Dies ist das allgemeine Problem, welches die gewöhnliche Geometrie nicht nur, sondern namentlich auch die hier zu nennenden neueren geometrischen Methoden und die verschiedenen Behandlungsweisen beliebig ausgedehnter Mannigfaltigkeiten unter sich begreift. Was besonders betont sein mag, ist die Willkürlichkeit, die hinsichtlich der Wahl der zu adjungirenden Transformationsgruppe besteht, und die daraus fliessende und in diesem Sinne zu verstehende gleiche Berechtigung aller sich unter die allgemeine Forderung subsumirenden Betrachtungsweisen.
[§.2. Transformationsgruppen, von denen die eine die andere umfasst, werden nach einander adjungirt. Die verschiedenen Typen geometrischer Forschung und ihr gegenseitiges Verhältniss.]
Da die geometrischen Eigenschaften räumlicher Dinge durch alle Transformationen der Hauptgruppe ungeändert bleiben, so ist es an und für sich absurd, nach solchen Eigenschaften derselben zu fragen, bei denen dies nur gegenüber einem Theile dieser Transformationen der Fall ist. Diese Fragestellung wird indess berechtigt, ob auch nur formal, wenn wir die räumlichen Gebilde in ihrer Beziehung zu fest gedachten Elementen untersuchen. Betrachten wir z. B., wie in der sphärischen Trigonometrie, die räumlichen Dinge unter Auszeichnung eines Punctes. Dann ist zunächst die Forderung: die unter Adjunction der Hauptgruppe invarianten Eigenschaften nicht mehr der räumlichen Dinge an sich, sondern des von ihnen mit dem gegebenen Puncte gebildeten Systems zu entwickeln. Aber dieser Forderung können wir die andere Form ertheilen: Man untersuche die räumlichen Gebilde an sich hinsichtlich solcher Eigenschaften, welche ungeändert bleiben durch diejenigen Transformationen der Hauptgruppe, welche noch stattfinden können, wenn wir den Punct fest halten. Mit anderen Worten: Es ist dasselbe, ob wir die räumlichen Gebilde im Sinne der Hauptgruppe untersuchen und ihnen den gegebenen Punct hinzufügen, oder ob wir, ohne ihnen irgend ein Gegebenes hinzuzufügen, die Hauptgruppe durch die in ihr enthaltene Gruppe ersetzen, deren Transformationen den bez. Punct ungeändert lassen.
Es ist dies ein in der Folge häufig angewandtes Princip, das wir desshalb gleich hier allgemein formuliren wollen; etwa in der folgenden Weise:
Es sei eine Mannigfaltigkeit und zu ihrer Behandlung eine auf sie bezügliche Transformationsgruppe gegeben. Es werde das Problem vorgelegt, die in der Mannigfaltigkeit enthaltenen Gebilde hinsichtlich eines gegebenen Gebildes zu untersuchen. So kann man entweder dem Systeme der Gebilde das gegebene hinzufügen, und es fragt sich dann nach den Eigenschaften des erweiterten Systems im Sinne der gegebenen Gruppe — oder, man lasse das System unerweitert, beschränke aber die Transformationen, die man bei der Behandlung zu Grunde legt, auf diejenigen in der gegebenen Gruppe enthaltenen, welche das gegebene Gebilde ungeändert lassen (und die nothwendig wieder eine Gruppe bilden). —
Im Gegensatze zu der zu Anfang des Paragraphen aufgeworfenen Frage beschäftige uns nun die umgekehrte, die von Vornherein verständlich ist. Wir fragen nach denjenigen Eigenschaften räumlicher Dinge, welche bei einer Transformationsgruppe erhalten bleiben, die die Hauptgruppe als einen Theil umfasst. Jede Eigenschaft, die wir bei einer solchen Untersuchung finden, ist eine geometrische Eigenschaft des Dings an sich, aber das Umgekehrte gilt nicht. Bei der Umkehr tritt vielmehr das eben vorgetragene Princip in Kraft, wobei die Hauptgruppe nun die kleinere Gruppe ist. Wir erhalten so:
Ersetzt man die Hauptgruppe durch eine umfassendere Gruppe, so bleibt nur ein Theil der geometrischen Eigenschaften erhalten. Die übrigen erscheinen nicht mehr als Eigenschaften der räumlichen Dinge an sich, sondern als Eigenschaften des Systems, welches hervorgeht, wenn man denselben ein ausgezeichnetes Gebilde hinzufügt. Dieses ausgezeichnete Gebilde ist (soweit es überhaupt ein bestimmtes[12] ist) dadurch definirt, dass es, fest gedacht, dem Raume unter den Transformationen der gegebenen Gruppe nur noch die Transformationen der Hauptgruppe gestattet.
In diesem Satze beruht die Eigenart der hier zu besprechenden neueren geometrischen Richtungen und ihr Verhältniss zur elementaren Methode. Sie sind dadurch eben zu characterisiren, dass sie an Stelle der Hauptgruppe eine erweiterte Gruppe räumlicher Umformungen der Betrachtung zu Grunde legen. Ihr gegenseitiges Verhältniss ist, sofern sich ihre Gruppen einschliessen, durch einen entsprechenden Satz bestimmt. Dasselbe gilt von den verschiedenen hier zu betrachtenden Behandlungsweisen mehrfach ausgedehnter Mannigfaltigkeiten. Es soll dies nun an den einzelnen Methoden gezeigt werden, wobei denn die Sätze, die in diesem und dem vorigen Paragraphen allgemein hingestellt wurden, ihre Erläuterung an concreten Gegenständen finden.
[§.3. Die projectivische Geometrie.]
Jede räumliche Umformung, die nicht gerade der Hauptgruppe angehört, kann dazu benutzt werden, um Eigenschaften bekannter Gebilde auf neue Gebilde zu übertragen. So verwerthen wir die Geometrie der Ebene für die Geometrie der Flächen, die sich auf die Ebene abbilden lassen; so schloss man schon lange vor dem Entstehen einer eigentlichen projectivischen Geometrie von den Eigenschaften einer gegebenen Figur auf Eigenschaften anderer, die durch Projection aus ihr hervorgingen. Aber die projectivische Geometrie erwuchs erst, als man sich gewöhnte, die ursprüngliche Figur mit allen aus ihr projectivisch ableitbaren als wesentlich identisch zu erachten und die Eigenschaften, welche sich beim Projiciren übertragen, so auszusprechen, dass ihre Unabhängigkeit von der mit dem Projiciren verknüpften Aenderung in Evidenz tritt. Hiermit war denn der Behandlung im Sinne von §.1 die Gruppe aller projectivischen Umformungen zu Grunde gelegt und dadurch eben der Gegensatz zwischen projectivischer und gewöhnlicher Geometrie geschaffen.