Stickstoff17 und Sauerstoff können fünf verschiedene Verbindungen mit einander bilden. Diese enthalten auf je 100 Gewichtsteile Stickstoff 57,1 114,3 171,4 228,6 und 285,7 Gewichtsteile Sauerstoff, also18 Zahlen, die sich wie 1:2:3:4:5 zu einander verhalten, also in multiplem Verhältnis stehen.

Man versteht unter Atom die kleinste Gewichtsmenge, mit welcher die Elemente in eine chemische Verbindung eingehen, und unter Molekül, die kleinste Gewichtsmenge, in welcher ein Körper im freien Zustande zu existieren vermag.

Kein Körper, sei er Element oder chemische Verbindung, bildet eine absolut zusammenhängende Masse. Bei allen Körpern hat man sich die einfachen Atome, sowie die Atomgruppen, die Moleküle, aus denen sie bestehen, als äusserst kleine, mit dem besten Mikroskop nicht sichtbare, daher direkt nicht wägbare Teilchen zu denken, die durch Zwischenräume getrennt bleiben, welche vielmal grösser als die Atome und Moleküle, aber dennoch wegen ihrer Kleinheit unsichtbar sind.

44.

Infolge1 dieser Beschaffenheit2 sind die Atome und Moleküle für sich3 frei beweglich und aneinander verschiebbar, was4 zur Erklärung vieler Erscheinungen von grosser Bedeutung ist. Man muss sich mit der Auffassung5 vertraut machen, dass selbst der festeste Körper aus beweglichen, durch Zwischenräume getrennten Molekülen besteht und dem Auge nur deshalb als kompakte Masse erscheint, weil dasselbe die kleinen Moleküle und deren Zwischenräume nicht zu erkennen vermag. Auch der Wald, aus genügender Entfernung betrachtet, bildet eine kompakte Masse, in welcher das Auge weder die einzelnen Bäume, noch die zwischen diesen6 vorhandenen Lücken zu unterscheiden vermag.

Die chemische Verbindung der gasförmigen Elemente erfolgt7, wie zuerst Gay-Lussac entdeckte, nicht nur in bestimmten Gewichts- sondern auch in bestimmten einfachen Volumenverhältnissen8. Bildet sich dabei ein gasförmiges Produkt, so steht auch das Volumen des Produktes in einem einfachen Verhältnisse zum Volumen der ursprünglichen Gase.

Da sich die Gase unter denselben Verhältnissen des Druckes und der Temperatur in gleicher Weise zusammenziehen oder ausdehnen, und da sie dem Zusammendrücken einen nahezu gleichen Widerstand entgegensetzen, kam Avogadro zu dem Schluss9, dass alle Gase, gleiche Temperatur und gleichen Druck vorausgesetzt, im gleichen Volumen eine gleich grosse Anzahl von Molekülen enthalten. Die Gasmoleküle besitzen also unter gleichen physikalischen Verhältnissen gleiche Dimensionen.

Ein bestimmtes Volumen, z. B. 1 l, ob mit Chlor oder Wasserstoff gefüllt, enthält also eine gleich grosse Anzahl Moleküle. Chlor und Wasserstoff verbinden sich nun im Verhältnis gleicher Volumina mit einander, also z. B. je 1 l Chlor mit je 1 l Wasserstoff unter Bildung von 2 l Chlorwasserstoffgas. Nimmt10 man nun beispielsweise11 an, dass in den 2 l Chlorwasserstoffgas 1000 Moleküle vorhanden sind, so befinden sich in je 1 l davon nur halb so viel, also 500 solcher Moleküle, und nach Avogadros' Lehrsatz enthält dementsprechend12 auch je 1 l Chlor 500 Chlormoleküle und je 1 l Wasserstoff 500 Wasserstoffmoleküle. In jedem Molekül Chlorwasserstoff ist aber 1 Atom Wasserstoff mit 1 Atom Chlor vereinigt. Es13 müssen daher 1000 Moleküle Chlorwasserstoff aus 1000 Atomen Wasserstoff und 1000 Atomen Chlor bestehen. Da nun aber 1 l Wasserstoff, sowie 1 l Chlor nicht 1000, sondern nur 500 Moleküle enthalten, so folgt, dass diese 500 Moleküle je 1000 Atomen entsprechen14, oder dass jedes einzelne Molekül Wasserstoffgas aus 2 Atomen Wasserstoff, und jedes einzelne Molekül Chlor aus 2 Atomen Chlor besteht.

45.

Mischt man die beiden Gase H und Cl im Dunkeln und bei gewöhnlicher Temperatur, so erfolgt keine Vereinigung. Lässt man dann auf die Mischung direktes Sonnenlicht oder einen brennenden Körper oder einen elektrischen Funken wirken, so vereinigen sich die Gase plötzlich mit heftigem Knall zu Chlorwasserstoff. Diese und viele ähnliche Verbindungserscheinungen würden schwer erklärlich sein ohne die Annahme1, dass sich in den Gasen keine freien, sondern nur gepaarte Atome, z. B. aus je zwei Atomen zusammengesetzte Chlormoleküle und Wasserstoffmoleküle vorfinden. Es bedarf zunächst2 der Arbeit des Trennens der im Molekül vereinigten Atomen zu freien Atomen, bevor eine neue Verbindung entstehen kann, bevor sich also die Atome in neuer Weise gruppieren können. Diese Arbeit wird im vorliegenden Falle durch den Sonnenstrahl oder die Hitze des brennenden Körpers oder elektrischen Funkens eingeleitet3 und pflanzt4 sich dann infolge der durch die Vereinigung entstehenden Wärme, von selbst über die ganze Masse fort.