Boden und Pflanzengeographie. Nach den mitgeteilten Erfahrungen sollte man glauben, daß ein Boden, der eine Pflanzenspezies zu ernähren vermag, auch für jede andere geeignet sein müßte. Tatsächlich zeigt uns aber die Pflanzengeographie[166], daß die Beschaffenheit des Bodens einen weitgehenden Einfluß auf die Verteilung der Pflanzen ausübt. Das hängt damit zusammen, daß verschiedene Pflanzen an die Menge und Löslichkeit der notwendigen Stoffe verschiedene Ansprüche machen, ferner damit, daß neben den nötigen auch überflüssige Verbindungen in einem Boden sein können, die auf die einzelnen Spezies ganz verschieden wirken. CaCO 3 z. B. und ebenso NaCl wirken auf manche Pflanzen giftig, während andere große Dosen dieser Stoffe ertragen können.

Es kommt indes bei der Pflanzenverteilung in ihrer Abhängigkeit vom Boden keineswegs bloß auf chemische Verhältnisse an. Auch die physikalischen Eigenschaften der Böden spielen eine große Rolle. Endlich kann auch eine Pflanze an einem Ort, der ihr an sich zusagen würde, deshalb fehlen, weil ihre Samen nie dahin gelangt sind.

c) Gase.

Wasser und Nährsalze werden, wie wir gesehen haben, im allgemeinen dem Boden entnommen, aber auch die Luft enthält Stoffe, die notwendig zum Gedeihen vieler Pflanzen sind, die also Nährstoffe genannt werden müssen. Es sind das die Kohlensäure und der Sauerstoff. Diese werden denn auch im allgemeinen aus der Luft aufgenommen; nur die submersen Wasserpflanzen beziehen sie aus dem Wasser. Im letzteren Falle erfolgt ihre Aufnahme genau so wie die von anderen gelösten Stoffen.

Sauerstoff. Entzieht man einer Pflanze den Sauerstoff, so werden meist alle Lebensäußerungen sistiert (vgl.S. 257 ). Diese Tatsache erscheint nicht wunderbar, da auch dem menschlichen Organismus der Sauerstoff unentbehrlich ist. (Weiteres s.S. 240.)

Kohlensäure. Viel weniger plausibel ist es dagegen für den Laien, daß auch die Kohlensäure der Pflanze unentbehrlich sein soll. Und doch ist das so. Wir setzen einer Wasserkultur keinerlei Kohlenstoffquelle zu, die Pflanze vermehrt aber trotzdem ihren Kohlenstoffgehalt; da bleibt keine andere Möglichkeit, als daß sie die Kohlensäure der Luft benützt. Kohlensäure ist in der gewöhnlichen Luft in einer Menge von etwa 0,3 pro Mille enthalten; ein Liter enthält also 0,3 ccm. Läßt man diese Luft über grüne Pflanzen streichen, die an hellem Licht stehen, so zeigt sich, daß ihr Kohlensäuregehalt abnimmt oder verschwindet; farblose Teile, wie Wurzeln, oder nichtgrüne Organismen, wie die Pilze, verhalten sich anders, sie absorbieren keine Kohlensäure. Wird nun ein grüner Pflanzenteil in einer Glasglocke gehalten, durch die man kohlensäure freie Luft hindurchleitet, so stellt er bald sein Wachstum ein, und jede Vermehrung der Trockensubstanz hört völlig auf. Kohlensäure ist demnach ein unentbehrlicher Nährstoff; sie ist offenbar die Quelle für den Kohlenstoff der grünen Pflanze. Die in der Luft vorhandene prozentual geringe Menge reicht zur Ernährung dieser völlig aus (S. 216 ). Es zeigt sich ferner, daß die Zufuhr von organisch gebundenem Kohlenstoff zum Boden oder zur Nährlösung die Kohlensäure der Luft nicht entbehrlich macht; für die grüne Pflanze, die wir einstweilen allein im Auge haben, ist jedenfalls CO 2 die beste Kohlenstoffquelle. Auch genügt es durchaus nicht, wenn wir einer solchen Pflanze die Kohlensäure im Boden oder in der Nährlösung zur Verfügung stellen. Sie muß unbedingt den Blättern geboten werden.

Andere Gase. Sauerstoff und Kohlensäure sind die einzigen Gase, die den gewöhnlichen Pflanzen notwendig sind. Der atmosphärische Stickstoff dagegen ist für die Mehrzahl der Pflanzen ohne jede Bedeutung (vgl.S. 224 ).

Aufnahme der Gase. Kohlensäure und Sauerstoff dringen zum Teil in die Epidermiszellen, zum größeren Teil aber durch die Spaltöffnungen in die Interzellularen und von diesen aus in die inneren Gewebe.

Weder in der Zellwand noch im Protoplasma existieren lufterfüllte Räume oder Kanäle, durch die Gase ins Zellinnere gelangen können. Deshalb ist eine Aufnahme der Gase nur in dem Grade möglich, als sie in der Zellhaut und im Protoplasma bzw. in dem diese Teile durchdringenden Wasser löslich sind. Die gelösten Gase verhalten sich dann gerade wie andere gelöste Stoffe, sie diffundieren in die Zelle. Je wasserreicher eine Zellhaut ist, desto leichter diffundieren die Gase durch sie. Die gewöhnliche Zellhaut ist in trockenem Zustande für Gase auf dem Wege der Diffusion nur sehr wenig durchlässig[167]; allein in der Natur findet sie sich ja immer mehr oder weniger wassergesättigt vor. Dagegen ist die Kutikula sehr wenig imbibitionsfähig für Wasser und stellt deshalb dem diosmotischen Gasdurchtritt erhebliche Schwierigkeit entgegen; doch ist sie keineswegs völlig undurchlässig.

Der Hauptsache nach erfolgt also die Gasdiffusion gar nicht durch die eigentliche Zellhautsubstanz, sondern durch die Stoffe, mit denen diese imprägniert ist. Da nun Kohlensäure in Wasser viel leichter löslich ist als Sauerstoff, so ist es begreiflich, daß sie auch schneller die wassergetränkte Zellhaut durchsetzt als der Sauerstoff. Aller Wahrscheinlichkeit nach gilt das gleiche auch bei der Kutikula. Da aber die Partiärpressung des Sauerstoffes in der Luft eine relativ ansehnliche, die der Kohlensäure dagegen eine recht geringe ist, so kann tatsächlich zwar Sauerstoff, nicht aber Kohlensäure in genügender Menge durch die Kutikula hindurch, und deshalb sehen wir, daß fast alle Organe, die nur Sauerstoff aufzunehmen haben, ohne Spaltöffnungen sind, daß dagegen an den Kohlensäure aufnehmenden Organen stets Spaltöffnungen sich vorfinden.