Eine Aufgabe behandelt die Flächenbestimmung des Dreieckes, wobei das Resultat als das Product zweier Seitenlängen gefunden wird. Die hier beigefügte Figur35, welche in Wirklichkeit ein ungleichseitiges langgestrecktes Dreieck darstellt, kann ebensowohl als die verfehlte Zeichnung eines rechtwinkligen wie auch eines gleichschenkligen Dreieckes betrachtet werden.
Letztere Annahme ist von Eisenlohr gemacht und von Cantor36 acceptirt worden. Darnach würde sich die Methode der Dreiecksberechnung der alten Aegypter nur als eine Näherungsmethode darstellen, und ist auch von beiden genannten Gelehrten der begangene, in diesem Falle in der That nicht bedeutende Fehler ermittelt worden.
[pg 26]
Wir sind dagegen mit Revillout anderer Meinung.
Mit Rücksicht auf den von uns klar erkannten Charakter des Originales des Papyrus als eines sehr ungenauen Collegienheftes, dessen Rechnungen ebensosehr wie die vorkommenden Zeichnungen von der Mittelmässigkeit seines Zusammenstellers beredtes Zeugniss ablegen, zweifeln wir keinen Augenblick, dass die fragliche Figur ein rechtwinkliges Dreieck vorzustellen hatte. Die mangelhafte Schülerzeichnung ist durch den Copisten Aahmes nur noch schlechter geworden. Dass ein rechtwinkliges Dreieck gemeint sein soll, erkennt man übrigens auch aus dem Umstande, dass in der Figur die Maasszahlen der multiplicirten Seiten bei den Schenkeln des, vom rechten Winkel nur wenig differirenden Winkels angesetzt sind, wo doch, wenn es sich hätte um ein gleichschenkliges Dreieck handeln sollen die Maasszahl der Schenkel in der Figur gewiss bei beiden Schenkeln zu finden wäre. Dieselben Gründe bestimmen uns zu der Annahme, dass die im Papyrus befindliche Flächenberechnung eines Trapezes eine vollkommen richtige ist, indem es sich auch hier nur um ein Trapez handeln kann, dessen zwei parallelen Seiten auf einer der nicht parallelen Seiten senkrecht stehen. Und warum sollten denn die alten Aegypter nicht die richtige Art der Flächenberechnung auch beliebiger Dreiecke gekannt haben?
Konnte man einmal die Fläche eines Rechteckes genau bestimmen, so musste sich durch einfache Anschauung eines, durch eine Diagonale zerlegten Rechteckes, von selbst die Regel zur Flächenbestimmung des rechtwinkligen Dreieckes ergeben; und wurde nun ein beliebiges schiefwinkliges Dreieck durch ein Höhenperpendikel in zwei rechtwinklige zerlegt, so war nichts leichter als die allgemeine Regel zur Bestimmung der Dreieckfläche aus Basis und Höhe (tepro [pg 27] und merit) zu entwickeln. Dass die Gewinnung des Höhenperpendikels sowohl bei Constructionen als auch auf dem Felde den alten Aegyptern nicht unmöglich war, folgt zunächst aus der grossen Bedeutung der Winkelmaasses (hapt) für alle Operationen der praktischen Geometer Aegyptens. Nicht nur, dass wir in vielen aegyptischen Documenten das Winkelmaass erwähnt finden, sieht man auch Könige abgebildet, das Winkelmaass in der Hand, welches von ihnen vielleicht in derselben Weise durch symbolische Benützung geehrt wurde, wie der Kaiser von China alljährlich einmal den Pflug zu führen pflegt. Ein solches Winkelmaass sieht man übrigens auch auf einem Wandgemälde abgebildet, das eine Schreinerwerkstätte darstellt,37 und es unterliegt keinem Zweifel, dass dasselbe ebensowohl zur Anlegung rechter Winkel als zum Fällen von Senkrechten benützt worden ist. Aber auch auf freiem Felde musste den Aegyptern die Construction rechter Winkel geläufig sein; sowohl die Pyramiden als auch die aegyptischen Tempel sind vollkommen orientirt, und wurde, wie uns alte Inschriften38 belehren, die Orientirung in festlicher Weise vom Könige unter Beihilfe der Bibliotheksgöttin Safech vollzogen, mit den Worten: »Ich habe gefasst den Holzpflock und den Stiel des Schlägels, ich halte den Strick gemeinschaftlich mit der Göttin Safech. Mein Blick folgt dem Gange der Gestirne. Wenn mein Auge an dem Sternbilde des grossen Bären angekommen ist, und erfüllt ist der mir bestimmte Zeitabschnitt der Zahl der Uhr, so stelle ich auf die Eckpunkte Deines Gotteshauses.«
In welchem Maasse bei diesen Operationen die von Demokritos so hochgestellten Harpedonapten oder Seilspanner betheiligt waren, hat Cantor39 in höchst scharfsinniger Weise zu beleuchten versucht, und es erscheint auch uns wahrscheinlich, dass sich die alten Aegypter beim [pg 28] Construiren rechter Winkel sowie beim Fällen von Senkrechten auf dem Felde, der Thatsache bedienten, dass der eine Winkel in einem, die Seitenlängen drei, vier und fünf besitzenden Dreiecke, ein rechter Winkel sein müsse. Musste ja doch dieser Satz seit unvordenklichen Zeiten auch den Chinesen bekannt sein, da wir ihn in der bei ihnen so berühmten Schrift Tschiu-pī finden, welche mehrere Jahrhunderte v. Chr. G. entstanden, auf den Kaiser Tschīu-Kung also in das Jahr 1100 v. Chr. G. etwa zurückgeführt wird.40 Uebrigens konnten directe Messungsversuche an diagonalen Linien in den Proportionalmaassstäben sowohl zu dem erwähnten als auch noch zu anderen rechtwinkligen Dreiecken mit rationalen Seitenlängen geführt haben, und scheint uns die Möglichkeit nicht ausgeschlossen, dass der berühmte und berüchtigte Satz des Pythagoras über die Quadrate der Katheten und der Hypothenuse einer eingehenden Untersuchung solcher Proportionalmaassstäbe entsprungen ist.
Wenn wir nun einerseits behaupten, dass die alten Aegypter nicht nur die Fläche des Kreises, des Quadrates, des Rechteckes, des rechtwinkligen sowie des schiefen Dreieckes, und unter Zuhilfenahme der Zerlegungen auch die Flächen beliebiger Polygone theoretisch genau zu bestimmen im Stande waren, mit Ausnahme der auch für uns eine solche bildenden Kreisfläche, so muss doch anderseits zugestanden werden, dass man sich bei praktischen Anwendungen mit Näherungen begnügte, welche im Laufe der Zeiten so ausarteten, dass der Gebrauch falscher Regeln ein allgemeiner wurde.
Am linken Nilufer in der Mitte zwischen Theben und Assuan liegt Edfu, das alte Appollinopolis Magna mit einem stattlichen Tempelbau aus den Zeiten der Ptolomäer. [pg 29] Der Tempel, hauptsächlich dem Gotte Horus geweiht, ist mit einer freistehenden Umfassungsmauer umgeben,41 deren Ostseite zwischen dem Brunnenthore und dem östlichen Pylonflügel eine Inschrift trägt, welche uns auf acht Feldern und in hundertvierundsechzig Columnen42 eine Schenkungsurkunde des Königs Ptolomäus XI. Alexander I. (mit dem Beinamen Philometor) bekannt gibt. Das Geschenk, welches hier Horus und den übrigen Göttern von Edfu verliehen wird, besteht aus einer Anzahl von meist viereckigen Aeckern, deren vier Seitenlängen nebst Flächeninhalten angegeben erscheinen.
Da jeder der vorkommenden Flächeninhalte identisch ist mit dem Producte der arithmetischen Mittel der beiden Gegenseitenpaare, so wurde nach Lepsius die Vermuthung aufgestellt, die alten Aegypter hätten, um Vierecke bei der Flächenbestimmung annähernd wie Rechtecke behandeln zu können, den Unterschied der Gegenseiten dadurch auszugleichen gesucht, dass sie die arithmetischen Mittel derselben in Rechnung zogen.