufweist, daß sie seit jeher Lieblingsobjekte für das Studium der Mikroskopiker abgaben. Da der Kieselpanzer aus zwei Hälften besteht, die wie der Deckel auf eine Schachtel sich ineinander schieben, so kann auch leicht bei der Teilung der Verband beider Schalenhälften gelöst werden. Sie schieben sich auseinander und die fehlende Panzerhälfte wird, eingeschachtelt in die alte, neugebildet.
Auf die von meist mikroskopischen pflanzlichen Organismen an der Oberfläche gebildete „Urnahrung“ ist in letzter Linie der gesamte Tierbestand des Meeres — die Tiefseefauna nicht ausgenommen — angewiesen. So einfach und selbstverständlich dieser Ausspruch auch klingt, so hat es doch recht mühseliger Versuche bedurft, um eine Schlußfolgerung zu ziehen, die gewissermaßen das Leitmotiv für die weiteren Darlegungen abgeben soll.
Die Diatomeen und sonstigen niederen pflanzlichen Organismen bedürfen des Lichtes für ihre assimilatorische (erdeessende) Tätigkeit und vermögen bei stark abgedämpfter Beleuchtung nicht mehr zu bestehen. Soweit wir bis jetzt Kenntnis von dem Vordringen des Lichtes in tiefere Wasserschichten besitzen, dürfen wir wohl annehmen, daß unterhalb 500 Metern vollste Finsternis herrscht. Sind die oberflächlichen Schichten reich mit Plankton durchsetzt, so wird das Licht nicht so weit vordringen, wie in dem krystallklaren, an schwebenden Formen armen Wasser, wie wir es zum Beispiel im nordwestlichen Teil des indischen Ozeans antrafen. Soviel ist sicher, daß das Licht gerade in dem antarktischen Meere mit seiner überraschend reichen Produktivität an der Oberfläche bei seinem Vordringen in tiefere Schichten stark geschwächt wird. Einen annähernd sicheren Maßstab für die Stärke der Belichtung in tieferen Wasserschichten wird stets das Vordringen assimilierender Organismen liefern. Läßt es sich nachweisen, daß sie von bestimmten Tiefen an fehlen oder eine Veränderung ihres Zellinhaltes aufweisen, wie wir sie durch künstliche Verdunkelung herbeiführen können, so dürfen wir auch annehmen, daß nicht mehr genügendes Licht vorhanden ist, um irgendwelche Assimilation zu ermöglichen.
So wurde denn auf der Expedition besonderer Wert darauf gelegt, durch planmäßig an einer und derselben Stelle ausgeführte Stufenfänge mit den Schließnetzen über das Vordringen der marinen Vegetation in größere Tiefen Aufschluß zu erhalten. Die Ausführung der Züge war nicht zum mindesten aus dem Grunde peinlich und mühselig, weil es sich um Organismen handelt, welche zu den kleinsten gehören, die wir kennen. Da muß in erster Linie für einen tadellosen Verschluß der Bügel des Schließnetzes Sorge getragen werden, der durchaus verhütet, daß bei dem Aufwinden des geschlossenen Netzes lebende Formen aus oberflächlichen Schichten erbeutet werden. Reinigt man die Glasgefäße, welche den Inhalt des Schließnetzes aufnehmen sollen, nicht auf das sorgfältigste, so genügt ein Tropfen Seewasser von der Oberfläche, um durch die in ihm enthaltenen Diatomeen das Resultat zu trüben. Noch mehr Aufmerksamkeit erfordert das Ausspülen des Netzbeutels mit destilliertem Wasser, um gleichfalls Fehlschlüsse zu vermeiden. Bei allen derartigen Stufenfängen machten wir es uns zur Pflicht, zunächst die tiefsten Züge und dann schrittweise die oberflächlicheren auszuführen. Würde man umgekehrt verfahren, so könnte es sich leicht geben, daß trotz der peinlichsten Ausspülung des Netzbeutels doch einzelne Oberflächenformen in den Maschen hängen blieben und unter das Tiefenmaterial gerieten. Diesen Bemühungen verdanken wir folgende Ergebnisse über die senkrechte Verbreitung der pflanzlichen, lebenden Organismen.
Die Hauptmasse des pflanzlichen Plankton staut sich zwischen 40 und 80 Metern Tiefe an. Gegen die Oberfläche nimmt die Masse, wie schon erwähnt, ab. Nicht minder auffällig ist aber auch die rasche Abnahme unterhalb 80 Metern. Auf Grund unserer Untersuchungen können wir mit Sicherheit behaupten, daß die untere Grenze für die Verbreitung lebender pflanzlicher Organismen zwischen 300 und 400 Metern liegt. Unterhalb 200 Metern sind lebende Diatomeen bereits so spärlich geworden, daß man oft lange Zeit die Präparate durchmustern muß, bis man auf solche stößt.
Das pflanzliche Plankton ist also nur auf eine außerordentlich dünne oberflächliche Schicht angewiesen und schwindet unterhalb 400 Metern völlig. Im Gegensatz hierzu ergeben nun unsere Schließnetzversuche, daß tierische Organismen, welche doch in letzter Linie in ihrer Ernährung auf die Pflanzen angewiesen sind, unterhalb 400 Metern bis zum Meeresgrund in oft überraschend reicher Zahl ihr Dasein fristen. In einem Schließnetzzuge, den wir am 12. Dezember zwischen 5000 und 4400 Metern ausführten, fanden wir lebende Radiolarien (Strahlentierchen), lebende Copepoden (winzig kleine Ruderfußkrebse) nebst zahlreichen lebhaft sich bewegenden Larven derselben und einen lebenden Muschelkrebs. Obwohl diese Organismen dem gewaltigen Drucke von 500 Atmosphären ausgesetzt sind, so zeigten sie sich doch in ihrer Struktur wohlerhalten. Wir müssen allerdings bedenken, daß ja dieser Druck nicht einseitig wie zwischen zwei Walzen wirkt, sondern daß er sich nach bekannten Gesetzen im Wasser allseitig verteilt. Der einzelne Organismus gleicht gewissermaßen einem winzigen Wassertröpfchen, das, wie wir wissen, bei so hohem Druck eine kaum nachweisbare Zusammenpressung erleidet.