Durch die zahllosen feinen Seitenwürzelchen und die aus ihnen entspringenden Wurzelhaare ist die Pflanze mit dem Boden verbunden und kann das kapillar in diesem festgehaltene Wasser aufnehmen, sobald sich in den Haaren durch Wasserverlust ein Saugvermögen eingestellt hat. Auch einem Boden, der sich schon trocken anfühlt, vermag die Pflanze noch Wasser zu entziehen. Bei dauernder Wasseraufnahme aus so trockenen Böden erfolgt schließlich Welken der Pflanze; aber auch in welkem Zustand geht die Wasseraufnahme noch fort, freilich nie so weit, daß auch die letzten Spuren dem Boden entzogen werden könnten. Weiter als unsere typischen Landpflanzen gehen nach FITTING die Wüstenpflanzen, weil ihre Zellsäfte ungewöhnlich hohe Konzentration besitzen und deshalb ein sehr starkes osmotisches Saugvermögen entwickeln können[141].

Es leuchtet ein, daß Zellen mit hohem Salpeterwert eine höhere Saugkraft entwickeln können als solche mit niedrigem Salpeterwert. Allein die Bestimmung des Salpeterwertes gibt kein Maß für die in der Zelle tatsächlich bestehende Saugkraft ab; diese hängt ja von der Wassersättigung ab.

Andere Arten der Wasseraufnahme. Manche Pflanzen nehmen das Wasser nicht aus dem Boden auf; sie gehören vor allem zu zwei ganz verschiedenen ökologischen Gruppen: zu den Epiphyten und zu den Wasserpflanzen. Über die morphologischen und anatomischen Eigentümlichkeiten, die eine Aufnahme von Regen oder Tau durch oberirdische Organe ermöglichen, ist schonS. 157 berichtet.

Bewegung des Wassers in der Pflanze.

Eine Bewegung des Wassers von der Wurzel nach den oberirdischen Teilen muß schon aus dem Grund erfolgen, weil Wasser zum Aufbau neuer Zellen in den wachsenden Teilen unentbehrlich ist. Tatsächlich braucht aber die Pflanze ungemein viel mehr Wasser, als das zu ihrem Aufbau nötige, weil sie große Wassermassen in Dampfform, geringere in tropfbar flüssiger Form an den oberirdischen Teilen abgibt. Der erste Vorgang ist unter dem Namen Transpiration, der zweite als Guttation bekannt.

Transpiration[142].

Wie jede freie Wasserfläche, wie jeder mit Wasser gequollene Körper, z. B. Gelatine, Leim, muß auch die Pflanzenzelle Wasser an die Luft abgeben, solange diese nicht völlig dunstgesättigt ist. Die Wasserabgabe ist bei manchen Pflanzenteilen (z. B. bei Wurzeln, bei submersen Teilen, bei Schattenpflanzen), wenn sie trockener Luft ausgesetzt werden, so groß, daß sie kollabieren, schlaff, welk werden und schließlich vertrocknen. Anders verhalten sich z. B. die Blätter unserer gewöhnlichen Landpflanzen. An ihnen ist zunächst nichts von Wasserabgabe zu bemerken. Doch auch sie welken, wenn es lange nicht regnet, wenn also die Wasseraufnahme aus dem Boden erschwert ist. Unterbindet man ihnen die Wasserzufuhr völlig, indem man sie abschneidet, so tritt das Welken schneller ein. Stellt man aber die abgeschnittenen Zweige in Wasser, so nehmen sie dieses mit der Schnittfläche auf und welken nicht. Daß sie für gewöhnlich an ihrem Standort nicht welken, beruht also offenbar darauf, daß Wasser in demselben Maß von unten her nachgeschoben wird, wie es oben verdunstet. Es läßt sich denn auch die Abgabe von Wasserdampf mit einfachen Mitteln nachweisen.

In sehr anschaulicher Weise wird die Transpiration durch Verfärbung von sog. Kobalt papier demonstriert; Filtrierpapier, das mit einer Lösung von Kobaltchlorür getränkt ist, zeigt im Zustand völliger Trockenheit eine blaue Farbe; bei Wasserzutritt wird es rot. Legt man nun ein Stückchen blaues Kobaltpapier z. B. auf ein Blatt und bedeckt es zur Abhaltung der atmosphärischen Feuchtigkeit mit einer Glasplatte, so weist die beginnende Rotfärbung auf Transpiration hin, zugleich lassen sich aus der geringeren oder größeren Geschwindigkeit des Eintretens und Fortschreitens der Farbenänderung Schlüsse auf die Quantität des abgegebenen Wassers ziehen. Exakte Nachweise in dieser Hinsicht kann freilich nur die Wägung bringen. Sie muß an einer Pflanze ausgeführt werden, deren Blumentopf durch passende Umhüllung völlig an jeder Wasserabgabe verhindert ist. Es zeigt sich, daß die Wasserdampfabgabe der Pflanze in der Regel so groß ist, daß schon im Verlaufe einer Viertelstunde ein Gewichtsverlust eintritt, der beträchtlich genug ist, um ihn ohne jede Schwierigkeit auf einer gewöhnlichen Wage feststellen zu können. Über die Größe der Transpiration, die man zweckmäßigerweise auf die Einheit der transpirierenden Fläche beziehen wird, läßt sich nichts Allgemeines aussagen, da sie von vielen äußeren Umständen, z. B. von Temperatur, Licht, Wasserzufuhr usw., außerdem auch von der Struktur der Pflanze abhängt.

Der Vorgang der Transpiration vollzieht sich in folgender Weise. Eine der Luft exponierte Zelle muß von dem Quellungswasser ihrer Zellhaut dauernd Wasser an die Luft abgeben; dieser Prozeß würde bis zur Lufttrockenheit der Zellhaut weitergehen, wenn nicht von innen her Nachschub erfolgte. Ein solcher tritt nun aber in der Tat aus dem Protoplasma ein. Die nicht völlig gesättigte Zellhaut übt einen Zug auf das Wasser des Protoplasmas aus, und das Protoplasma sucht Deckung für den Verlust aus dem Saftraum. So pflanzt sich also die Wasserbewegung bis ins Zellinnere fort und bewirkt eine Verringerung des Turgordruckes. Damit ist dann eine Saugkraft in dieser Zelle hergestellt und die Bedingung zur Wasseraufnahme aus einer Nachbarzelle gegeben, die selbst nicht transpiriert; und so setzt sich die Wasserabgabe von der verdunstenden Oberflächenzelle in die Tiefe der Gewebe fort. Die Größe der Transpiration hängt vor allem davon ab, wie groß die Wasserdurchlässigkeit der Zellhaut ist. Handelt es sich um eine gewöhnliche Zellulosewand, so ist die Transpiration demnach groß; ist aber die Zellwand mit Wachs und Kutikula bedeckt oder mit Kutikularsubstanz imprägniert, so gibt sie wenig Wasser ab. Vergleichende Versuche mit Kobaltpapier lassen dementsprechend an geeigneten Objekten leicht erkennen, wie die Transpiration mit der Zunahme der Dicke der Kutikularschichten abnimmt, bis sie schließlich so gut wie ganz verschwindet. Ähnlich wie Kutikularschichten wirken Korkhäute. Jedermann weiß, wie lange Zeit Äpfel oder Kürbisse, d. h. Früchte mit wohl ausgebildeter Kutikula, oder Kartoffelknollen, die mit einer Korkhaut versehen sind, ohne Wasseraufnahme turgeszent bleiben. Wenn aber die Laubblätter im allgemeinen derartige Schutzmittel gegen Transpiration nicht in dem Maße besitzen, so ist das kein Nachteil für die Pflanze; denn die Transpiration ist nicht etwa ein Übel, sondern sie ist nötig, einerseits weil sie die Temperatur der Pflanze herabsetzt, die in der prallen Sonne leicht lebensgefährlich hoch werden könnte, andererseits weil sie eine rasche Bewegung der sehr verdünnten Nährsalze bewirkt und endlich weil sie diese verdünnten Lösungen eindickt. So haben wir denn auch Einrichtungen kennen gelernt (S. 144 ), die man als Förderungsmittel für die Transpiration bezeichnen kann. Dahin gehört vor allem die große Flächenausdehnung der Blätter.

Nun ist aber die Transpiration nicht auf unmittelbar an die Luft grenzende Zellen beschränkt; auch zahllose Binnenzellen können Wasserdampf abgeben, wenn sie an Interzellularräume angrenzen. Die lufterfüllten Interzellularen müßten freilich nach kurzer Zeit völlig wasserdampfgesättigt sein, wenn sie ringsum abgeschlossen wären. In Wirklichkeit aber finden sich, wie wir gesehen haben, Kommunikationswege zwischen der Atmosphäre und den Interzellularen, von denen die wichtigsten die Spaltöffnungen (S. 43 ) sind. Aus ihnen kann der Wasserdampf austreten, und so wird erzielt, daß die Wasserdampfsättigung der Interzellularenluft keine vollständige ist. Den aus den Spaltöffnungen austretenden Wasserdampf kann man leicht mit Kobaltpapier nachweisen. Legt man dieses gleichzeitig auf Ober- und Unterseite eines Blattes, das nur auf der Unterseite Spaltöffnungen führt, so zeigt sich, daß hier rasche Farbenänderung eintritt, während an der Oberseite die blaue Farbe lange Zeit erhalten bleibt.