Sehr bemerkenswert ist die Fähigkeit mancher Pilze, auch solche organische Verbindungen auszunutzen, die wie Stärke, Zellulose usw. in Wasser unlöslich sind und demnach erst nach zuvoriger Verwandlung und Lösung aufnahmefähig werden. Diese Pilze und Bakterien scheiden Stoffe besonderer Art (Enzyme; vgl.S. 229 ) aus, die imstande sind, die betreffenden Stoffe zu spalten und damit löslich zu machen.

Die Saprophyten sind nach dem Gesagten durch die Art ihrer Assimilationstätigkeit charakterisiert: sie können den ersten Schritt der Assimilation des Kohlenstoffes, den die grüne Pflanze mit Hilfe des Lichtes vollzieht, nicht ausführen. Dagegen besteht aller Wahrscheinlichkeit nach im weiteren Verlauf der Assimilation, in dem Aufbau komplizierter Verbindungen, die den Körper zusammensetzen, aus der gebotenen einfachen organischen Verbindung kein Unterschied gegenüber den Autotrophen.

Über heterotrophe Blütenpflanzen vgl. auchS. 226.

Den Saprophyten stehen dann Parasiten gegenüber, die wir in reicher Auswahl bei Pilzen und Bakterien finden; doch fehlen sie auch unter den Algen, Cyanophyceen und den höheren Pflanzen nicht ganz.

Daß nun diese Parasiten oder wenigstens viele von ihnen Nährstoffe aus dem Wirte aufnehmen, sieht man dem letzteren oft direkt an; er kann durch den Parasiten schwer geschädigt, ja sogar schließlich getötet werden. Welche Stoffe aber im einzelnen es sind, die der Parasit aufnimmt und zu seinem Gedeihen bedarf, ist schwer zu sagen. Da vielfach nur Organismen einer bestimmten Verwandtschaft (Familie, Gattung, Art, Kleinart) von einer Parasitenspezies befallen werden, muß man annehmen, daß diese bezüglich Qualität und Quantität ihrer Nahrung ganz spezifische Anforderungen macht. Eine solche Vermutung wird noch dadurch unterstützt, daß man die Mehrzahl der Parasiten nicht unabhängig von ihrem Wirt kultivieren kann.

A. Assimilation des Stickstoffes.

Wenn die grüne Pflanze den Kohlenstoff als Kohlensäure aus der Luft bezieht, wo dieses Gas in relativ sehr geringer Menge vorhanden ist, so könnte man glauben, daß der Riesenvorrat von Stickstoff in der Atmosphäre die erste und die beste Quelle für den Bezug dieses Baustoffes sei. Jede Wasserkultur lehrt indes auf das eindringlichste, daß der Luftstickstoff von der typischen grünen Pflanze nicht ausgenützt werden kann. Läßt man den gebundenen Stickstoff aus der Nährlösung weg, so ist es mit dem Gedeihen der Pflanze vorbei.

In der KNOPschen Nährlösung war der Stickstoff als salpetersaures Salz geboten, und diese Form gilt auch heute noch als die beste für die höhere Pflanze. Immerhin muß zugegeben werden, daß auch gewisse Ammoniumverbindungen, z. B. schwefelsaures oder salzsaures Ammonium, den Nitraten gleichwertig sind, da sie nicht wie z. B. kohlensaures Ammonium durch alkalische Reaktion die Pflanze schädigen. Auch organische Stickstoffverbindungen können als Nährstoffe dienen, so z. B. Aminosäuren, Säureamide, Amine usw., doch ist wohl mit keiner von ihnen ein so guter Erfolg zu erzielen wie mit Salpetersäure. Auch salpetrigsaure Salze können eine brauchbare Stickstoffnahrung abgeben, wenn sie nicht durch zu hohe Konzentration schädigen.

Über die Assimilation der Salpetersäure und des Ammoniaks sind wir nicht annähernd so gut orientiert wie über die der Kohlensäure. Wir kennen den Ort der Assimilation nicht genau, wir wissen über die mitwirkenden äußeren Umstände nicht so gut Bescheid, und wir sind endlich über die auftretenden Produkte nicht ganz im klaren. In letzter Linie handelt es sich vor allem um Bildung von Eiweiß, also um eine sehr viel kompliziertere Substanz als die Kohlehydrate sind, eine Substanz, die neben C, H und O stets ca. 15 bis 19% N und außerdem auch noch S, eventuell auch P enthält. Einen Einblick in den Bau des Eiweißmoleküls haben uns vor allem die methodischen Studien über den Eiweißabbau gegeben. Sie zeigten, daß im Eiweiß eine große Anzahl von Aminosäuren durch Wasserabgabe miteinander verkettet sind. So wie nun EMIL FISCHER künstlich durch Zusammenschweißen von Aminosäuren und darauffolgende Kondensation eiweißähnliche Körper ( Polypeptide ) hergestellt hat, so wird es aller Wahrscheinlichkeit nach auch in der Pflanze sich darum handeln, daß zunächst solche Aminosäuren gebildet und dann gekoppelt werden. Betrachtet man nun die einfachste Aminosäure, das Glykokoll NH 2 CH 2 · CO 2 H, das freilich in der Pflanze nicht sehr verbreitet ist, so zeigt sich, daß diese sich von der Essigsäure ableiten läßt, wenn man ein am Kohlenstoff hängendes H-Atom durch eine NH 2 -Gruppe ersetzt. Es muß also die aufgenommene HNO 3 reduziert werden, wenn ihr Stickstoff zum Aufbau von Eiweiß verwendet werden soll. Diese Reduktion ist unabhängig von Sonnenlicht und Chlorophyll; auch im Dunkeln und von farblosen Teilen wird Salpetersäure assimiliert[179]. — Indirekt freilich wird das Chlorophyll und ebenso das Licht von Bedeutung für die Eiweißsynthese sein können, insofern als auch C-haltige organische Substanz für den Eiweißaufbau nötig ist, und diese in der Sonne vom Chlorophyll gebildet wird. Wegen ihres reichlichen Gehaltes an Kohlehydraten werden deshalb die Laubblätter besonders zur Eiweißbildung geeignet sein; sie sind aber durchaus nicht in dem Grade „ Organe der Eiweißbildung “, wie sie Organe der Kohlehydratbildung sind. Auch kann man bei vielen Pflanzen (vor allem bei den Ruderalpflanzen, z. B. Chenopodium, Amarantus, Urtica) die Salpetersäure noch in den Blättern nachweisen, bei der Mehrzahl scheint sie schon sofort nach ihrer Aufnahme in der Wurzel verändert zu werden.

Ebensowenig wie über die Assimilation der Salpetersäure sind wir über die Assimilation des Ammoniaks unterrichtet. Da hierbei nicht erst eine Reduktion nötig ist, sollte man das Ammoniak für leichter assimilierbar halten als die Salpetersäure; in den Fällen, wo bei der Wasserkultur ein Zusatz von Ammoniak weniger günstig wirkt als Salpetersäure, werden wahrscheinlich irgendwelche Nebenwirkungen des NH 3 in Betracht kommen.