2. Tüpfelung. Die Zellmembranen, die die Protoplasten voneinander trennen, erschweren begreiflicherweise den Stoffaustausch zwischen den Zellen, und zwar um so mehr, je dicker sie sind. Ohne regen Stofftransport von Zelle zu Zelle kann aber das Leben des ganzen Organismus nicht bestehen. So muß also dafür gesorgt werden, daß die Verdickung der Membranen, die der Festigung dient, die Stoffbewegung nicht allzusehr hemmt. Diesem Bedürfnis wird meist durch Ausbildung von Tüpfeln in den Scheidewänden zwischen den Protoplasten Rechnung getragen. In den freien Wänden findet man dagegen in der Regel keine Tüpfel.
Diese Tüpfel, die in stärker verdickten Zellmembranen Kanäle mit kreisrundem ([Fig. 38] bei w und [39] bei m), elliptischem oder spaltenförmigem Querschnitte sind, treffen in den benachbarten Zellen aufeinander; sie sind also beiden Zellen gemeinsam, werden aber in der Mitte von der unverdickten Zellhaut, ihrer Schließhaut, durchsetzt ([Fig. 38] t, [39] p, [40] t). Spaltenförmige Tüpfel pflegen schräg gerichtet zu sein und in den Verdickungsschichten benachbarter Zellen einander zu kreuzen.
Der Bau der Tüpfel läßt sich besonders leicht untersuchen an den stark verdickten und reichlich getüpfelten Zellwänden der Samen verschiedener Palmen, zahlreicher Liliaceen, z. B. von Ornithogalum ([Fig. 39]), und anderer Monokotylen. Die Verdickungsschichten bestehen hier aus einer Hemizellulose, die ein Reservestoff des Samens ist und bei der Keimung durch ein Enzym (Zytase) aufgelöst wird. Sie sind glänzend weiß und können so hart werden, daß solche Samen, z. B. die der Palme Phytelephas macrocarpa, technisch als „vegetabilisches Elfenbein“ zur Anfertigung von Knöpfen u. dergl. verwertet werden.
Fig. 39. Zellen aus dem Samen (Endosperm) der Liliacee Ornithogalum umbellatum. m Tüpfel von oben, p Tüpfelkanal in Seitenansicht mit der Schließhaut. n Zellkern. Vergr. 240. Nach STRASBURGER.
Fig. 40. Zellen aus der Wurzelrinde von Iris florentina. t Tüpfel in den geschichteten Zellmembranen, i Interzellularen. Vergr. gegen 400.
3. Verbindung der Protoplasten im Gewebe. Ein harmonisches Zusammenarbeiten aller lebenden Teile des Körpers, wie es in den Lebensäußerungen des gesamten Organismus so auffällig zutage tritt, wäre freilich wohl kaum möglich, wenn die lebenden Protoplasten im Zellgewebe des Körpers durch die Zellwände völlig getrennt nebeneinander liegen würden. Tatsächlich sind sie nicht ganz gegeneinander abgeschlossen, sondern durch zahlreiche, äußerst feine Protoplasmafäden verbunden, die von ihren Hautschichten ausgehen und die Zellhäute durchsetzen. Meist sind diese Plasmaverbindungen oder Plasmodesmen[45], die sämtliche lebende Zellen des Körpers verbinden, auf die Schließhäute der Tüpfel beschränkt ([Fig. 41] s); doch können sie auch die Zellhäute außerhalb der Tüpfel durchsetzen ([Fig. 42] pl). Sie erheben die Protoplasten des ganzen Pflanzenkörpers trotz der Ausbildung der Zellwände zu einer organischen, lebenden Einheit und dienen wohl ebenfalls zur Stoff- und außerdem zur Reizleitung von Protoplast zu Protoplast.
4. Zellfusionen. Die Lebenstätigkeit des vielzelligen Organismus macht es aber auch nötig, Stoffe noch schneller, als es selbst durch weite Tüpfelkanäle möglich ist, innerhalb seines Körpers von einem Organ in ein anderes, etwa aus den Wurzeln in die Blätter, zu schaffen. Die Diffusion von Stoffen durch die Zellmembranen oder die Stoffbewegung in den äußerst feinen Plasmodesmen genügt dazu vielfach nicht, wenn sie auch durch die Ausbildung der Tüpfelkanäle sehr erleichtert wird, die ja in den Scheidewänden zwischen benachbarten Zellen stets korrespondieren. Dementsprechend verschmelzen viele, besonders dem Stofftransporte dienende, außerdem aber auch manche andere Zellen, nachträglich durch breite offene Löcher zu zusammenhängenden Röhren (vgl. [S. 54], [55] u. [59]), zu Zellfusionen miteinander. Solche Löcher in Ein- oder Mehrzahl entstehen alsdann durch entsprechende Auflösung der Wandsubstanz in den Zwischenwänden, namentlich in den Endwänden benachbarter Zellen.