Die Figur 242 zeigt, in welcher Weise man den Blutungsdruck, den ein Stammstumpf s produziert, mit Hilfe eines Manometers messen kann. Die Quecksilbersäule wird bei gewissen Pflanzen bis zu 50 und 60, unter günstigen Bedingungen aber bis zu 140 Zentimeter (Birke) oder noch höher emporgedrückt. Diese Druckkräfte könnten also eine Wassersäule bis zu 6, 8 und 18 Metern halten.

Besonders reichlich ist der Wasseraustritt, wenn die Erde feucht und warm ist; er dauert dann je nach der Pflanze und ihrem Entwicklungszustand oft mehrere Tage bis Monate an, und das ausgeschiedene Wasser beträgt unter Umständen bis zu einigen Litern und mehr; bis zu 1 Liter am Tag bei der Rebe, bis 5 Liter bei der Birke, 10 bis 15 Liter bei Palmen. Bei längere Zeit hindurch blutenden Pflanzenteilen bemerkt man eine gewisse Periodizität der Blutungsmenge; nachts wird mehr ausgeschieden als am Tag.

Der „Blutungssaft“ führt außer mineralischen Salzen zuweilen erhebliche Mengen von organischen Substanzen (gelöste Eiweißstoffe, Asparagin, Säuren, besonders aber Kohlehydrate) mit sich; bei einigen Pflanzen ist der Zuckergehalt dieses Saftes so groß, daß Zucker technisch daraus gewonnen werden kann. So liefert der Zuckerahorn Nordamerikas mit 1⁄2% Zucker im Saft in einem Frühjahr etwa 2–3 Kilo von einem Baum. Solcher Saft kann auch gleich Most oder Biermaische zu berauschenden Getränken vergoren werden und liefert dann Birkenwein, Palmwein oder die „Pulque“ der Mexikaner. Diese wird aus dem Safte blühreifer Agaven gewonnen; eine einzelne Pflanze kann in 4–5 Monaten nahezu 1000 Liter Saft ausscheiden.

Ursachen der Wasserausscheidung[151]. Bei der Tropfenausscheidung an der intakten Pflanze handelt es sich nur zum Teil um Wasserausscheidung aus Oberflächenzellen. In anderen Fällen wird Wasser in die Gefäße eingepreßt und tritt dann an Orten geringeren Widerstandes zutage (S. 99 ). Auch bei den Erscheinungen des Blutens wird Wasser aus Parenchymzellen in die Hohlräume der Gefäße gedrückt, und wenn das auch ganz besonders häufig in der Wurzel stattfindet, so fehlt der Vorgang doch in den Stengeln und Blättern durchaus nicht.

Allen geschilderten Vorkommnissen gemeinsam ist also in letzter Linie eine einseitige Flüssigkeitsausscheidung aus lebenden Zellen. Auf die Ursachen einer solchen Drüsentätigkeit der Zellen kann hier nicht eingegangen werden.

Fig. 242. Demonstration des Wurzeldruckes an einer Georgine. Auf den glatt abgeschnittenen Stumpf s ist mittels Kautschukschlauchs c das gebogene Glasrohr g aufgesetzt. Das aus der Erde durch die Wurzel aufgenommene Wasser W wird so kräftig ausgepreßt, daß es den Druck der Quecksilbersäule Q überwindet. Nach NOLL.

Leitung des Wassers[152].

Das Wasser, das teils in Dampfform namentlich von den Blättern abgegeben wird, teils durch Hydathoden oder Wunden in flüssiger Form der Pflanze entströmt, ist im allgemeinen von der Wurzel aufgenommen worden. Es hat also einen Weg zurückzulegen, der schon bei einjährigen Pflanzen nach Metern messen kann, bei den Riesen des Pflanzenreiches aber etwa 100 m beträgt (Eucalyptus amygdalina 110 m; Sequoia gigantea 95 m Stammhöhe). Durch osmotische Saugung von Zelle zu Zelle würde diese Wasserbewegung viel zu langsam stattfinden, um die Verluste decken zu können. Tatsächlich erfolgt denn auch die Strömung des Wassers zur Deckung der Transpiration, der sog. Transpirationsstrom, im Gefäßteil der Leitbündel bzw. bei Bäumen im Holzkörper. Das kann man schon aus einem uralten Versuch, dem sog. Ringelungs versuch, entnehmen. Werden an einem Aste eines Baumes eine Strecke weit die Gewebe bis auf den Holzkörper fortgenommen, so bleiben zunächst, d. h. solange nicht eine Austrocknung oder Zersetzung des Holzkörpers an der entrindeten Stelle eingetreten ist, die Blätter dieses Astes ebenso frisch wie die eines anderen, nicht geringelten Astes; das beweist, daß der Transpirationsstrom nicht durch die Rinde, sondern durch den Holzkörper sich bewegt. Entfernt man dagegen aus einem Zweige sorgfältig eine Strecke weit den Holzkörper und läßt die Rinde größtenteils im Zusammenhang, so welken die Blätter über der Operationsstelle so rasch wie an einem völlig abgeschnittenen Zweige. Man kann diese Versuche ebensogut an intakten Pflanzen ausführen wie an abgeschnittenen, in Wasser gestellten Zweigen; denn letztere nehmen wenigstens eine Zeitlang (solange keine sekundären Änderungen an der Schnittfläche eingetreten sind) das Wasser ebenso lebhaft direkt mit dem Holzkörper auf wie intakte Pflanzen mit der Wurzel. Wird ein abgeschnittener Zweig mit seiner Schnittfläche in eine Lösung von Gelatine gestellt, und läßt man dann die Gelatine, die eine Strecke weit in die Gefäße eingedrungen ist, erstarren, so hat der Holzkörper seine Leitfähigkeit für Wasser verloren. Man sieht daraus, daß das Lumen der Gefäße für die Leitung des Wassers unentbehrlich ist. Aber freilich, in der lebenden Pflanze sind die Gefäße nicht nur mit Wasser gefüllt, sondern sie führen wenigstens in Zeiten lebhafter Transpiration immer auch Luft.

Entsprechend ihrer Aufgabe findet man die Gefäßteile in Wasserpflanzen und Sukkulenten, in denen gar keine oder eine sehr schwache Transpiration besteht, nur spärlich entwickelt. Dagegen besitzen die transpirierenden Blattflächen ein außerordentlich reiches Leitbündelgewebe, das zudem durch vielfache Anastomosen dafür sorgt, daß jeder beliebige Punkt auch bei Nichtfunktionieren des nächsten Verbindungsstranges doch genügend Wasser enthält. DieFig. 128 gibt von diesem Berieselungssystem eines Blattes noch keine vollständige Vorstellung, denn die feinen, nur mikroskopisch nachweisbaren Stränge sind in ihr gar nicht dargestellt. Auch in den Zuleitungen zu den Blättern, in den Stämmen, findet man, insbesondere bei den in die Dicke wachsenden Bäumen, ein außerordentlich leistungsfähiges Wasserleitungssystem. Es ist freilich nicht mehr das gesamte Holz eines dicken Stammes, welches der Wasserleitung dient; sie ist vielmehr stets auf die jüngsten Jahresringe beschränkt. Wo Kernholz (S. 135 ) gebildet wird, ist dieses von der Leitung völlig ausgeschlossen.

Über die bewegenden Kräfte des Transpirationsstromes ist man noch nicht im klaren. Man wird in erster Linie an eine Druckwirkung von unten oder eine Saugwirkung von oben her denken und für erstere den Blutungsdruck, für letztere den Vorgang der Transpiration verantwortlich machen. Allein der Blutungsdruck kommt aus mehreren Gründen nicht in Betracht, und ob die Saugkraft der Transpiration ausreicht, um Wasser bis zum Gipfel hoher Bäume dauernd in ausreichender Menge zu heben, erscheint zweifelhaft. Eine allseitig anerkannte Lösung des vielumstrittenen Problems existiert demnach heute nicht.