Die Raumgeometrie ist also durch die Geometrie der reciproken Radien in ganz dieselbe Verbindung mit einer Mannigfaltigkeit von vier Dimensionen gesetzt, wie vermöge der Liniengeometrie mit einer Mannigfaltigkeit von fünf Ausdehnungen.

Die Geometrie der reciproken Radien in der Ebene gestattet, sofern man nur auf reelle Transformationen achten will, noch nach einer anderen Seite eine interessante Darstellung, resp. Verwendung. Breitet man nämlich eine complexe Variable x + iy in gewöhnlicher Weise in der Ebene aus, so entspricht ihren linearen Transformationen die Gruppe der reciproken Radien, mit der erwähnten Beschränkung auf das Reelle. Die Untersuchung der Functionen einer complexen Veränderlichen, die beliebigen linearen Transformationen unterworfen gedacht ist, ist aber nichts Anderes, als was bei einer etwas abgeänderten Darstellungsweise Theorie der binären Formen genannt wird. Also:

Die Theorie der binären Formen findet ihre Darstellung durch die Geometrie der reciproken Radien in der reellen Ebene, so zwar, dass auch die complexen Werthe der Variabeln repräsentirt werden.

Von der Ebene mögen wir, um in den gewohnteren Vorstellungskreis der projectivischen Umformungen zu gelangen, zur Fläche zweiten Grades aufsteigen. Da wir nur reelle Elemente der Ebene betrachteten, ist es nicht mehr gleichgültig, wie man die Fläche wählt; sie ist ersichtlich nicht geradlinig zu nehmen. Insbesondere können wir uns dieselbe — wie man das zur Interpretation einer complexen Veränderlichen auch sonst thut — als Kugelfläche denken und erhalten so den Satz:

Die Theorie der binären Formen complexer Variablen findet ihre Repräsentation in der projectivischen Geometrie der reellen Kugelfläche.

Ich habe mir nicht versagen mögen, in einer Note[24] noch auseinanderzusetzen, wie schön dieses Bild die Theorie der binären cubischen und biquadratischen Formen erläutert.

[§.7. Erweiterungen des Vorangehenden. Lies Kugelgeometrie.]

An die Theorie der binären Formen, die Geometrie der reciproken Radien und die Liniengeometrie, welche im Vorstehenden coordinirt und nur durch die Zahl der Veränderlichen unterschieden scheinen, lassen sich gewisse Erweiterungen knüpfen, die nun auseinandergesetzt werden mögen. Dieselben sollen einmal dazu beitragen, den Gedanken, dass die Gruppe, welche die Behandlungsweise gegebener Gebiete bestimmt, beliebig erweitert werden kann, an neuen Beispielen zu erläutern; dann aber ist namentlich die Absicht gewesen, Betrachtungen, welche Lie in einer neueren Abhandlung niedergelegt hat[25], in ihrer Beziehung zu den hier vorgetragenen Ueberlegungen darzulegen. Der Weg, auf welchem wir zu Lies Kugelgeometrie gelangen, weicht insofern von dem von Lie eingeschlagenen ab, als Lie an liniengeometrische Vorstellungen anknüpft, während wir, um uns mehr der gewöhnlichen geometrischen Anschauung anzuschliessen und im Zusammenhange mit dem Vorhergehenden zu bleiben, bei den bez. Auseinandersetzungen eine geringere Zahl von Veränderlichen voraussetzen. Die Betrachtungen sind, wie bereits Lie selbst hervorgehoben hat (Göttinger Nachrichten 1871. N. 7, 22 [11]) von der Zahl der Variabeln unabhängig. Sie gehören dem grossen Kreise von Untersuchungen an, welche sich mit der projectivischen Untersuchung quadratischer Gleichungen zwischen beliebig vielen Veränderlichen beschäftigen, Untersuchungen, die wir bereits öfter berührt haben und die uns noch wiederholt begegnen werden (vergl. §.10 u. a.)

Ich knüpfe an den Zusammenhang an, der zwischen der reellen Ebene und der Kugelfläche durch stereographische Projection hergestellt wird. Wir setzten bereits in §.5 die Geometrie der Ebene mit der Geometrie auf einem Kegelschnitte in Verbindung, indem wir der Geraden der Ebene das Punctepaar zuordneten, in welchem sie den Kegelschnitt trifft. Entsprechend können wir einen Zusammenhang zwischen der Raumgeometrie und der Geometrie auf der Kugel aufstellen, indem wir jeder Ebene des Raumes den Kreis zuordnen, in welchem sie die Kugel schneidet. Uebertragen wir dann durch stereographische Projection die Geometrie auf der Kugel von derselben auf die Ebene, wobei jeder Kreis in einen Kreis übergeht, so entsprechen einander also: