Die stabförmigen Bakterien dringen durch die Wurzelhaare, deren Wand sie lokal zur Aufquellung bringen, in die Rinde der Wurzel ein, verursachen hier die genannten Wucherungen der Parenchymzellen und füllen diese mit einer Bakterienmasse an, die schließlich in abnorm gebildete vergrößerte und verzweigte, aber noch wachstums- und teilungsfähige Formen, die sog. Bakteroiden, übergeht. Während die Bakterien von dem Überschuß der Kohlehydrate ihres Wirtes, in der ersten Zeit auch noch von dessen Eiweiß zehren, kommt den Bakteroiden die Fähigkeit zu, den atmosphärischen Stickstoff zu binden. Die Leguminose aber kann andauernd den Bakteroiden den gebundenen Stickstoff entziehen. Man hat berechnet, daß Lupinen pro Hektar auf diesem Wege bis zu 200 kg Stickstoff zu gewinnen vermögen, also mehr als in 300 Doppelzentnern Stallmist durchschnittlich enthalten ist. Demnach hat diese Stickstoffbindung eine große Bedeutung für die Landwirtschaft, und man sucht sie durch Impfung der Felder mit wirksamem Boden oder mit Reinkulturen besonders virulenter Bakterien zu fördern. Bei der Kultur der Seradella (Leguminose) ist denn auch durch Impfung eine erhebliche Steigerung der Produktion erzielt worden; während der ungeimpfte Boden 5 kg Frischgewicht pro Ar ergab, wurden nach Impfung 400 kg pro Ar geerntet. — Stehen der Leguminose genügend Nitrate im Boden zur Verfügung, so vermag sie mit diesen vorzüglich zu gedeihen; da die Nitrate zugleich auf Bacillus radicicola schädlich wirken, so kommt es unter diesen Umständen gar nicht zur Knöllchenbildung.

Außer bei den Leguminosen kommen auch bei Alnus, Elaeagnus und Casuarina regelmäßig Wurzelknöllchen durch Infektion mit niederen Pflanzen zustande. Elaeagnus und Alnus können den freien atmosphärischen Stickstoff assimilieren, wenn ihre Wurzeln Knöllchen besitzen. Auch Podocarpus hat die gleiche Befähigung. Hier aber handelt es sich um die Verbindung der Wurzel mit einem Pilz, um eine „ Mykorrhiza “[185].

Eine Mykorrhiza findet sich bei zahlreichen Pflanzen, vor allem solchen, die im Humus der Wälder und Heiden leben. Man unterscheidet zwei Extreme, die durch Zwischenstufen verbunden sind, als ekto - und endotrophe Mykorrhiza. Bei der ersteren (Fig. 251, 1, 2 ) umgibt ein Mantel von Pilzhyphen die Wurzel und umhüllt auch schon deren Vegetationspunkt (viele unserer Bäume, Monotropa); bei der letzteren (Fig. 251, 3, 4 ) lebt der Pilz in den Zellen gewisser Wurzelschichten und sendet nur einzelne Fäden in den Boden (Orchideen, Ericaceen, viele Liliaceen). — Die endotrophen Mykorrhizapilze werden von den Zellen der Wurzel teilweise verdaut; es müssen also alle dabei freiwerdenden Stoffe der Phanerogame zugute kommen. Wenn auch noch nicht ganz sichergestellt ist, ob der Pilz die Fähigkeit hat, atmosphärischen Stickstoff zu binden, so kann man doch wohl sagen, die endotrophe Mykorrhiza sei einigermaßen klargelegt. Sie ist auch in manchen Fällen als eine ganz unentbehrliche Assoziierung erkannt, insofern als bei den Orchideen vielfach schon die Keimung, bei den Ericaceen die Weiterentwicklung des Keimlings unterbleibt, wenn der Pilz fehlt. Weniger klar liegen die Verhältnisse bei der ektotrophen Mykorrhiza. Hier stehen sich noch immer mehrere Anschauungen unvermittelt gegenüber: nach der einen soll der Pilz ein reiner, also auch im Grunde schädlicher Parasit sein; nach der zweiten ist die Blütenpflanze der Parasit; die dritte nimmt eine wirkliche Symbiose zwischen beiden Organismen an und stellt sich mit STAHL die Beziehungen zwischen beiden etwa in folgender Art vor: der Pilz nimmt sehr energisch Nährsalze aus dem Boden und versorgt mit diesen auch die autotrophe Blütenpflanze; diese liefert dem Pilz dafür organische Nahrung. Da aber eine ektotrophe Mykorrhiza sich auch bei farblosen Phanerogamen (z. B. Monotropa) findet, so muß wenigstens hier an einen Parasitismus der Blütenpflanze gedacht werden.

Das gleiche dürfte bei endotropher Mykorrhiza für die nichtgrünen Orchideen (Neottia, Coralliorhiza, Epipogon) gelten, die also nicht saprophytisch vom Humus leben, sondern offenbar von den Mykorrhizapilzen ernährt werden.

Die Konsortien von Algen und Pilzen, die man Flechten nennt, finden gewöhnlich eine Deutung, die der dritten bei der ektotrophen Mykorrhiza angeführten entspricht[186].

Neuerdings sind in den Blättern von tropischen Pflanzen (Rubiaceen und Myrsinaceen) Knöllchen gefunden worden, die einer Infektion durch Bakterien ihren Ursprung verdanken. Während aber bei den Leguminosen die Infektion immer von dem zufälligen Zusammentreffen zwischen Bakterien und Blütenpflanze abhängt, wird bei den genannten Pflanzenfamilien schon dem Embryo in der Mutterpflanze eine gewisse Bakterienmasse mitgegeben; und wenn diese künstlich ferngehalten wird, erfolgt die Entwicklung bei Ardisia anomal. Daß auch hier eine Assimilation von freiem Stickstoff stattfindet, ist wenigstens für die Rubiaceen erwiesen[187].

C. Assimilation der übrigen Stoffe.

Die Schwefelsäure schließt sich im Stoffwechsel der Pflanze am engsten an den Stickstoff an, da sie ja ebenfalls zum Aufbau von Eiweißstoffen, die etwa 1⁄2–11⁄2% S enthalten, Verwendung findet. Wo und unter welchen Bedingungen ihre Assimilation stattfindet, ist noch unklar; nur so viel ist bekannt, daß dabei eine Reduktion stattfinden muß. Bei einigen Pflanzen findet Schwefel nicht nur im Eiweiß, sondern auch in anderen Verbindungen Verwendung.

Die Phosphorsäure schließt sich insofern an die Schwefelsäure an, als sie zum Aufbau wenigstens gewisser Proteïnsubstanzen (Nukleoalbumine) und vor allem der Nukleoproteïde der Zellkerne in einer Menge von 0,3–3% dient. Im Gegensatz zur Schwefelsäure wird die Phosphorsäure bei ihrer Aufnahme in diese Moleküle nicht reduziert. Auch die in keiner Pflanze fehlenden Lezithine (vgl.S. 222 ) enthalten Phosphor; ebenso das besonders im Samen auftretende Phytin.

Die Metalle. Kalium, Kalzium, Magnesium und Eisen sind, wie z. B. durch die Wasserkulturmethode gezeigt wurde, ebenso unentbehrlich wie irgendeiner der bisher besprochenen Stoffe; es ist zum mindesten für Kalium und Magnesium sehr wahrscheinlich, daß sie am Aufbau gewisser Verbindungen teilnehmen, die für die Existenz der Pflanze wesentlich sind. Vermutlich enthält z. B. das Protoplasma solche Stoffe. Aber auch andere Substanzen können sie enthalten; so ist z. B. für den Chlorophyllfarbstoff ein beträchtlicher Gehalt an Magnesium nachgewiesen. Man glaubte früher irrtümlicherweise, das Chlorophyll enthalte Eisen, weil in einer Nährlösung ohne Fe die Chloroplasten gelb bleiben ( ChloroseS. 205 ). Wir wissen jetzt, daß das Chlorophyll eisenfrei ist und daß auch nichtgrüne Pflanzen Eisen nötig haben; deshalb gewinnt die Vermutung an Wahrscheinlichkeit, daß das Protoplasma selbst Eisen bedürfe, und daß die Chlorose bei Fe-Mangel die Folge eines kranken Protoplasmas sei.